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Efficient representation of Gaussian fermionic pure states in noncomputational bases
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This paper introduces an innovative approach for representing Gaussian fermionic states, pivotal in quantum
spin systems and fermionic models, within a range of alternative quantum bases. We focus on transitioning
these states from the conventional computational σ z basis to more complex bases, such as (φ, π

2 , α), which
are essential for accurately calculating critical quantities like formation probabilities and Shannon entropy. Our
methodology can be advantageous in quantum quench studies and quantum tomography, where alternative basis
representations significantly enhance optimization processes. We present an algorithm that not only simplifies
the basis transformation, but also reduces computational complexity, making it feasible to calculate amplitudes
of large systems efficiently. Our key contribution is a technique that translates amplitude calculations into
the Pfaffian computation of submatrices from an antisymmetric matrix, a process facilitated by understanding
domain wall relationships across different bases. As an application, we will determine the formation probabilities
for various bases and configurations within the critical transverse field Ising chain, considering both periodic and
open boundary conditions. We aim to categorize the configurations and bases by examining the universal constant
term that characterizes the scaling of the logarithm of the formation probability in the periodic system, as well as
the coefficient of the logarithmic term in the case of open systems. In the open system scenario, this coefficient
is influenced by the central charge and the conformal weight of the boundary condition-changing operator. This
work is set to expand the toolkit available for researchers in quantum information theory and many-body physics,
providing a more efficient and elegant solution for exploring Gaussian fermionic states in nonstandard quantum
bases.
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I. INTRODUCTION

Gaussian fermionic states play a pivotal role as fundamen-
tal components in the realm of spin systems, serving as precise
eigenstates for systems directly mappable to quadratic free
fermionic models like the XY spin chain [1–3]. They are not
only integral in such direct mappings, but also stand as highly
effective approximations for the ground states of interactive
systems [4–7]. They are also the bases for the simulation of
free fermionic computation [8]. Their significance is further
highlighted as they often represent the sole states amenable to
analytical scrutiny or as foundational elements in constructing
more complex states for probing interacting Hamiltonians.

In their conventional form, Gaussian states are typically
expressed in a manner that aligns seamlessly with the com-
putational basis (the σ z basis), a choice stemming from their
inherent definition. Yet in a multitude of practical scenarios,
there arises a necessity to comprehend and articulate these
states in alternate bases. For instance, in scenarios where the
crux of the physics under study is better represented in the
σ x basis, it becomes imperative to reframe these states within
this new basis to accurately compute pertinent quantities like
global entanglement [9], formation probabilities [10–16], or
Shannon entropy [17–22].

Another scenario where such a basis shift might be useful
is in the study of quantum quenches. Here, the initial state,

being Gaussian, needs to be evolved under a Hamiltonian that
exhibits a markedly simpler structure on a different basis.
Similarly, in the realm of quantum tomography, leveraging
Gaussian states for optimization processes could be substan-
tially more efficient when approached from an alternative
basis perspective [23,24]. This need for a basis shift under-
scores the importance of devising an efficient methodology for
expressing Gaussian fermionic states beyond the traditional
computational framework, thereby broadening their applica-
bility and enhancing our understanding of various quantum
phenomena.

Consider an arbitrary qubit in the computational basis, to
change the basis to a new generic basis, one can use the
following unitary matrix:

U(φ,θ,α) =
(

cos θ
2 sin θ

2 e−iα

sin θ
2 e−iφ − cos θ

2 e−i(α+φ)

)
. (1)

For example, (φ, θ, α) = (0, π
2 , 0) and ( π

2 , π
2 , 0) are the σ x

and σ y bases, respectively.
To write a state expressed in computational basis in the

(φ, θ, α) basis one may use the mapping

|ψ〉(φ,θ,α) = U(φ,θ,α) ⊗ U(φ,θ,α) · · · ⊗ U(φ,θ,α) |ψ〉z . (2)

However, this is neither efficient nor elegant because it re-
quires first writing the state in the σ z basis and then multiple
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matrix multiplications with the complexity growing exponen-
tially. This problem is most pronounced if one is interested
in the amplitude of a particular configuration in the (φ, θ, α)
basis. In our paper, we present a highly exact efficient tech-
nique for representing any arbitrary Gaussian pure state in
the (φ, π

2 , α) basis. This method introduces an algorithm
whose complexity increases polynomially, allowing for the
precise calculation of the amplitudes. Significantly, we trans-
late the task of determining the amplitude in the specified
basis into the computation of the Pfaffian of a submatrix
derived from a specific antisymmetric matrix. This achieve-
ment is accomplished by leveraging the relationship between
the domain walls in the mentioned basis and the σ z ba-
sis. Note that our formulas are independent of the system’s
dimension or the range of the underlying couplings in the
system.

To demonstrate the effectiveness of our approach, we apply
our formulas to compute the formation probabilities of various
bit strings in the ground state of the critical transverse-field
Ising chain across different bases. In the case of periodic
chains, these probabilities are extensively analyzed in the σ z

basis, as detailed in Ref. [16]. This analysis reveals that the
logarithm of the probabilities exhibits a linear relationship
with the system size, accompanied by a subleading constant
term linked to the boundary entropy introduced in Ref. [25].
This constant term indicates the conformal boundary con-
dition towards which each configuration flows. We extend
the findings of the authors of Ref. [16] to include arbi-
trary bases in the xy plane. By evaluating these probabilities
for large system sizes (L ≈ 1000), we identify the constant
terms, and consequently, the conformal boundary condition
each configuration approaches. Additionally, we investigate
these probabilities for critical open chains. In such instances,
boundary conformal field theory predicts that the probabil-
ity’s logarithm should exhibit a leading linear term plus a
secondary logarithmic term, as suggested in Ref. [26], see
also Ref. [14]. The coefficient of this logarithmic term is
influenced by the central charge and the potential confor-
mal weight of the boundary condition-changing operator. We
calculate this coefficient for various configurations and cate-
gorize them across different bases.

The structure of the paper is outlined as follows. Section II
begins with an introduction to Gaussian pure states, followed
by a demonstration of how to determine the amplitudes in the
computational basis via the Pfaffian of the submatrices of the
matrix defining the Gaussian state. Section III then presents a
precise formula for obtaining the amplitudes of the Gaussian
state in the σ x basis. This formula enables the effortless cal-
culation of specific configuration amplitudes in this basis for
large sizes L > 1000. Moving forward, in Sec. IV, we broaden
these findings to the (φ, π

2 , 0) basis, utilizing a method akin
to the previous sections. In Sec. V, we introduce a formula
to ascertain the Gaussian pure state in the (φ, π

2 , α) basis. In
Sec. VI, we initially present generic formulas for computing
the probabilities of various configurations across different
bases for a Gaussian state. Following that, we apply these
formulas to evaluate the formation probabilities of diverse bit
strings in the ground state of both open and periodic critical
transverse field Ising chains, aiming to identify the universal
quantities.

The paper culminates in the final section with our conclu-
sions. Additionally, three appendices accompany the article,
providing numerous examples to further elucidate the pre-
sented concepts.

II. GAUSSIAN PURE STATES

In this section, we first introduce the Gaussian pure states
and list a few important properties that are directly related to
this work. Consider the following Gaussian pure state:

|R, 0〉 = 1

NR
e

1
2

∑L
i, j c†

i ri j c
†
j |0〉 , (3)

where NR = det(I + R† · R)
1
4 and c j |0〉 = 0,∀ j. Note that,

without losing generality, we can always consider the matrix
R antisymmetric. We will occasionally also use the notation
c† · R · c† = ∑L

i, j c†
i ri jc

†
j . To write the above state in the con-

figuration basis of the bit strings, one can write the state
in the fermionic coherent basis and then put the Grassmann
variables of sites where there is no fermion zero and Berezin
integrate over the sites where there is a fermion [15]. This
procedure leads to the following elegant formula:

|R, 0〉 = 1

NR

∑
I

pf RI |I〉, (4)

where I is the bit-string configuration and RI is the submatrix
of the matrix R in which we removed the rows and columns
corresponding to the sites where there is no fermion. Finally,
pf indicates the pfaffian of the matrix. From now on we will
call the pf RI the pfaffinho of the the matrix R. The maximum
number of nonzero pfaffinhos for each antisymmetric matrix
is 2L−1. The implicit version of the formula mentioned was
already presented in Ref. [27] and the explicit form can be
found in Ref. [28].

For an example, consider the following state with L = 4:

|R, 0000〉 = 1

NR
(|0000〉 + r12 |1100〉 + r13 |1010〉

+ r14 |1001〉 + r23 |0110〉 + r24 |0101〉
+ r34 |0011〉 + pfR |1111〉). (5)

Now consider the following mapping called Jordan-Wigner
(JW) transformation:

cl =
∏
j<l

(−σ z
j

)
σ−

l , c†
l =

∏
j<l

(−σ z
j

)
σ+

l . (6)

It is easy to show that σ z
l = 2c†

l cl − 1, which means that one
can write the above state in the σ z basis by just the substitu-
tions |0〉 → |↓〉z and |1〉 → |↑〉z. The general definition of a
Gaussian pure state is

|R, C〉 = 1

NR
e

1
2

∑L
i, j airi j a j |C〉 , (7)

where now the a j = c j (c
†
j ) if there is (no) fermion at site j

of the configuration C. In Appendix A, we show that the most
general Gaussian state can be transformed into (7). Note that
Eq. (7) may show a vanishing contribution of the standard
vacuum |0〉. To write the above state in the configuration basis
it is more convenient we first define |C〉 = |n1, n2, . . . , nL〉 and
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|I〉 = |m1, m2, . . . , mL〉, where n j, mj ∈ {0, 1}. Then follow-
ing the same procedure as above, one can write

|R, C〉 = 1

NR

∑
I

sgn(C, I )pf RI (C)|I〉, (8)

where now RI (C) is the submatrix of the matrix R defined
such that we keep the rows and columns j ∈ {1, 2, . . . , L}
such that |n j − mj | = 1. The sign can be found using the
following equation:

sgn(C, I ) =
L∏

i=2

(−1)|ni−mi|
∑

j<i n j . (9)

For an example, consider the following state with L = 4:

|R, 1010〉 = 1

NR
(|1010〉 − r34 |1001〉 + r14 |0011〉

+ r23 |1100〉 − r12 |0110〉 − r13 |0000〉
− r24 |1111〉 + pfR |0101〉). (10)

The Gaussian pure state defined as (8) has the following
remarkable property: consider the state |R, C〉, then as far as

the configuration |C ′〉 has nonzero amplitude one can always
find an R′ matrix such that

|R, C〉 = |R′, C ′〉 . (11)

To obtain the matrix R′ from R and the configurations |C〉 =
|n1, n2, . . . , nL〉 and |C ′〉 = |n′

1, n′
2, . . . , n′

L〉 one can do the
following. First, consider the set of configurations |I ′〉 =
|m′

1, m′
2, . . . , m′

L〉 that can be obtained from |C ′〉 by flipping
just two spins. Then the elements of the matrix R′, i.e., r′

i j ,
can be obtained as follows:

r′
i j = sgn(C, I ′)

sgn(C, C ′)
pf RCI ′

pf RCC′
, (12)

where the sets

CI ′ = {∀ j|n j − m′
j �= 0}, (13)

CC ′ = {∀ j|n j − n′
j �= 0}, (14)

and the signs sgn(C, I ′) and sgn(C, C ′) are defined as (9).
For an example, consider the state |R, 101000〉 with L = 6

we can change the base configuration to |011101〉 with the
following R′ matrix:

R′ = − 1

pf R1246

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −r46 pf R2346 r26 −pf R2456 −r24

r46 0 pf R1346 r16 pf R1456 r14

−pfR2346 −pfR1346 0 pf R1236 pf R −pf R1234

−r26 −r16 −pf R1236 0 −pf R1256 −r12

pf R2456 −pf R1456 −pf R pf R1256 0 pf R1245

r24 −r14 pf R1234 r12 −pf R1245 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (15)

For further details, see Appendix C.
It is worth mentioning that the existence of the matrix R′

is guaranteed because of many polynomial relations between
pfaffinhos that can be obtained from Eq. (11). Here, these
equations are the consequences of the assumption that the
matrix R′ exists, which we left unproven.

III. GAUSSIAN PURE STATES IN THE σx BASIS

In this section, we provide the form of the Gaussian states
introduced in the previous section in the σ x basis, i.e., the
sequence of + and −. To write states such as (3) in the σ x

basis, as we mention in the Introduction, one may first write it
in the σ z basis as we outline in the previous section and then
use the mapping

|ψ〉x = U ⊗ U · · · ⊗ U |ψ〉z , (16)

where U is

U = 1√
2

(
1 1
1 −1

)
. (17)

However, this is not efficient, especially if one is interested in
the amplitude of a particular sequence for large systems. The
more elegant method is to directly get the amplitudes using the
R matrix. To achieve this goal, it is most convenient to work
with domain walls in the σ x basis. We first start with the state
(3). The remarkable thing is that there is an R̃ matrix such that

the state

|R̃, 0̃〉 = 1

NR̃
e

1
2

∑L
i, j c†

i r̃i j c
†
j |0̃〉 , (18)

describes the |R, 0〉 in the domain wall basis of the σ x basis.
In other words, consider an arbitrary sign sequence such as
|+ + − − − · · · + −〉 in the σ x basis. The domain wall form
of this sequence is |0̃1̃0̃0̃, . . . , 1̃, 1̃〉, note that we also consider
the domain wall between the last spin with the first spin as
well, see Fig. 1. Obviously, if we change the direction of all
spins in the σ x basis, the domain wall configuration would
be the same, indicating that the mapping is two to one. If we
assume the matrix R̃ exists and describe domain walls as we
outlined, then one can write

|R, 0〉 = 1√
2NR̃

∑
S

sgn(S )pf R̃S |S〉x, (19)

where |S〉 is a sequence of + and − and the R̃S is a subma-
trix of the matrix R̃ in which we first find the domain wall
configuration of S and then we keep the rows and columns
corresponding to the sites that there is a domain wall. The
sgn(S ) is simply +1(−1) for even(odd) number of − in the
sequence.

To find the explicit form of the matrix R̃ we first notice
that in the spirit of Kramers-Wannier duality one expects the
following identities:

〈0, R| σ x
j σ

x
j+1 |R, 0〉 = − 〈0, R̃| σ z

j |R̃, 0〉 , (20)

〈0, R̃| σ x
j σ

x
j+1 |R̃, 0〉 = − 〈0, R| σ z

j+1 |R, 0〉 , (21)
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FIG. 1. The domain wall basis of the two configurations |+ + − − − · · · + −〉 and |− − + + + · · · − +〉 is |0̃1̃0̃0̃, . . . , 1̃, 1̃〉. Using the
same logic, one can map all the configurations in the σ x basis to the domain wall basis.

for j = 1, 2, . . . , L and σ x
L+1 = +σ x

1 . We start with the first
equation, i.e., (20). Using the JW transformation we can show
that σ x

j σ
x
j+1 = (c†

j − c j )(c
†
j+1 + c j+1). We also define the fol-

lowing matrices:

Cjk (R) = 〈0, R| c†
j ck |R, 0〉 , (22)

Gjk (R) = 〈0, R| (c†
j − c j )(c

†
k + ck ) |R, 0〉 . (23)

These matrices for our Gaussian states have the following
forms:

C = I − Q, (24)

G = I + QT · (R − I) + R∗ · QT − Q, (25)

where Q = (I − R∗ · R)−1. Then the condition (20) means

Gj, j+1(R) = 1 − 2Cj, j (R̃), (26)

GL,1(R) = 2CL,L(R̃) − 1, (27)

where j = 1, 2, . . . , L − 1. Following the same calculations
for the equality (21) one can find

Gj, j+1(R̃) = 1 − 2Cj+1, j+1(R), (28)

GL,1(R̃) = 2C1,1(R) − 1. (29)

A solution for these equations can be found as follows:

R̃ = (I + H · P) · (H · P − I)−1. (30)

where

H = (R − I) · (R + I)−1, (31)

and

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0 1
−1 0 0 0 . . . 0 0
0 −1 0 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
0 0 0 0 . . . −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (32)

In summary, to write the state (3) in the σ x basis, one needs
to first find the matrix R̃ then for each sequence of signs, and
then one needs to find the domain walls configurations. The
amplitudes can be derived using the corresponding pfaffinhos
of the matrix R̃.

An example of L = 3 is

|R, 000〉 = 1√
2NR̃

(
|+ + +〉 − b

a
|+ + −〉 − c

a
|+ − +〉

+ d

a
|+ − −〉 − d

a
|− + +〉 + c

a
|− + −〉

+ b

a
|− − +〉 − |− − −〉

)
, (33)

where NR̃ = 2(
√

1+r2
12+r2

13+r2
23

|a| ). To enhance the clarity and
readability in our discussions and formulations, from this
point forward, we will represent states in the following stan-
dardized form:

|R, 000〉 = 1√
2Z

(a |+ + +〉 − b |+ + −〉 − c |+ − +〉

+ d |+ − −〉 − d |− + +〉 + c |− + −〉
+ b |− − +〉 − a |− − −〉 ), (34)

where

a = 1 + r12 + r13 + r23, b = 1 + r12 − r13 − r23,

c = 1 − r12 + r13 − r23, d = 1 − r12 − r13 + r23,

and Z = 2
√

1 + r2
12 + r2

13 + r2
23.

The procedure can be generalized to the states (7) by
taking care of two steps: first consider the base state |C〉 =
|n1, n2, . . . , nL〉 , then the base state in the domain wall of the
σ x is going to be

|C̃〉 =
⎧⎨
⎩

|n1, n2, . . . , nL〉, ∑L
j=1 n j is even,

|n1, n2, . . . , |nL − 1|〉, ∑L
j=1 n j is odd.

(35)

The two sign sequences in the σ x basis that have the same do-
main wall configurations do not have the same sign in general.
The signs can be found using the following procedure. We first
associate to the sign s j = ± the number s̄ j = ±1 then the sign
for the sequence |s1, s2, . . . , sL〉 can be determined from the
following formula:

sgn(S ) =
L∏

j=1

(−1)(n j−1)(
s̄ j −1

2 ). (36)

An example of L = 3 is

|R, 101〉 = 1√
2Z

(d |+ + +〉 + c |+ + −〉 − b |+ − +〉

− a |+ − −〉 + a |− + +〉 + b |− + −〉
− c |− − +〉 − d |− − −〉 ). (37)

For more examples, see Appendix B.
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Gaussian pure states in the σx basis: Periodic
boundary condition

The procedure outlined in the previous section is fairly
general, and it works for any system independent of

dimension and boundary conditions. However, when we
have a one-dimensional periodic boundary condition one can
significantly simplify the equations. In this case, the antisym-
metric matrix R is also anticirculant. In other words, we have

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 r12 r13 . . . r1, L
2 +1 r1, L

2
. . . r12

−r12 0 r12 . . . r1, L
2 +1 r1, L

2
. . . r13

−r13 −r12 0 r12 r13 r14 . . . r14
...

...
...

...
...

...
. . .

...

−r13 −r14 . . . −r1, L
2 +1 −r1, L

2
. . . 0 r12

−r12 −r13 . . . −r1, L
2 +1 −r1, L

2
. . . −r12 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, L is even (38)

and

R =

⎛
⎜⎜⎜⎜⎜⎝

0 r12 r13 . . . r1,[ L
2 ]+1 r1,[ L

2 ]+1 r1,[ L
2 ] . . . r12

−r12 0 r12 . . . r1,[ L
2 ]+1 r1,[ L

2 ]+1 r1,[ L
2 ] . . . r13

...
...

...
...

...
...

...
. . .

...

−r13 −r14 . . . −r1,[ L
2 ]+1 −r1,[ L

2 ]+1 −r1,[ L
2 ] . . . 0 r12

−r12 −r13 . . . −r1,[ L
2 ]+1 −r1,[ L

2 ]+1 −r1,[ L
2 ] . . . −r12 0

⎞
⎟⎟⎟⎟⎟⎠, L is odd. (39)

To make a more general statement, consider the following
skew-circulant matrix

C =

⎛
⎜⎜⎜⎜⎝

c0 c1 c2 . . . cL−1

−cL−1 c0 c1 . . . cL−2

−cL−2 −cL−1 c0 . . . cL−3
...

...
...

. . .
...

−c1 −c2 −c3 . . . c0

⎞
⎟⎟⎟⎟⎠. (40)

The above matrix can be diagonalized using the following
matrix

U =
{

(y(0), y(L−1), y(1), y(L−2), . . . , y( L
2 −1), y( L

2 ) ) L even,

(y(0), y(L−1), y(1), y(L−2), . . . , y( L−1
2 ) ) L odd,

(41)
where y(m) reads as

y(m) = 1√
L

⎛
⎜⎜⎜⎝

1
e− 2π i

L (m+ 1
2 )

...

e− 2π i
L (m+ 1

2 )(L−1)

⎞
⎟⎟⎟⎠, m = 0, 1, 2, . . . , L − 1.

(42)
Then we have C = U · �c · U† where

�c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�0 0 0 0 . . . 0
0 �L−1 0 0 . . . 0
0 0 �1 0 . . . 0
0 0 0 �L−2 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . � L
2
(� L−1

2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(43)
and

�m =
L−1∑
k=0

cke− 2π ik
L (m+ 1

2 ). (44)

Since both R and P are skew-circulant matrices, we now write

R̃ = U · �(R̃) · U†, (45)

�(R̃) = �(R)�(P) + �(R) − �(P) + I
�(R)�(P) − �(R) − �(P) − I

. (46)

The next step is finding the pfaffinho’s of R̃, i.e., pf R̃. We
first write the R̃ matrix in standard spectral form of skew-
symmetric matrices as follows:

R̃ = V · 	 · VT , V = e
−iπ

4 U · K†, (47)

and

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎝

J 0 0 . . . 0
0 J 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . J

⎞
⎟⎟⎠ L even,

⎛
⎜⎜⎝

J 0 0 . . . 0
0 J 0 . . . 0
...

...
. . .

...
...

0 0 0 . . . 1

⎞
⎟⎟⎠ L odd.

(48)

Here J = 1√
2
(1 i

i 1) and

	 =

⎛
⎜⎜⎜⎜⎜⎝

0 i�̃0 0 0 . . . 0
−i�̃0 0 0 0 . . . 0

0 0 0 i�̃1 . . . 0
0 0 −i�̃1 0 . . . 0
...

...
...

. . .
. . .

...

⎞
⎟⎟⎟⎟⎟⎠. (49)

Then we use the following theorem:

pf R̃I =
∑

J

detVIJ pf 	JJ , (50)

which is valid for any antisymmetric matrices and can be
proved using Berezin integrals over Grassmann numbers.
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Note that here the matrix V is independent of the form of the
matrix R̃, which significantly simplifies the calculations of the
pfaffinhos of the matrix R̃.

It is worth mentioning that the amplitude of the configura-
tion + + · · ·+ can be easily found to be

1√
2

L−1∏
j=0

1

(1 + |�̃ j |2)
1
4

. (51)

Explicit equations like the above can be found for the ampli-
tudes of the configurations that have some periodic structures
making the Eq. (51) amenable to analytical calculations.

IV. GAUSSIAN PURE STATES IN THE (φ, π
2 , 0) BASIS

The procedure outlined in the previous section can be ex-
tended also to any basis in the xy plane. For brevity of the
notation we use R̃φ ≡ R̃(φ, π

2 ,0). Here we need to define the
following operator:

Oφ

j, j+1 = (
cos φσ x

j + sin φσ
y
j

)(
cos φσ x

j+1 + sin φσ
y
j+1

)
.

(52)
Then, much like in the previous section, we expect

〈0, R|Oφ

j, j+1 |R, 0〉 = − 〈0, R̃φ | σ z
j |R̃φ, 0〉 , (53)

which translates into

cos2φGj, j+1(R) + i sin φ cos φK̄j, j+1(R)

− i sin φ cos φKj, j+1(R) + sin2φGj+1, j (R)

= 1 − 2Cj, j (R̃
φ ), (54)

cos2φGL,1(R) + i sin φ cos φK̄L,1(R)

− i sin φ cos φKL,1(R) + sin2φG1,L(R)

= 2CL,L(R̃φ ) − 1, (55)

in the fermionic space. Here we define the matrices

Gjk (R) = 〈0, R| (c†
j − c j )(c

†
k + ck ) |R, 0〉 , (56)

Kjk (R) = 〈0, R| (c†
j + c j )(c

†
k + ck ) |R, 0〉 , (57)

K̄jk (R) = −〈0, R| (c†
j − c j )(c

†
k − ck ) |R, 0〉 , (58)

and the matrix C is defined as in Eq. (22). The above matrices
can be calculated explicitly as

G = I + QT · (R − I) + R∗ · QT − Q, (59)

K =
(

I
2

+ R∗
)

· QT + QT ·
(

I
2

− R
)

− Q + I, (60)

K̄ =
(

I
2

− R∗
)

· QT + QT ·
(

I
2

+ R
)

− Q + I. (61)

A solution to Eqs. (54) and (55) can be found as follows. First,
we make the matrix

Rφ = e2iφR. (62)

and then the matrix

Hφ = (Rφ − I) · (Rφ + I)−1. (63)

Finally, we have

R̃φ = (I + Hφ · P) · (Hφ · P − I)−1. (64)

The above matrix can now be used to directly construct the
state in the (φ, π

2 , 0) basis as we outlined in the previous
section.

To summarize, we first construct the state

|R̃φ, 0̃〉 = 1

NR̃φ

e
1
2

∑L
i, j c†

i (R̃φ )i j c
†
j |0̃〉 . (65)

Then we assume it describes the |R, 0〉 in the domain wall
basis of the ( π

2 , φ, 0) basis. Consequently, the state on the
desired basis will be

|R, 0〉 = 1√
2NR̃φ

∑
S

sgn(S )pf (R̃φ )S |S〉φ, (66)

where |S〉φ as before is a sequence of + and − in the φ basis
and the (R̃φ )S is a submatrix of the matrix R̃φ in which we
first find the domain wall configuration of S and then we keep
the rows and columns corresponding to the sites that there is
a domain wall. The sgn(S ) is simply +1(−1) for even (odd)
number of − in the sequence.

An example of L = 3 is

|R, 000〉 = 1√
2Zφ

(
aφ

(000) |+ + +〉 − bφ

(000) |+ + −〉

− cφ

(000) |+ − +〉 + dφ

(000) |+ − −〉
− dφ

(000) |− + +〉 + cφ

(000) |− + −〉
+ bφ

(000) |− − +〉 − aφ

(000) |− − −〉 )
, (67)

where

aφ

(000) = 1 + e2iφ (r12 + r13 + r23),

bφ

(000) = 1 + e2iφ (r12 − r13 − r23),

cφ

(000) = 1 + e2iφ (−r12 + r13 − r23),

dφ

(000) = 1 + e2iφ (−r12 − r13 + r23),

Zφ = 2
√

1 + r2
12 + r2

13 + r2
23.

The procedure can be generalized to the states (7) by the
method outlined for the x basis with one extra twist. First
consider the base state |C〉 = |n1, n2, . . . , nL〉, then the base
state in the domain wall of the φ is going to be again:

|C̃〉 =
{|n1, n2, . . . , nL〉, ∑L

j=1 n j is even,

|n1, n2, . . . , |nL − 1|〉, ∑L
j=1 n j is odd.

(68)

As before, the two sign sequences in the φ basis that have the
same domain wall configurations do not have the same sign
in general. The signs can be found using a similar procedure
as before. We first associate to the sign s j = ± the number
s̄ j = ±1 then the sign for the sequence |s1, s2, . . . , sL〉 can be
determined from the following formula:

sgn(S ) =
L∏

j=1

(−1)(n j−1)(
s̄ j −1

2 ). (69)
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The twist comes in the determination of the matrix Rφ . The
elements of this matrix are

rφ
i, j = ri, je

2iφ(1−ni−n j ). (70)

After making the matrix Rφ one can use Eq. (64) to write the
state in the desired basis.

An example of L = 3 is

|R, 101〉 = 1√
2Zφ

(
dφ

(101) |+ + +〉 + cφ

(101) |+ + −〉

− bφ

(101) |+ − +〉 − aφ

(101) |+ − −〉
+ aφ

(101) |− + +〉 + bφ

(101) |− + −〉
− cφ

(101) |− − +〉 − dφ

(101) |− − −〉 )
, (71)

where

aφ

(101) = 1 + r12 + e−2iφr13 + r23,

bφ

(101) = 1 + r12 − e−2iφr13 − r23,

cφ

(101) = 1 − r12 + e−2iφr13 − r23,

dφ

(101) = 1 − r12 − e−2iφr13 + r23.

V. GAUSSIAN PURE STATES IN THE (φ, π
2 , α) BASIS

Unlike the previous sections, the Gaussian states in the
(φ, π

2 , α) basis when α �= 0 does not have a domain wall kind
of interpretation. We conjecture that it can be obtained first
by following the steps that lead the state in the (φ, π

2 , 0) basis
and then just putting e−iα for each − in the corresponding
configuration. For example, we have

|R, 101〉 = 1√
2Zφ

(
dφ

(101) |+ + +〉 + eiαcφ

(101) |+ + −〉

− e−iαbφ

(101) |+ − +〉 − e−2iαaφ

(101) |+ − −〉
+ e−iαaφ

(101) |− + +〉 + e−2iαbφ

(101) |− + −〉
− e−2iαcφ

(101) |− − +〉
− e−3iαdφ

(101) |− − −〉 )
. (72)

Note that the probability of the amplitudes are independent of
the phase α.

VI. CONFIGURATION PROBABILITIES

In this segment, we will present a set of formulas designed
to efficiently calculate the probability of each configuration
within the basis outlined in the preceding section. We will
focus on the specific case mentioned as (3), but it’s worth
noting that analogous formulas can be readily developed for
more general scenarios as well. Subsequently, we will apply
these formulas to analyze the probabilities of formation in
the transverse field Ising chain at its critical point, revealing
intriguing universal behaviors.

We start with the computational basis, i.e., σ z basis. It is
easy to see that, for the configuration I, we will have

PI = |pfRI |2
N 2

R

. (73)

When the matrix R is real it simplifies to [29]

PI = det

[
I − II · G

2

]
, (74)

where the matrix II is diagonal, composed of ±1, with its
composition clearly influenced by the specific columns and
rows that are eliminated. We assign a diagonal element of −1
in cases where a fermion is present, and 1 in instances where
there is an absence of a fermion at the relevant site.

The next step is writing the probabilities for the bases in
the xy plane. Using the amplitude formulas of the previous
sections and some simplifications for the probability of the
configuration S , we have

Pφ

S = 1

2

∣∣ det R̃φ

S
∣∣

N 2
R̃φ

, (75)

where

R̃φ = (H − i cot φH · P + P − i cot φI)

× (−H − i cot φH · P + P + i cot φI)−1 (76)

Equation (75) can be also written as

Pφ

S = 1

2N 2
R̃φ

∣∣∣∣∣det

[
(I − IS ) · R̃φ + I + IS

2

]∣∣∣∣∣, (77)

where the diagonal matrix IS is defined for the configuration
S by first finding the domain wall configuration, and then we
put −1(+1) in the diagonal of the matrix IS when there is (no)
domain wall at the site.

The above formula can be further simplified when the R
matrix is real and we are interested in the σ x or σ y bases as
follows:

Px
S = 1

2
det

[
I − IS · G · P

2

]
, (78)

Py
S = 1

2
det

[
P − IS · G

2

]
. (79)

Interestingly, the aforementioned formulas eliminate the need
to invert any matrix, thereby facilitating efficient computation
of probabilities for large-scale systems.

Formation probabilities in the critical transverse
field Ising chain

In this section, we explore the formation probabilities for
the ground state of the transverse field Ising (TFI) chain at its
critical point. We consider both periodic and open boundary
conditions.

For systems like the TFI chain under critical conditions,
the logarithm of formation probabilities can be interpreted
as the free energy in a conformal field theory (CFT) setting.
Specifically, when periodic boundary conditions are used, the
system resembles a CFT on a cylinder, with boundaries at
both ends. Under these conditions, an additional term known
as boundary entropy emerges, contributing to the bulk free
energy. Conversely, when open boundary conditions are ap-
plied, the system transforms into what can be visualized as a
strip. This configuration imposes a natural boundary condition
that directly arises from the Hamiltonian’s properties. In such
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cases, the boundary conditions determined by the formation
probabilities might align with or deviate from the system’s
natural boundary conditions. This deviation sometimes re-
quires the use of conformal boundary changing operators. For
further details and discussion, see Refs. [16,17,25].

Based on the above arguments coming from CFT, one
would anticipate the formation probabilities to exhibit the
following behavior (for those configurations that converge
toward conformal boundary conditions) for the periodic
boundary condition (PBC) [16,17,25]

− ln PS = 
SL − 2sS + O
(

1

L

)
, (80)

where sS is a universal quantity and is dubbed as the Affleck-
Ludwig boundary entropy. It should be noted that for all
systems belonging to the Ising universality class, such as the
XY chain at the critical Ising line (h = 1), we anticipate that
this quantity will be universal and take one of the three values
that we will list later. For detailed study in the σ z basis, see
Ref. [16]. In addition, in this study, we show that the quantity
is also universal with respect to the change of basis.

In the case of open boundary condition (OBC), one expects
a totally different behavior [14,26]

− ln PS = 
SL + aS ln L + O(1), (81)

where this time the coefficient aS is the universal quantity
which depends on the central charge c and the conformal
weight of the boundary changing operator hbcc as follows:

aS = 8hbcc − c

4
. (82)

When the configuration flows to the boundary condition com-
patible with the natural boundary condition of the system, then
hbcc = 0; otherwise, depending on the induced boundary con-
dition, one needs to add the corresponding conformal weight
in the above formula.

We will analyze the aforementioned formulas for the
ground state of the TFI chain across all bases that allow us to
study large sizes and various configurations. In the majority
of scenarios, we will be able to numerically determine the
universal quantities without any ambiguity.

The Hamiltonian of the TFI model is defined as follows:

H = −1

2

L′∑
j=1

σ x
j σ

x
j+1 − h

2

L∑
j=1

σ z
j , (83)

where L′ = L for PBC with σ x
L+1 = σ x

1 and L′ = L − 1 for
OBC.

When L is even the ground state of the critical TFI chain,
i.e., h = 1, has the form (3) with the following R matrix:

R = (I + G) · (I − G)−1, (84)

where

Gpbc
nm = (−1)n−m

L sin π (n−m+1/2)
L

, (85)

Gobc
nm = (−1)n−m

2L + 1

(
1

sin π (n−m+1/2)
2L+1

+ 1

sin π (n+m−1/2)
2L+1

)
. (86)

A configuration in the TFI chain may converge to one of
three potential conformal boundary conditions: free, fixed,

and mixed, each associated with the following boundary
entropies [16,30]:

sS =

⎧⎪⎨
⎪⎩

− ln 2
2 , fixed,

0, free,
ln 2
2 , mixed,

(87)

and the log coefficients in the OBC:

aS =

⎧⎪⎨
⎪⎩

3
8 , fixed,

− 1
8 , free,

3
8 , mixed.

(88)

In deriving the above we use c = 1
2 and hbcc = 1

16 for the fixed
and mixed boundary conditions and hbcc = 0 for free bound-
ary conditions in Eq. (82). Note that the natural boundary
condition of the Hamiltonian with OBC is compatible with
the free BC.

The configurations under investigation are those pos-
sessing a crystalline structure based on a foundational
configuration. For instance, take a base configuration of size p,
within which u elements are oriented upwards. The complete
configuration then consists of this base pattern repeated n
times, ensuring the total system size L is an even number.
Configurations of this nature have been explored in the σ z

basis using both numerical and analytical methods, as doc-
umented in Refs. ([15,16]). In the case of PBC, the analytical
calculations in Ref. [16] reveal the following pattern for the
boundary entropy:

sS =
{

0, p − u even,
ln 2
2 , p − u odd.

(89)

For OBC, after considering various configurations, we find
that

aS =
{

− 1
8 , p − u even,

3
8 , p − u odd.

(90)

The above conclusion is consistent with what we expect from
boundary CFT. In our analysis, we considered systems of sizes
as large as L ≈ 1000, focusing our data fitting primarily on
sizes within the range (400 � L � 1000). The same system
sizes were employed across all other bases and configurations.
It’s worth mentioning that the choice of L ≈ 1000 was not
due to computational limitations, but rather because the fit
quality is already excellent at this size. Furthermore, since the
calculations involve computing a series of determinants, it is
feasible to extend our analysis to system sizes of several thou-
sand using MATHEMATICA with relative ease. The numbers
presented were obtained by fitting the logarithm of formation
probabilities to Eqs. (80) and (81) using MATHEMATICA. The
outcomes of the fitting process align within less than one
percent of the values that have been reported.

In the next step we study the configurations in the (φ, π
2 , 0)

basis when φ �= π
2 . Remarkably, we find the following univer-

sal behavior for the boundary entropy:

sS =
{

0, p = 2u ,

− ln 2
2 , p �= 2u,

(91)
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independent of the value of φ. For OBC, the coefficient of the
logarithm shows the following universal behavior:

aS =
{

− 1
8 , p = 2u,

3
8 , p �= 2u.

(92)

Again independent of the angle φ.
We also study the configurations in the σ y basis. In this

case, as far as p = 2u the results are the same as the general
φ basis. However, when p �= 2u there are various irregulari-
ties with respect to the size of the system L that we do not
understand. When |S〉 = | + + + · · · 〉 our numerical results
indicate the following boundary entropies:

sS =
{

+ ln 2
2 , L = 6k ,

− ln 2
2 , L = 6k + 2, 6k + 4,

(93)

where k is an integer number. For OBC we found a = 3
8 when

L = 6k + 6. In the case of the base configuration + + −, we
were not able to find a consistent result that pinpointed the
relevant system sizes. However, surprisingly in the case of the
base configuration + + +−, we find

sS =
{

+ ln 2
2 , L = 72k + 72 ,

− ln 2
2 , L = 72k + 24, 72k + 48.

(94)

The coefficient of the logarithm in the case of OBC for
the above sizes, i.e., L = 72k + 24, 72k + 48, 72k + 72, is
a = 3

8 .
We also tried other configurations with p �= 2u, but were

not able to find any pattern in these cases.

VII. CONCLUSION

In our study, we developed a precise and explicit formula
for determining the amplitudes of arbitrary Gaussian pure
states within the (φ, π

2 , α) basis. This formula expresses the
amplitudes through the Pfaffian of a submatrix derived from
a clearly defined matrix. The significance of this development
is that it allows for the computation of amplitudes for specific
configurations in relatively large systems, owing to the poly-
nomial computational complexity of calculating the Pfaffian.
Particularly in periodic systems, which result in anticirculant
matrices, our method can yield explicit analytical formulas.

However, this paper does not address scenarios where θ �=
π
2 , 0. The approach using domain wall configurations seems
inadequate, or perhaps there is an aspect we have not yet
identified. Extending this methodology to cover these cases
would complete the narrative of determining Gaussian pure
states on any arbitrary basis.

Using our formulas, we analyzed the formation proba-
bilities for various configurations in the ground state of the
critical transverse-field Ising chain, considering both periodic
and open boundary conditions. This examination across dif-
ferent configurations revealed a coherent understanding of
the universal quantities, such as boundary entropy in the pe-
riodic case and the logarithm coefficient in the open case,
for all bases in the xy plane except the σ y basis. In this
particular basis, we noted significant anomalies for crystalline
configurations with unequal numbers of up and down spins.
Investigating these specific configurations through analytical

methods, especially for periodic chains, could provide a com-
prehensive insight into the phenomena. In the future, we plan
to delve into Gaussian mixed states to further enhance our un-
derstanding and expand the practical applications of Gaussian
states in quantum systems.
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APPENDIX A: GENERIC GAUSSIAN PURE STATES

In this Appendix, we will show that more general Gaussian
states can be written in the form (7). Consider the following
generic Gaussian pure state:

e

1
2

(
c† c

)
M

⎛
⎝ c

c†

⎞
⎠

|C〉 , (A1)

where (c†, c) = (c†
1, c†

2, . . . , c†
L, c1, c2, . . . , cL ). Without los-

ing generality, it is a requirement that J · M be an antisym-
metric matrix, where the J matrix is defined as follows:

J =
(

0 I
I 0

)
. (A2)

In this Appendix, we will show that the above state can be
written as in Eq. (7).

We first do the following canonical transformation:

e

1
2

(
c† c

)
�2

CM�2
C

⎛
⎝ c

c†

⎞
⎠

|C〉 → e

1
2

(
c̄† c̄

)
M̄C

⎛
⎝ c̄

c̄†

⎞
⎠

|0̄〉 ,
(A3)

where the permutation matrix �C is made of the multiplica-
tion of the following canonical permutation matrices

� j =
(

I j O j

O j I j

)
, where

{
(I j )nm = δn,m(1 − δn, j ),
(O j )nm = δn,mδn, j,

(A4)
in which � j : c†

j � c j . Then �C is chosen such that we do

the exchange c†
j � c j for all the sites that there is a fermion. In

this way we have c̄i |0̄〉 = 0,∀i. The next step is using Balian-
Brezin decomposition such that

e

1
2 (c̄† c̄)M̄C

⎛
⎝ c̃

c̃†

⎞
⎠

|0̄〉
= e

1
2 c̄†R̄c̄†

ec̄†Ȳc̄− 1
2 TrȲe

1
2 c̄Z̄c̄ |0̄〉 → e

1
2 c̄†R̄c̄† |0̄〉 , (A5)

where

R̄ = T̄12(T̄22)−1, Z̄ = (T̄22)−1T̄21, e−Ȳ = T̄T
22. (A6)

and

T̄ =
(

T̄11 T̄12

T̄21 T̄22

)
= eM̄. (A7)

After writing back the state (A5) with respect to the origi-
nal creation and annihilation operators, the above state has the
form (7).
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TABLE I. Rφ and R̃φ for different base configurations for L = 2.

Base configuration Rφ R̃
φ

(00)

(
0 e2iφr12

−e2iφr12 0

)
1
a

(
0 bφ

(00)

−bφ

(00) 0

)

(01)

(
0 r12

−r12 0

)
1
a

(
0 bφ

(01)

−bφ

(01) 0

)

(10)

(
0 r12

−r12 0

)
1
a

(
0 bφ

(10)

−bφ

(10) 0

)

(11)

(
0 e−2iφr12

−e−2iφr12 0

)
1
a

(
0 bφ

(11)

−bφ

(11) 0

)

APPENDIX B: EXAMPLES OF GAUSSIAN PURE STATES

In this Appendix, we list some examples of the Gaussian states in different bases for various sizes. We first list all the
possibilities for the L = 2, and then for L = 3, we list them for just the σ z and σ x bases.

1. Gaussian pure states with size L = 2

In this section, we write the Gaussian state for L = 2 in different bases. We first define

aφ

(00) = 1 + e2iφr12, aφ

(01) = 1 + r12, aφ

(10) = 1 + r12, aφ

(11) = 1 + e−2iφr12, bφ

(00) = 1 − e2iφr12, bφ

(01) = 1 − r12,

bφ

(10) = 1 − r12, bφ

(11) = 1 − e−2iφr12, NR =
√

1 + r2
12, Zφ = 2

√
1 + r2

12, and

R =
(

0 r12

−r12 0

)
. (B1)

The corresponding Rφ and R̃φ for all the Gaussian states with L = 2 are listed in the Table I. The full list of Gaussian states in
the σ z and (φ, π

2 , 0) bases are listed in the Tables II and III.

2. Gaussian pure states with size L = 3

In this section, we write the Gaussian state with L = 3 in the σ z and σ x bases. We first define

NR =
√

1 + r2
12 + r2

13 + r2
23, a = 1 + r12 + r13 + r23, b = 1 + r12 − r13 − r23,

c = 1 − r12 + r13 − r23, d = 1 − r12 − r13 + r23, Z = 2
√

1 + r2
12 + r2

13 + r2
23, and

R =
⎛
⎝ 0 r12 r13

−r12 0 r23

−r13 −r23 0

⎞
⎠, (B2)

TABLE II. The state in the σ z basis, with the state represented by a normalization prefactor of 1
NR

.

L = 2, σ z basis
��������������State

Configs
|11〉 |10〉 |01〉 |00〉

|R, 00〉 r12 0 0 1
|R, 01〉 0 r12 1 0
|R, 10〉 0 1 -r12 0
|R, 11〉 1 0 0 -r12
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TABLE III. The state in the (φ, π

2 , 0) basis, with the state represented by a normalization prefactor of 1√
2Zφ .

L = 2, (φ, π

2 , 0) basis
�������������State

Configs
|++〉 |+−〉 |−+〉 |−−〉

|R, 00〉 aφ

(00) −bφ

(00) −bφ

(00) aφ

(00)

|R, 01〉 aφ

(01) bφ

(01) −bφ

(01) −aφ

(01)

|R, 10〉 bφ

(10) −aφ

(10) aφ

(10) −bφ

(10)

|R, 11〉 bφ

(11) aφ

(11) aφ

(11) bφ

(11)

R̃ = 1

a

⎛
⎝ 0 c d

−c 0 b
−d −b 0

⎞
⎠. (B3)

The corresponding states in the σ z and σ x bases are listed in the Tables IV and V.

APPENDIX C: DETAILS RELATED TO EQ. (15)

In this Appendix, we list the exact form of the states |R, 101000〉 and |R′, 011101〉 which is use to get Eq. (15).

|R, 101000〉 = 1

NR
(|101000〉 + −r12 |011000〉 − r13 |000000〉 + r14 |001100〉 + r15 |001010〉 + r16 |001001〉 + r23 |110000〉

− r24 |111100〉 − r25 |111010〉 − r26 |111001〉 − r34 |100100〉 − r35 |100010〉 − r36 |100001〉
+ r45 |101110〉 + r46 |101101〉 + r56 |101011〉 + pf R1234 |010100〉 + pf R1235 |010010〉
+ pf R1236 |010001〉 − pf R1245 |011110〉 − pf R1246 |011101〉 − pf R1256 |011011〉
− pf R1345 |000110〉 − pf R1346 |000101〉 − pf R1356 |000011〉 + pf R1456 |001111〉
+ pf R2345 |110110〉 + pf R2346 |110101〉 + pf R2356 |110011〉 − pf R2456 |111111〉
− pf R3456 |100111〉 + pf R |010111〉). (C1)

|R′, 011101〉 = 1

N ′
R

(|011101〉 + r′
12 |101101〉 − r′

13 |110101〉 + r′
14 |111001〉 − r′

15 |111111〉 − r′
16 |111100〉 − r′

23 |000101〉

+ r24 |001001〉 − r′
25 |001111〉 − r′

26 |001100〉 − r′
34 |010001〉 + r35 |010111〉 + r′

36 |010100〉
− r′

45 |011011〉 − r′
46 |011000〉 + r56 |011110〉 − pf R′

1234 |100001〉 + pf R′
1235 |100111〉

+ pf R1236 |100100〉 − pf R′
1245 |101011〉 − pf R′

1246 |101000〉 + pf R′
1256 |101110〉

+ pf R′
1345 |110011〉 + pf R′

1346 |110000〉 − pf R′
1356 |110110〉 + pf R′

1456 |111010〉
+ pf R′

2345 |000011〉 + pf R′
2346 |000000〉 − pf R′

2356 |000110〉 + pf R′
2456 |001010〉

− pf R′
3456 |1010010〉 − pf R′ |1100010〉). (C2)

TABLE IV. The state in the σ z basis, with the state represented by a normalization prefactor of 1
NR

.

L = 3, σ z basis
���������State

Configs
|111〉 |110〉 |101〉 |100〉 |011〉 |010〉 |001〉 |000〉

|R, 000〉 0 r12 r13 0 r23 0 0 1
|R, 001〉 r12 0 0 r13 0 r23 1 0
|R, 010〉 −r13 0 0 r12 0 1 −r23 0
|R, 011〉 0 −r13 r12 0 1 0 0 −r23

|R, 100〉 r23 0 0 1 0 −r12 −r13 0
|R, 101〉 0 r23 1 0 −r12 0 0 −r13

|R, 110〉 0 1 −r23 0 r13 0 0 −r12

|R, 111〉 1 0 0 −r23 0 r13 −r12 0
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TABLE V. The state in the σ x basis, with the state represented by a normalization prefactor of 1√
2Z .

L = 3, σ x basis
��������State

Configs
|+ + +〉 |+ + −〉 |+ − +〉 |+ − −〉 |− + +〉 |− + −〉 |− − +〉 |− − −〉

|R, 000〉 a −b −c d −d c b −a
|R, 001〉 a b −c −d −d −c b a
|R, 010〉 b −a d −c −c d −a b
|R, 011〉 b a d c −c −d −a −b
|R, 100〉 d −c −b a a −b −c d
|R, 101〉 d c −b −a a b −c −d
|R, 110〉 c −d a −b b −a d −c
|R, 111〉 c d a b b a d c
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