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The role of completely positive–indivisibility (CP-indivisibility) and incompatibility as valuable resources
for various information-theoretic tasks is widely acknowledged. This study delves into the intricate relationship
between CP-divisibility and channel compatibility. Our investigation focuses on the behavior of incompatibility
robustness of quantum channels for a pair of generic dynamical maps. We show that the incompatibility robust-
ness of channels is monotonically nonincreasing for a pair of generic CP-divisible dynamical maps. Further, our
explicit study of the behavior of incompatibility robustness with time for some specific dynamical maps reveals
nonmonotonic behavior in the CP-indivisible regime. Additionally, we propose a measure of CP-indivisibility
based on the incompatibility robustness of quantum channels. Our investigation provides valuable insights into
the nature of quantum dynamical maps and their relevance in information-theoretic applications.
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I. INTRODUCTION

Incompatibility is one of the main features of quantum
mechanics that makes it different from classical mechan-
ics [1]. A set of devices is said to be compatible if those
devices can be simultaneously implemented on a quantum
system. Otherwise, the set is incompatible. These devices can
be measurements, channels, instruments, etc. Incompatibil-
ity is a resource in several information-theoretic tasks and
is necessary to demonstrate nonclassical advantage in such
tasks. For example, measurement incompatibility is necessary
and sufficient to demonstrate quantum steering [2]. Incom-
patibility of measurements is also necessary to demonstrate
Bell inequality violation [2,3] and any quantum advantage in
communication tasks [4]. Measurement incompatibility also
provides advantage in some state discrimination tasks [5].
Recently, it has been shown that incompatibility of channels
and measurement-channel incompatibility both provide ad-
vantages in quantum state discrimination tasks [6].

A general quantum evolution is described by a completely
positive trace preserving (CPTP) dynamical map [7–13]. This
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representation has wide application, since it is almost im-
possible to keep a quantum system truly isolated. When
considering a Markovian evolution [11,12], it is necessary to
take the quantum system weakly interacting with much larger
stationary environment, and hence, the reduced dynamics of
the system can be considered to be memoryless, leading to
one-way information flow from the quantum system to the
bath degrees of freedom. Therefore, the quantum features
of a system subjected to such dynamics vanishes gradually
with time [11–13]. However, in practical situations like in
an experiment, the coupling between the system and envi-
ronmental degrees of freedom may not always be sufficiently
weak. Moreover, the concerning environment can very well
be finite or nonstationary. These situations may lead to the
signature of non-Markovian information backflow [14–24].
Though quantum non-Markovianity has been associated with
varied physical attributes [14,15,25,26], the focus of this work
is based solely on indivisibility of the dynamics exhibiting in-
formation backflow from the environment to the system [14].

A divisible quantum operation is the one that can be real-
ized as an arbitrary number of CPTP maps. In other words,
such operations can be divided into an arbitrary number of
CPTP maps. The precise mathematical definition of such
maps is later presented in Eq. (5) for better understanding.
Divisible maps do not exhibit information backflow from the
environment to the system [14,15] and hence can be under-
stood as Markovian operations. The Born-Markov approxima-
tion and stationary bath state approximation are imperative to
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realize such quantum operations, and hence, in the absence
of these initial approximations, the dynamics is bound to be
CP-indivisible and prone to show information backflow [11].
Adopting this line of reasoning, in this work we take CP-
indivisible quantum operations as non-Markovian. Note that
CP-indivisible operations are necessary to have information
backflow from the environment to the system, enabling recov-
ery of lost information to an extent, and hence they can be
considered resourceful operations in information processing
scenarios. For example, it has been shown that information
backflow allows perfect teleportation with mixed states [27],
improvement of capacity for long quantum channels [28], and
efficient work extraction from an Otto cycle [29].

From the above discussions, it is clear that (in-) compati-
bility and CP-(in-) divisibility can play the role of resources
in various information-theoretic and thermodynamic tasks.
There are several resources in quantum theory that provide
an advantage in information-theoretic or thermodynamic tasks
[30]. Entanglement [31], coherence [32], nonlocality [33],
contextuality [34,35], and incompatibility [36] are examples
of some widely studied resources. Evidently, therefore, ex-
ploring the interplay among different resources forms an
important avenue of research. For example, it is well known
that coherence can be measured with entanglement [37]. The
relation between incompatibility and Bell nonlocality [2,3], as
well as the relation between incompatibility and steerability
[2], are well known. Furthermore, it has been recently shown
that superposition and entanglement are equivalent concepts
in any physical theory [38].

The motivation for the present work is to explore the
connection between the two resources of (in-)compatibility
and CP-(in-)divisibility, which have been hitherto investigated
separately in the literature. It is known that both incom-
patibility and CP-indivisibility are resources for different
information-theoretic tasks. Moreover, to the best of our
knowledge, the notion of compatibility has been considered
only for devices in the static backdrop. In Ref. [39] the
authors have done a qualitative study regarding the relation
between CP-divisibility and incompatibility. However, they
did not consider dynamical maps that involve time or the
robustness measure of incompatibility to draw a quantitative
connection between the above-said resources. On the other
hand, in this work we introduce and characterize the notion
of compatibility of dynamical maps, incorporating their evo-
lution in time. Through our present analysis, we characterize
CP-(in-)divisibility with respect to the (in-)compatibility of
channels. We study the behavior of incompatibility robustness
of quantum channels for some examples of dynamical maps.
We further present an example where the non-Markovian
advantage manifested in terms of CP-indivisibility and infor-
mation backflow is clearly seen to act as a quantum resource
in the task of teleportation. Moreover, we define a measure
of CP-indivisibility based on incompatibility robustness of
channels.

The rest of the paper is organized as follows. In Sec. II
we provide definitions of various quantities required for the
subsequent analysis. Our main results are presented from
Sec. III onwards. In Sec. III A we show that the incompatibil-
ity robustness of quantum channels for a pair of CP-divisible
dynamical maps is monotonically nonincreasing with respect

to time. In Sec. III B we show that for any pair of dynamical
maps, incompatibility robustness of measurements is upper
bounded by incompatibility of channels for an arbitrary time.
In Sec. III C we discuss the notion of compatibility of dy-
namical maps and its connection to channel compatibility. In
Sec. IV we study the behavior of incompatibility robustness
of quantum channels for certain specific dynamical maps and
show its nonmonotonic behavior in a CP-indivisible case. In
Sec. V we discuss the usefulness of CP-indivisibility in the
context of quantum teleportation and compare the behavior
of teleportation fidelity with the incompatibility robustness
with respect to time. In Sec. VI we propose a measure of CP-
indivisibility based on incompatibility of channels. Finally, in
Sec. VII we present our concluding remarks.

II. PRELIMINARIES

A. Compatibility of measurements

A measurement M acting on the Hilbert space H is a
set of positive semidefinite matrices, i.e., M = {M(x)}x∈�M ,
such that

∑
x∈�M

M(x) = 1H , where 1H is the identity ma-
trix on the Hilbert space H and �M is known as the
outcome set of M. The set of all measurements acting on
Hilbert space H and with outcome set � is denoted by
M(H,�). A set of measurements M = {Mi}n

i=1 is said to
be compatible if there exists a joint measurement M =
{M( j1, . . . , jn)} ∈ M(H,�M ) with �M = �M1 × . . . × �Mn

such that Mi( ji ) = ∑
{ jk}\ ji

M( j1, . . . , jn) for all ji ∈ �Mi and
for all i ∈ {1, . . . n}, where the sum over { jk} \ ji denotes the
sum over all jks and for all ks, except for k = i. Otherwise,
the set is incompatible [1,40].

A measure of incompatibility of quantum measurements
is the incompatibility robustness of quantum measurements,
defined below. The incompatibility robustness of two quantum
measurements, M1 ∈ M(H,�1) and M2 ∈ M(H,�2), can be
defined as

RM (M1, M2) = min r

s.t.
M1(i1) + rM̃1(i1)

1 + r
=

∑
i2

M(i1.i2)

M2(i2) + rM̃2(i2)

1 + r
=

∑
i1

M(i1.i2)

M ∈M(H,�1 × �2)

M̃i ∈M(H,�i ) i = 1, 2. (1)

Here, M̃is are arbitrary noise measurements, and the opti-
mization is over all variables, other than the given pair of
measurements (M1, M2). We call the set of all values of r that
satisfies the above equalities for different noise measurements
the compatibility range. Clearly, the incompatibility robust-
ness is the minimum of all values of r that belongs to the
compatibility range.

B. Compatibility of quantum channels

A quantum channel � : L(H ) → L(K ) is a CPTP linear
map whereL(H ) is the bounded linear operator on the Hilbert
space H and L(K ) is the bounded linear operator on the
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Hilbert space K . We denote the set of all quantum channels
from L(H ) to L(K ) as Ch(H,K ). We also denote the
composition (also known as concatenation) of two quantum
channels �1 : L(H ) → L(K̄ ) and �2 : L(K̄ ) → L(K ) as
�2 ◦ �1, where K̄ is another Hilbert space. For two quantum
channels �1 ∈ Ch(H,K1) and �2 ∈ Ch(H,K2), if there
exists another quantum channel � ∈ Ch(K1,K2) such that
�2 = (� ◦ �1), then we say that �2 is a postprocessing of
�1 and we denote it as �2 � �1. Let � ∈ Ch(H,K ) be a
quantum channel. Then the �∗ : L(K ) → L(H ) is called a
dual map of � if Tr[�(T )X ] = Tr[T �∗(X )] holds for all
T ∈ L(H ) and X ∈ L(K ). Clearly, �∗ is the action of � in
the Heisenberg picture. As � is CP trace preserving, �∗ is
CP unital. Now, consider a measurement M = {M(x)}x∈�M ∈
M(�M,K ) and a channel � ∈ Ch(H,K ). If �∗ is ap-
plied on the measurement M, the resulting measurement is
�∗(M ) = {�∗[M(x)]}x∈�M ∈ M(�M ,H ). Implementation of
M on an arbitrary quantum system after implementation of
� is equivalent to implementation of �∗[M(x)] before imple-
mentation of � on that quantum system.

We now discuss a special type of channel that maps any
input state to a fixed output state. These channels are called
completely depolarizing (CD) channels [41], which may com-
pletely erase the information of input states. If ϒη(ρ) = η

for all input states ρ, then ϒη is a completely depolarizing
channel. We denote the set of all completely depolarizing
channels from L(H ) to L(K ) as ChCD(H,K ). We will
use this type of channel in the later sections. Now, suppose
ϒη ∈ ChCD(H,K ) is an arbitrary completely depolarizing
channel and �1 ∈ Ch(K,K ′) is an arbitrary quantum chan-
nel. Then (�1 ◦ ϒη ) is also a completely depolarizing channel
[41]. Below, we define the compatibility of quantum channels.

Definition 1. Two quantum channels �1 : L(H ) →
L(K1) and �2 : L(H ) → L(K2) are compatible if there
exists a quantum channel � : L(H ) → L(K1 ⊗K2) such
that for all T ∈ L(H ),

�1(T ) = TrK2�(T ); �2(T ) = TrK1�(T ). (2)

Otherwise, �1 and �2 are incompatible [41] .
The quantum channel � in Definition 1 is also known as

the joint quantum channel. Equation (2) can be rewritten using
shorthand notation as

�1 = TrK2�; �2 = TrK1�. (3)

We will use the shorthand notations throughout the paper.
Suppose �̄1 � �1 and �̄2 � �2. Then it is proved in

Ref. [41, Proposition 3] that �̄1 and �̄2 are compatible if �1

and �2 are compatible. We will use this result in the proof of
Theorem 1 and Theorem 2.

A measure of incompatibility of quantum channels is
the incompatibility robustness of quantum channels that is
defined below [6]. The incompatibility robustness of two
quantum channels �1 : L(H ) → L(K1) and �2 : L(H ) →
L(K2) can be defined as

RC (�1,�2) = min r

s.t.
�1 + r�̃1

1 + r
= TrK2


�2 + r�̃2

1 + r
= TrK1



 ∈ Ch(H,K1 ⊗K2)

�̃i ∈ Ch(H,Ki ) i = 1, 2. (4)

Here, �̃is are arbitrary noise channels, and the optimization
is over all variables, other than the given pair of channels
(�1,�2). We call the set of all values of r that satisfy the
above equalities the compatibility range. Clearly, the incom-
patibility robustness is the minimum of all values of r that
belongs to the compatibility range. Note that the definition
of incompatibility robustness of quantum channels does not
directly guarantee that the compatibility range is continuous.
Such a statement is proved in Lemma 1 below. It is known that
for any two given channels, RC is upper bounded by 1 [41,
Example 2]. Now, following Ref. [42], broadcasting quantum
channels can be defined.

Definition 2. A channel � : L(H ) → L(H1 ⊗H2) with
H1 = H2 is known as a broadcasting quantum channel [42].

This definition will be used in later sections.

C. Dynamical maps and CP-divisibility

A dynamical map is a family of CPTP linear maps {�t,t0 :
L(H ) → L(H )}t (where t � t0). Here, t represents the time
and t0 is the fixed initial time. Without loss of generality,
we can take t0 to be 0 and denote �t,0 as �t . We denote
the set of all dynamical maps on L(H ) [i.e., from L(H ) to
L(H )] as DM(H,H ). Let D1 = {�1

t }t ∈ DM(H,H ) and
D2 = {�2

t }t ∈ DM(H,H ). Then the convex combination of
D1 and D2 (with respect to p � 0) is defined as pD1 + (1 −
p)D2 := {p�1

t + (1 − p)�2
t }t . Now, we provide the definition

of a CP-divisible dynamical map below.
Definition 3. A dynamical map D = {�t }t is called CP-

divisible if for all t and all s, it can be written as

�t = Vt,s ◦ �s, (t � s), (5)

where ◦ denotes the composition of maps and Vt,s : L(H ) →
L(H ) is a CPTP linear map.

A dynamical map that is not CP-divisible is known
as CP-indivisible dynamical map. We refer the readers to
Refs. [11–13] for more details.

III. RELATING CP-DIVISIBILITY OF DYNAMICAL MAPS
WITH COMPATIBILITY OF QUANTUM CHANNELS

A. CP-indivisibility of dynamical maps and incompatibility
robustness of quantum channels

In this section we establish a connection of CP-divisibility
of dynamical maps with compatibility of quantum channels.

Theorem 1. Suppose that the quantum dynamical maps
D1 = {�1

t }t ∈ DM(H,H ) and D2 = {�2
t }t ∈ DM(H,H )

are both CP-divisible. Then RC (�1
t ,�

2
t ) � RC (�1

t+δt ,�
2
t+δt )

for any δt � 0.
Proof. If bothD1 andD2 are CP-divisible, then

�1
t+δt = V 1

t,t+δt ◦ �1
t ; (6)

�2
t+δt = V 2

t,t+δt ◦ �2
t (7)
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hold for any δt � 0, where V 1
t,t+δt and V 2

t,t+δt are quantum
channels. Now, suppose that RC (�1

t ,�
2
t ) = l . Therefore, from

the definition of incompatibility robustness of quantum chan-
nels, it follows that there exist two quantum channels �̄1

t and

�̄2
t such that the channels �1

t = �1
t +l�̄1

t
1+l and �2

t = �2
t +l�̄2

t
1+l are

compatible. Now, consider the quantum channels,

V 1
t,t+δt ◦ �1

t = �1
t+δt + l

(
V 1

t,t+δt ◦ �̄1
t

)
1 + l

, (8)

V 2
t,t+δt ◦ �2

t = �2
t+δt + l

(
V 2

t,t+δt ◦ �̄2
t

)
1 + l

. (9)

Next, as mentioned in Sec. II B, for two pairs of channels
(�1, �2) and (�̄1, �̄2), if �̄1 � �1 and �̄2 � �2 hold, then
�̄1 and �̄2 are compatible if �1 and �2 are compatible [41,
Proposition 3]. Therefore, as �1

t and �2
t are compatible, from

Eqs. (8) and (9) we get that the quantum channels V 1
t,t+δt ◦ �1

t

and V 2
t,t+δt ◦ �2

t are also compatible. Therefore, from the def-
inition of incompatibility robustness of quantum channels, it
follows that RC (�1

t ,�
2
t ) = l � RC (�1

t+δt ,�
2
t+δt ). �

Note that the incompatibility robustness defined in Eq. (4)
has the minimization over all possible noise channels. Incom-
patibility robustness can be defined with regard to only the set
of all completely depolarizing channels as well. The incom-
patibility robustness of two quantum channels �1 : L(H ) →
L(K1) and �2 : L(H ) → L(K2) with regard to completely
depolarizing channels can be defined as

RCDC (�1,�2) = min r

s.t.
�1 + r�1

1 + r
= TrK2


�2 + r�2

1 + r
= TrK1



 ∈ Ch(H,K1 ⊗K2)

�i ∈ ChCD(H,Ki ) i = 1, 2. (10)

A similar measure for the incompatibility of measurements
has been studied earlier [1,43].

Theorem 2. Suppose that the quantum dynamical
maps D1 = {�1

t }t ∈ DM(H,H ) and D2 = {�2
t }t ∈

DM(H,H ) are both CP-divisible. Then RCDC (�1
t ,�

2
t ) �

RCDC (�1
t+δt ,�

2
t+δt ) for any δt � 0.

Proof. If bothD1 andD2 are CP-divisible, then

�1
t+δt = V 1

t,t+δt ◦ �1
t ; (11)

�2
t+δt = V 2

t,t+δt ◦ �2
t (12)

hold for any δt � 0, where V 1
t,t+δt and V 2

t,t+δt are quantum
channels. Now, suppose that RCDC (�1

t ,�
2
t ) = l . Therefore,

from the definition of incompatibility robustness of quan-
tum channels with respect to only the set of completely
depolarizing channels, we get that there exist two com-
pletely depolarizing channels �1 ∈ ChCD(H,K1) and �2 ∈
ChCD(H,K2) such that the channels �1

t = �1
t +l�1

1+l and

�2
t = �2

t +l�2

1+l are compatible. Now, consider the quantum

channels V 1
t,t+δt ◦ �1

t = �1
t+δt +l (V 1

t,t+δt ◦�1 )
1+l and V 2

t,t+δt ◦ �2
t =

�2
t+δt +l (V 2

t,t+δt ◦�2 )
1+l . Now, as mentioned in Sec. II B, for two

pairs of channels (�1, �2) and (�̄1, �̄2), if �̄1 � �1 and �̄2 �
�2 hold, then �̄1 and �̄2 are compatible if �1 and �2 are
compatible [41, Proposition 3]. Therefore, as �1

t and �2
t

are compatible, we get that the quantum channels V 1
t,t+δt ◦

�1
t = �1

t+δt +l (V 1
t,t+δt ◦�1 )

1+l and V 2
t,t+δt ◦ �2

t = �2
t+δt +l (V 2

t,t+δt ◦�2 )
1+l are

also compatible. Therefore, from the definition of incom-
patibility robustness of quantum channels with respect to
only the set of completely depolarizing channels and the
fact that the channels (V 1

t,t+δt ◦ �1) and (V 2
t,t+δt ◦ �2) are

completely depolarizing, it follows that RCDC (�1
t ,�

2
t ) = l �

RCDC (�1
t+δt ,�

2
t+δt ). �

Note that Theorems 1 and 2 do not directly imply each
other.

B. CP-divisibility and compatibility of quantum measurements

The relation between compatibility of measurements and
CP-divisibility of dynamical maps has been studied in detail
in Refs. [40,43]. Here, we further study it in the context of
our present analysis. In Ref. [43], the authors studied the
behavior of incompatibility robustness of quantum measure-
ments with respect to fixed noise measurements. Here, we
show that incompatibility robustness of measurements (with
respect to generic noise) for any pair of dynamical maps is
upper bounded by incompatibility robustness of channels for
that pair of dynamical maps.

Theorem 3. Consider an arbitrary pair of measurements
M = {Mi ∈ M(�Mi ,H )}i∈1,2 and an arbitrary pair of dy-
namical maps D1 = {�1

t }t ∈ DM(H,H ) and D2 = {�2
t }t ∈

DM(H,H ). Then

max
M1,M2

RM
[
�1∗

t (M1),�2∗
t (M2)

]
� RC

(
�1

t ,�
2
t

)
. (13)

Proof. Let RC (�1
t ,�

2
t ) = l (t ). Then there exist two noise

channels �̃1
t and �̃2

t such that

�1
t + l (t )�̃1

t

1 + l (t )
= TrH2�, (14)

�2
t + l (t )�̃2

t

1 + l (t )
= TrH1�, (15)

where � ∈ Ch(H,H1 ⊗H2) withH1 = H2 = H .
Using the definition of dual maps, Eqs. (14) and (15), we

obtain

�1∗
t [M1(i)] + l (t )�̃1∗

t [M1(i)]

1 + l (t )
= �∗[M1(i) ⊗ 1H2 ], (16)

�2∗
t [M2( j)] + l (t )�̃2∗

t [M2( j)]

1 + l (t )
= �∗[1H1 ⊗ M2( j)], (17)

for all i ∈ �M1 and j ∈ �M2 . Let the measurement M :=
{M(i, j) = �∗[M1(i) ⊗ M2( j)]}. Then clearly,∑

j

M(i, j) = �1∗
t [M1(i)] + l (t )�̃1∗

t [M1(i)]

1 + l (t )
, (18)

∑
i

M(i, j) = �2∗
t [M2( j)] + l (t )�̃1∗

t [M2( j)]

1 + l (t )
. (19)

Hence, the measurements M ′
1 =

{�1∗
t [M1(i)]+l (t )�̃1∗

t [M1(i)]
1+l (t ) }i∈�M1

and M ′
2 =
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{�2∗
t [M2( j)]+l (t )�̃2∗

t [M2( j)]
1+l (t ) }i∈�M2

are compatible. Thus, from
the definition of incompatibility robustness of quantum
measurements, we get RM[�1∗

t (M1),�2∗
t (M2)] � l (t ) =

RC (�1
t ,�

2
t ). �

Clearly, from Theorems 1 and 3, it follows that the upper
bound of RM[�1∗

t (M1),�2∗
t (M2)] is monotonically nonin-

creasing if bothD1 andD2 are CP-divisible.

C. CP-divisibility and compatibility of dynamical maps

First, we define broadcasting quantum dynamical maps, as
follows.

Definition 4. A broadcasting quantum dynamical map is a
family of CPTP linear maps {�t,t0 : L(H ) → L(H1 ⊗H2)}t

(where t � t0) withH1 = H2.
We denote the set of all broadcasting dynamical maps

on L(H ) [i.e., from L(H ) to L(H1 ⊗H2)] with H1 = H2

as BD(H,H1 ⊗H2 | H1 = H2). Again, without the loss of
generality, we can take t0 to 0. We now define the compatibil-
ity of dynamical maps.

Definition 5. Two dynamical maps D1 = {�1
t }t ∈

DM(H,H ) and D2 = {�2
t }t ∈ DM(H,H ) are said to

be compatible if a joint broadcasting quantum dynamical map
J = {� : L(H ) → L(H1 ⊗H2)}t with H1 = H2 = H
exists such that

D1 = TrH2J ; D2 = TrH1J . (20)

where TrHiJ := {TrHi�}t for i ∈ {1, 2}.
Definition 5 is similar to Definition 1, but now compatibil-

ity relations should hold for all t .
Clearly, the implementation of J is equivalent to the si-

multaneous implementation of D1 and D2. Note that the set
of all compatible dynamical maps is convex. Therefore, a
measure of incompatibility of quantum dynamical maps is the
incompatibility robustness of quantum dynamical maps that
we define below. The incompatibility robustness of two quan-
tum dynamical maps D1 = {�1

t }t ∈ DM(H,H ) and D2 =
{�2

t }t ∈ DM(H,H ) can be defined as

RD(D1,D2) = min r

s.t.
D1 + rD̃1

1 + r
= TrH2J

D2 + rD̃2

1 + r
= TrH1J

J ∈ BD(H,H1 ⊗H2 | H1 = H2)

D̃i ∈ DM(H,H ) i = 1, 2. (21)

Here D̃is are arbitrary noise dynamical maps, and the opti-
mization is over all variables, other than the given pair of
dynamical maps (D1,D2).

Let us now present the following Lemma:
Lemma 1. Consider two quantum channels �1 ∈

Ch(H,K1) and �2 ∈ Ch(H,K2) with RC (�1,�2) = l .
Then for all ε � 0, there exists two quantum channels
�̃1 ∈ Ch(H,K1) and �̃2 ∈ Ch(H,K2) such that the
quantum channels �1+l ′�̃1

1+l ′ and �2+l ′�̃2
1+l ′ are compatible where

l ′ = l + ε � l .

Proof. As RC (�1,�2) = l , there exist �̂1 ∈ Ch(H,K1),
�̂2 ∈ Ch(H,K2), and � ∈ Ch(H,K1 ⊗K2) such that

�̄1 = �1 + l�̂1

1 + l
= TrK2�, (22)

�̄2 = �2 + l�̂2

1 + l
= TrK1�. (23)

Now consider two completely depolarizing channels (i.e.,
channels with fixed output states) ϒ̂η1 ∈ Ch(H,K1) and
ϒ̂η2 ∈ Ch(H,K2) [where η1 ∈ S(K1) and η2 ∈ S(K2)] such
that for all ρ ∈ S(H ),

ϒ̂η1 (ρ) = η1, (24)

ϒ̂η2 (ρ) = η2. (25)

In Ref. [41, Proposition 10], it is proved that completely
depolarizing channels are compatible with any quantum
channel. Therefore, ϒ̂η1 and ϒ̂η2 are compatible. The cor-
responding joint channel is ϒ̂η1⊗η2 ∈ Ch(H,K1 ⊗K2) such
that for all ρ ∈ S(H ),

ϒ̂η1⊗η2 (ρ) = η1 ⊗ η2. (26)

Let γ = ε
1+l . Clearly, γ � 0.

Now, consider the quantum channels,

�1 = �̄1 + γ ϒ̂η1

1 + γ
= TrK2

[
� + γ ϒ̂η1⊗η2

1 + γ

]
, (27)

�2 = �̄2 + γ ϒ̂η2

1 + γ
= TrK1

[
� + γ ϒ̂η1⊗η2

1 + γ

]
. (28)

Clearly, �1 and �2 are compatible. Recall that l ′ = l + ε.
Now, it can be easily shown that

�1 = �1 + l ′�̃1

1 + l ′ , (29)

�2 = �2 + l ′�̃2

1 + l ′ , (30)

where �̃1 = l�̂1+εϒ̂η1
l+ε

and �̃2 = l�̂2+εϒ̂η2
l+ε

are valid quantum
channels. Hence, the lemma is proved. �

Now, defining a quantity Rmax
C (D1,D2) :=

maxt RC (�1
t ,�

2
t ), we state the following result.

Theorem 4. For two arbitrary quantum dynamical maps
D1 = {�1

t }t ∈ DM(H,H ) and D2 = {�2
t }t ∈ DM(H,H ),

the equality RD(D1,D2) = Rmax
C (D1,D2) holds.

Proof. Suppose that RD(D1,D2) = l . Therefore, from
Definition 5 and the definition of incompatibility robustness of
dynamical maps, there exist two dynamical maps D̄1 = {�̄1

t }t

and D̄2 = {�̄2
t }t such that the channels �1

t +l�̄1
t

1+l and �1
t +l�̄1

t
1+l

are compatible for all t . We know that Rmax
C (D1,D2) :=

maxt RC (�1
t ,�

2
t ) and suppose the maximum occurs for t = t ′.

Therefore, Rmax
C (D1,D2) = RC (�1

t ′ ,�
2
t ′ ), which we will de-

note by h. Now, as discussed above, the channels
�1

t ′+l�̄1
t ′

1+l and
�1

t ′+l�̄1
t ′

1+l are compatible. Then, from the definition of incom-
patibility robustness for quantum channels, we get

RD(D1,D2) = l � RC
(
�1

t ′ ,�
2
t ′
) = Rmax

C (D1,D2). (31)
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Now, suppose RC (�1
t ,�

2
t ) = kt for an arbitrary t . Then

kt � h. Next, from Lemma 1 it follows that there exist quan-

tum channels �̃1
t and �̃2

t such that such that �1
t +h�̃1

t
1+h and

�2
t +h�̃2

t
1+h are compatible for all t . Therefore, from the definition

of incompatibility robustness of the dynamical maps, one
obtains

RD(D1,D2) � h = Rmax
C (D1,D2). (32)

Therefore, from inequalities (31) and (32), it follows that

RD(D1,D2) = h = Rmax
C (D1,D2). (33)

�
From Theorems 1 and 4, one can obtain the following

result.
Corollary 5. For two arbitrary CP-divisible quantum dy-

namical maps D1 = {�1
t }t ∈ DM(H,H ) and D2 = {�2

t }t ∈
DM(H,H ), the equality RD(D1,D2) = RC (�1

0,�
2
0) holds.

Clearly, this corollary relates CP-indivisibility with incom-
patibility of channels.

IV. ILLUSTRATION OF INCOMPATIBILITY ROBUSTNESS
OF QUANTUM CHANNELS FOR SEVERAL

DYNAMICAL MAPS

In this section we study the behavior of incompatibility
robustness of quantum channels for some specific dynamical
maps, for both the CP-divisible and CP-indivisible regime.
Our goal is to study if the information backflow induced by
CP-indivisibility can be witnessed from nonmonotonic behav-
ior of incompatibility robustness of quantum channels with
respect to time.

To obtain the incompatibility robustness for two quantum
channels �1(t ) and �2(t ), we implement the following al-
gorithm, incorporating semidefinite optimization techniques.
For the examples we consider here, the input Hilbert space
(Hin) and the output Hilbert spaces (Hi,out) of both channels
are the same as Cd (i.e., d-dimensional complex Hilbert space
for finite d), where d = 2.

(1) Fix a value of time t = 0, and we obtain the Choi
matrices, C�1(t=0),C�2(t=0), of the channels, where C�i (t=0) ∈
L(Hin ⊗Hi,out). We denote C�i (t=0) as C�i .

(2) We start from the value of r = 0 and execute the fol-
lowing optimization:

max q

C�1
∈ L(Hin ⊗H1,out), C�1

� 0, TrH1,out (C�1
) = 1Hin ,

C�2
∈ L(Hin ⊗H2,out ), C�2

� 0, TrH2,out (C�2
) = 1Hin ,

C� ∈ L(Hin ⊗H1,out ⊗H2,out ), C� � q1Hin⊗H1,out⊗H2,out ,

TrH2,out (C� ) = C�1 + rC�1

1 + r
,

TrH1,out (C� ) = C�2 + rC�2

1 + r
. (34)

(i) If the value of q is negative, it indicates that �1(t =
0) and �2(t = 0) are incompatible for that specific value
of r. In this case, we proceed by repeating step (II) with an
updated value of r, i.e., r = r + δr.

(ii) If the value of q is greater than or equal to zero,
it signifies that �1(t = 0) and �2(t = 0) have become
compatible. We store the current value of r as the incom-
patibility robustness. Subsequently, we return to step (I)
and increment the parameter t by δt .
The incompatibility robustness with respect to completely

depolarizing (CD) noise can be determined using the same
method. In this case, instead of the constraint C�i

∈ L(Hin ⊗
Hi,out ), C�i

� 0, TrHi,out (C�i
) = 1Hin , the constraint C�i

=
1Hin ⊗ ηi, ηi ∈ L(Hi,out), ηi � 0, Tr[ηi] = 1 needs to be im-
posed for each i = 1, 2.

A. Qubit-depolarizing dynamical maps

Consider a qubit-depolarizing dynamical map D = {�t }t

of the form

�t (ρ) = w(t )ρ + [1 − w(t )]
1

2
. (35)

Here, 1 = 12×2. The Choi matrix of �t can be written as

C�t =

⎡
⎢⎢⎢⎢⎢⎣

1+w(t )
2 0 0 w(t )

0 1−w(t )
2 0 0

0 0 1−w(t )
2 0

w(t ) 0 0 1+w(t )
2

⎤
⎥⎥⎥⎥⎥⎦. (36)

Now, let us first consider the CP-divisible scenario, where
we can take w(t ) = e−λt with λ to be some positive real
constant and we call the dynamical map D1 = {�1

t }t [i.e.,
�1

t (ρ) = e−λtρ + (1 − e−λt )12 ]. This is a divisible depolariz-
ing dynamical map, which can be shown very easily [14]. (For
our purpose of study, we take λ to be 0.5. The step size δr is
taken to be 0.005. The values of t are taken from 0 to 1 (in
units of 1/λ), and the interval of t is taken to be 0.01 in all the
cases.)

Note that it can be directly shown from the Lindblad
evolution of trace distance that the necessary condition for
nonmonotonic behavior of the trace distance is the breaking
down of divisibility [15]. The increment of trace distance
between any two possible states of a system (evolving through
a dynamical map) with respect to time is an indication of
information backflow from the environment to the system.
In the following examples studied by us, we use the trace
distance curve to show that nonmonotonicity of it has simi-
larity with nonmonotonicity of the incompatibility robustness
curve. The incompatibility robustness of two copies of �1

t
[i.e., RC (�1

t ,�
1
t ) and RCDC (�1

t ,�
1
t )] is plotted with respect

to time t in Fig. 1 and we observe the monotonic behavior.
Incompatibility of channels becomes permanently zero at ap-
proximately t = 0.81.

Now, let us take w(t ) = e−λt cos2 ωt , for the example of
a CP-indivisible dynamical map. The inclusion of the cosine
function imparts oscillation in the term, allowing informa-
tion backflow from the environment to the system. For our
purpose, we take λ = 0.5, ω = 5π and denote the dynamical
map as D2 = {�2

t }t [i.e., �2
t (ρ) = e−0.5t cos2 5πtρ + (1 −

e−0.5t cos2 5πt )12 ]. In this case the incompatibility robustness
of two copies of �2

t [i.e., RC (�2
t ,�

2
t ) and RCDC (�2

t ,�
2
t )] is

plotted with regard to time t in Fig. 2. Note that the behavior of
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FIG. 1. This plot shows the behavior of incompatibility robust-
ness of quantum channels [with respect to completely depolarizing
(CD) noise and generic noise] for two copies of the depolarizing
dynamical map D1 [with w(t ) = e−λt where λ = 0.5] with respect
to time t . It also shows the trace distance between �1

t (|0〉〈0|) and
�1

t (|1〉〈1|). Clearly, there is no information backflow and the behav-
ior of incompatibility robustness is monotonically nonincreasing.

incompatibility of channels is nonmonotonic regarding time t
but permanently becomes zero at approximately t = 0.81.

We know that a CP-divisible map does not exhibit
information backflow. Therefore, to demonstrate the con-
nection between nonmonotonic behavior of incompatibility

FIG. 2. This plot shows the behavior of incompatibility robust-
ness of quantum channels [with respect to completely depolarizing
(CD) noise and generic noise] for two copies of the depolarizing dy-
namical map D2 with w(t ) = e−λt cos2 ωt , where λ = 0.5, ω = 5π

with respect to time t . It also shows the trace distance between
�2

t (|0〉〈0|) and �2
t (|1〉〈1|). Clearly, there is information backflow

that can be witnessed from nonmonotonicity of trace distance, and
also, the behavior of incompatibility robustness is nonmonotonic.

FIG. 3. This plot shows the nonmonotonic behavior of incompat-
ibility robustness of channels for dynamical maps D1 and D2 [i.e.,
RC (�1

t , �
2
t ) and RCDC (�1

t , �
2
t )] with respect to time t . Although D1

is CP-divisible, D2 is CP-indivisible and exhibits information back-
flow, which is the cause of nonmonotonic behavior of incompatibility
robustness.

robustness and information backflow, we plot incompatibil-
ity robustness of quantum channels for the dynamical maps
D1 (CP-divisible) and D2 (CP-indivisible), i.e., we plot
RC (�1

t ,�
2
t ) and RCDC (�1

t ,�
2
t ) for time t in Fig. 3. Here, D1

can be considered as a reference CP-divisible dynamical map,
and information backflow ofD2 can be witnessed through the
nonmonotonic behavior of RC (�1

t ,�
2
t ) and RCDC (�1

t ,�
2
t ) with

respect to t . This is one of the plots that help us to define
a measure of CP-indivisibility based on incompatibility of
channels in Sec. VI.

From Figs. 2 and 3, we observe that there are some values
of t (between two ripples) where incompatibility robustness
remains zero (i.e., nonincreasing), but there exists nonmono-
tonic behavior in trace distance that indicates the information
backflow. Therefore, the information backflow cannot be wit-
nessed from the graph of the incompatibility robustness of
quantum channels for all those values of t . But it is possi-
ble to eliminate such a limitation if we carefully choose the
reference CP-divisible dynamical map. For example, consider
DI = {It }t be the identity dynamical map, i.e., It = IHq is
an identity channel for all at t where Hq is the qubit Hilbert
space. Clearly, DI is a CP-divisible dynamical map. Let us
choose DI as the reference CP-divisible dynamical map and
plot the incompatibility robustness of channels for dynamical
maps DI and D2 [i.e., RC (It ,�

2
t ) and RCDC (It ,�

2
t )] with re-

spect to time t in Fig. 4. From Fig. 4 we observe that for all
values of t (although, displayed only for finite range of time),
there is nonmonotonic behavior of both trace distance and
incompatibility robustness of channels, and for an arbitrary
time t , if the information backflow is nonzero (observed from
the trace distance graph), then the incompatibility robustness
of quantum channels is strictly increasing. Therefore, for an
arbitrary time t , if the information backflow is nonzero then
it can be witnessed from the graph of incompatibility of
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FIG. 4. This plot shows the nonmonotonic behavior of incompat-
ibility robustness of channels for dynamical maps DI and D2 [i.e.,
RC (It , �

2
t ) and RCDC (It , �

2
t )] with respect to time t . It also shows

the trace distance between �2
t (|0〉〈0|) and �2

t (|1〉〈1|). Clearly, for
an arbitrary time t , if the information backflow (observed from the
trace distance graph) is nonzero then the incompatibility robustness
of quantum channels is also strictly increasing. Therefore, for an
arbitrary time t , if the information backflow is nonzero, it can be
witnessed from the graph of incompatibility of quantum channels.

quantum channels. Therefore, the above-said limitation has
been removed by choosing DI as the reference CP-divisible
dynamical map.

B. Qubit amplitude damping dynamical maps

In this section we consider a qubit-amplitude-damping dy-
namical mapDad = {�ad

t }t , where the Choi matrix of �ad
t can

be written as

C�ad
t

=

⎡
⎢⎢⎣

1 0 0
√

1 − w(t )
0 0 0 0
0 0 1 − w(t ) 0√

1 − w(t ) 0 0 w(t )

⎤
⎥⎥⎦, (37)

where 0 � w(t ) � 1. We choose w(t ) in such a way that the
dynamics is CP-indivisible and exhibits information backflow.
Taking w(t ) = 1 − e−αt cos2 ωt , we set the value of α = 0.5
and ω = 5π . As discussed in a previous section (mainly from
Fig. 4), we observed that the identity dynamical map DI is
possibly a suitable reference CP-divisible dynamical map.
Therefore, we plot the incompatibility robustness of chan-
nels for dynamical maps DI and Dad [i.e., RC (It , �

ad
t ) and

RCDC (It , �
ad
t )] with respect to time t in Fig. 5, and we observe

information backflow as well as nonmonotonic behavior of
incompatibility robustness of channels.

From the above discussion, through examples of depolar-
izing as well as amplitude damping channels (mainly from
Figs. 3–5), we observe the simultaneous presence of both
information backflow (a signature of CP-indivisibility) and
nonmonotonicity of incompatibility robustness of channels.
Therefore, this observation motivates us to define a measure

FIG. 5. This plot shows the nonmonotonic behavior of incompat-
ibility robustness of channels for dynamical maps DI and Dad [i.e.,
RC (It , �

ad
t ) and RCDC (It , �

ad
t )] with respect to time t . It also shows

the trace distance between �ad
t (|0〉〈0|) and �ad

t (|1〉〈1|). Clearly, for
an arbitrary time t , if the information backflow (witnessed from
nonmonotonicity of trace distance) is nonzero then the incompati-
bility robustness of quantum channels is also strictly increasing, and
therefore, if the information backflow is nonzero for any time t , it can
be witnessed from the graph of incompatibility of quantum channels.

of CP-indivisibility based on incompatibility robustness of
channels. We will define such a measure in Sec. VI.

C. CP-indivisible dynamical maps
without information backflow

Although information backflow that may be measured us-
ing trace distance is a signature of CP-indivisibility, it is not
equivalent to CP-indivisibility [44,45]. In order to illustrate
this point, let us consider the Choi matrix of a dynamical map
Det = {�et

t }t , given by

C�et
t

=

⎡
⎢⎢⎣

A(t ) 0 0 B(t )
0 1 − A(t ) 0 0
0 0 1 − A(t ) 0

B(t ) 0 0 A(t )

⎤
⎥⎥⎦, (38)

where A(t ) = 1+e−2t

2 and B(t ) = e− ∫ t
0 (1−tanh x)dx. Such a dy-

namical map is CP-indivisible but does not show information
backflow (i.e., the trace distance is monotonically nonincreas-
ing with respect to time t) [45].

For the above dynamics we plot the robustness with respect
to both arbitrary and depolarizing noise in Fig. 6. No non-
monotonicity indicative of information backflow is displayed.
Although we did not find any nonmonotonic behavior of
incompatibility robustness of quantum channels with regard
to time t , it is a matter of further investigation to conclude
whether it is possible for nonmonotonic behavior to be re-
vealed for any other choice of the reference CP-divisible map
instead of the identity dynamical map.
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FIG. 6. This plot shows monotonic behavior of incompatibil-
ity robustness of channels for dynamical maps DI and Det [i.e.,
RC (It , �

et
t ) and RCDC (It ,�

et
t )] with respect to time t .

V. CP-INDIVISIBILITY AND INCOMPATIBILITY
OF CHANNELS AS A RESOURCE FOR QUANTUM

TELEPORTATION

Quantum teleportation is a very-well-known quantum
communication protocol [46,47]. Although perfect quantum
teleportation can be performed using maximally entangled
states, it can be performed imperfectly with mixed non-
maximal entangled states, in general. A criterion for a
two-qubit state to be useful in quantum teleportation is
provided in Ref. [48]. Consider a two-qubit state ρAB. De-
fine a 3 × 3 matrix SρAB = [s(ρAB)i j] such that s(ρAB)i j =
Tr[ρAB(σi ⊗ σ j )] ∀i, j ∈ {x, y, z}, where σ js are Pauli matri-

ces. Let N (ρAB) = Tr[
√

S†
ρAB SρAB ]. A quantum state is useful

for teleportation if and only if N (ρAB) > 1, and in this case,
the maximum fidelity is Fmax ≡ 1

2 [1 + 1
3 N (ρ)] > 2/3 [48].

Now, consider the two-qubit maximally entangled state
|
−〉 = 1√

2
[|01〉 − |10〉], where {|0〉, |1〉} are the eigenbasis of

σz. Let us take the dynamical map D2 = {�2
t }t from Sec. IV.

On application of �2
t on the state |
−〉〈
−|, we obtain

ρ ′
AB = (

IA ⊗ �2
t

)
(ρAB)

= w(t )|
−〉〈
−| + [1 − w(t )]
14×4

4
, (39)

where w(t ) = e−λt cos2 ωt with λ = 0.5 and ω = 5π . Now,

Sρ ′
AB

=
⎡
⎣−w(t ) 0 0

0 −w(t ) 0
0 0 −w(t )

⎤
⎦. (40)

It follows that N (ρ ′
AB) = 3w(t ) and therefore, Fmax = 1

2 [1 +
1
3w(t )] for N (ρ ′

AB) > 1 and otherwise, Fmax = 2
3 .

In Fig. 7 we plot the robustness measure and teleportation
fidelity versus time. From the figure we observe that the
teleportation fidelity rises with increase of the incompatibil-
ity robustness, which is a signature of CP-indivisibility. This

FIG. 7. This plot shows the maximum fidelity for teleportation
using the state ρ ′

AB = (IA ⊗ �2
t )(ρAB) and the nonmonotonic behav-

ior of incompatibility robustness of channels for dynamical maps
DI and D2 [i.e., RC (It , �

2
t ) and RCDC (It , �

2
t )] with respect to time

t . Clearly, the teleportation fidelity increases with a corresponding
increase in incompatibility robustness.

clearly establishes CP-indivisibility is a resource for quantum
teleportation.

VI. MEASURING CP-INDIVISIBILITY USING
INCOMPATIBILITY ROBUSTNESS OF QUANTUM

CHANNELS

In this section we propose a measure of CP-indivisibility
based on incompatibility robustness of quantum channels.
As we can see from the study in Sec. IV, the incom-
patibility robustness of channels shows the signature of
CP-indivisibility–induced information backflow through non-
monotonic behavior. Therefore, it is evident that an infor-
mation backflow measure–based measure of CP-indivisibility
[15] can be constructed using the incompatibility robustness
of channels. Here, we follow the procedure proposed by Laine
et al. [15] to construct such a measure of CP-indivisibility.

Consider a dynamical map D = {�t }t ∈ DM(H,H ). We
have to construct a CP-indivisibility measure of D. For
this, take an arbitrary CP-divisible dynamical map D̄ =
{�̄t }t ∈ DM(H,H ) that acts as a reference CP-divisible
dynamical map. Let θ (t ) := dRC (�t ,�̄t )

dt . Then, we define the
CP-indivisibility measure N (D) as

N (D) = sup
D̄∈DM(H,H )CP

∫
θ (t )>0

RC (�t , �̄t )dt, (41)

where DM(H,H )CP is the set of all CP-divisible dynam-
ical maps acting from L(H ) to L(H ). Clearly, N (D) �
0. We obtain from Theorem 1 that this measure is always
zero for CP-divisible dynamical maps [as θ (t ) � 0 for those
dynamical maps]. But nonmonotonic behavior of incompat-
ibility robustness of channels in Figs. 3 and 4 suggests that
that the proposed measure is nonzero for the CP-indivisible
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depolarizing dynamical map D2. Similarly, nonmonotonic
behavior of incompatibility robustness of channels in Fig. 5
suggests that this measure is nonzero for the CP-indivisible
amplitude damping dynamical map Dad . Therefore, in short,
there exists CP-indivisible dynamical maps for which this
measure is nonzero. It is evident that as the expression of
N (D) consists of integration with respect to time t over the
range from 0 to ∞, this measure N (D) can take an arbitrary
value and it is not normalized. For the sake of compactness,
we can also propose a normalized measure of the form

N(D) = N (D)

1 +N (D)
. (42)

Clearly, for any dynamical map D, 0 � N(D) � 1 and
N(D) = 0 for CP-divisible dynamical maps [as N (D) = 0
for CP-divisible dynamical maps] and N(D) is nonzero when-
ever N (D) is nonzero. Our proposed measure is on a similar
footing of the information-backflow-based non-Markovianity
measure [15].

VII. CONCLUSIONS

To summarize, in this work we have considered two im-
portant features of quantum theory, viz. CP-indivisibility and
incompatibility of channels, that arise naturally in several
practical situations of quantum dynamics. These two prop-
erties have been utilized as resources in several quantum
information processing protocols. Our present analysis en-
ables the characterization of CP-indivisibility of dynamical
maps using incompatibility of channels. We have shown that
incompatibility robustness of channels for two CP-divisible
dynamical maps is monotonically nonincreasing with respect
to time. We have shown that for two dynamical maps and for
a particular time t , the incompatibility robustness of quantum
measurements is upper bounded by the incompatibility robust-
ness of the quantum channel.

Furthermore, we have explicitly analyzed the case of qubit-
depolarizing dynamical maps and qubit-amplitude-damping
dynamical maps as examples. We have shown that in the
case of the CP-divisible regime, incompatibility robustness
of channels is monotonically nonincreasing with respect to
time. But in the case of a CP-indivisible regime, it loses its
monotonic behavior in both cases. The examples studied here
clearly illustrate the simultaneous presence of information
backflow from the environment to the system, as reflected
by the nonmonotonic behavior of the trace distance and
nonmonotonic behavior of the incompatibility robustness of
quantum channels for both generic and completely depolariz-
ing noise models. We have further shown through an example
how information backflow acts as a resource for quantum
teleportation. Additionally, we have proposed a measure of
CP-indivisibility based on incompatibility robustness of quan-
tum channels.

The results obtained from our present study motivate cer-
tain directions of future research. It may be worthwhile to
explore whether the incompatibility robustness of quantum
channels can be used to witness CP-indivisible maps, such
as the one studied in Sec. IV C, that do not show informa-
tion backflow [45]. Moreover, it would also be interesting to
investigate whether the CP-indivisibility measure proposed in
Sec. VI can be useful to quantify the performance of some
specific information-theoretic or thermodynamic tasks.
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