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Effective-medium approach to the resonance distribution of wave scattering in a random point field
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In a previous paper [Phys. Rev. A 105, 042205 (2022)], the distribution of resonance poles in the complex
plane of the wave number k associated to the multiple scattering of a quantum particle in a random point field
was numerically discovered. This distribution presented two distinctive structures: a set of peaks at small k when
the wavelength is larger than the interscatterer distance and a band almost parallel to the real axis at larger
k. In this paper, a theoretical study based on wave transport theory is proposed to explain the origin of these
structures and to predict their distribution in the complex k plane. First, it is shown that the peaks at small k can
be understood using the effective wave equation for the average wave function over the disorder. Then, that the
band at large k can be described by the Bethe-Salpeter equation for the square modulus of the wave function.
This study is supported by careful comparisons with numerical simulations.
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I. INTRODUCTION

The propagation of waves in disordered media is a sub-
ject of crucial importance in many research areas in physics
such as acoustics [1–5], electromagnetism [6–10], and mat-
ter waves [11–18]. These phenomena are described by wave
equations with random or statistically correlated spatial het-
erogeneities in their propagation parameters such as the index
of refraction or the potential energy function [19–27]. Exam-
ples are given by multiple scattering of waves in a random
field of scatterers such as atoms or molecules in gases, liq-
uids, or amorphous solids. Disorder is known to cause special
effects on wave propagation, depending on the ratio of the
wavelength over the scattering mean free path. Pioneering
works on multiple scattering by Foldy [28] and Lax [29]
showed that a disordered medium may be considered under
some conditions as an effective medium characterized by spa-
tially averaged propagation parameters such as an effective
refractive index. Later on, Anderson discovered that waves
may be localized as the result of multiple scattering in dis-
ordered media [30,31]. Otherwise, in semiclassical regimes,
wave multiple scattering leads to transport ruled by the diffu-
sion equation or the Boltzmann kinetic equation [32–34].

Disordered media may be infinite, semi-infinite, or finite
with different geometries like spheres or cubes. Much work
is devoted to the study of wave propagation in infinite me-
dia or the transmission of waves through a slab, a wire,
or a waveguide. Less is understood about the propagation
and escape of waves from inside a finite disordered open
system towards its exterior. In weakly open systems such
as a cavity connected to a few waveguides and terminals,
the number of output channels is limited and the methods
of random-matrix theory apply [35–41]. However, in many
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circumstances of great interest, the disordered system is fi-
nite and strongly open. This is the case, in particular, for
a fast quantum particle emitted by a source immersed in a
gaseous detector such as a cloud chamber [42,43]. Here, a
fundamental issue is to understand how the wave function of
the emitted particle is affected by the disorder in the instan-
taneous configuration of the atoms composing the detector
and how long the particle will travel inside the detector be-
fore escaping to the surrounding vacuum. The characteristic
times of this escape process may be determined in terms
of the scattering resonances of the finite disordered medium
formed by the random field of atoms composing the gaseous
detector.

To simplify the huge complexity of the problem, this sys-
tem can be described using the model of Foldy and Lax if
the atoms of the gas can be represented by point-like scat-
terers in the sense that their radius is assumed to be much
smaller than the particle wavelength in the s-wave approxi-
mation [43–46]. The advantage of this model is the reduction
of the large multiple-scattering problem to a linear system,
which can be solved numerically using modern computational
resources to obtain the wave functions in great details. Such
models may be considered as quantum random Lorentz gases,
as we did in our previous papers [44,45], where we carried
out the numerical study of wave propagation in a spherical
medium containing hundreds to thousands of fixed point scat-
terers for different values of their density with respect to the
wavelength. The differential and total cross sections of such
systems were studied in Refs. [44,46]. Moreover, the distri-
bution of the scattering resonances has also been investigated
in the complex plane of the wave number using the resonance
potential method we introduced in Ref. [45]. In this way, we
observed remarkable structures at low and high energies in
the distribution of scattering resonances that were not under-
stood in the numerical exploration carried out in our previous
paper [45].
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The purpose of the present paper is to show that these
structures in the resonance distribution can be quantita-
tively explained with accuracy using the effective-medium
theory at complex values of the wave number. The effective-
medium wave equation, also referred to as the Dyson
equation [19–22,26,27,47], allows us to understand the for-
mation of the low-energy structures previously observed in
the resonance distribution. Furthermore, we can show that the
diffusion approximation to the transport equation, known in
this research area as the Bethe-Salpeter equation [19–22,25–
27,47–50], can explain key features of the resonance distribu-
tion at high energies.

This paper is organized as follows. The Foldy-Lax model
used to describe the propagation of the quantum particle in
a gaseous detector is presented in Sec. II A. The scattering
resonances in the complex plane of the wave number are
defined in Sec. II B. The disorder-averaged Green’s function
is introduced in Sec. II C. This function is at the heart of the
semiclassical multiple-scattering theory for the square mod-
ulus of the Green’s function developed in Sec. II D. Both
disorder-averaging approaches are used to explain the struc-
tures observed in the resonance distribution. The predictions
of the theory are then compared in Sec. III with the exact
resonance distributions computed numerically. Finally, con-
clusions are drawn in Sec. IV.

Since the models considered in this paper are valid in a
space of arbitrary dimension, the volume and surface area
of the unit ball in the space Rd frequently appear. They are
respectively given by

Vd = π
d
2

�
(

d
2 + 1

) and Sd = dVd = 2π
d
2

�
(

d
2

) , (1)

where �(z) denotes the gamma function [51].
All the numerical results presented in this paper are com-

puted with the program MSMODEL [52].

II. WAVE SCATTERING IN RANDOM MEDIA

A. Foldy-Lax model

To describe the multiple collisions of the quantum particle
in a disordered medium, we consider a simple but powerful
model originally introduced by Foldy and Lax [25,28,29]. In
this model, the wave function of the particle undergoes elastic
collisions without loss of energy in a random configuration of
fixed point scatterers representing the atoms or the molecules
of a gaseous detector. This model is very convenient espe-
cially because it can be efficiently solved numerically for large
disordered systems without resorting to huge discretization
lattices. In this model, the wave function ψ (r) obeys the
stationary Schrödinger equation[∇2

r + k2 − U (r)
]
ψ (r) = 0, (2)

where k = 2π/λ is the wave number and λ the wavelength.
The potential U (r) in Eq. (2) reads

U (r) =
N∑

i=1

u(r − xi ), (3)

where u(r) is the short-range potential of the scatterers that
we will define in details soon.

In Eq. (3), the scatterers are located at the fixed positions
x1, x2, . . . , xN . This random point field is characterized by
the joint probability distribution P(x1, . . . , xN ). In this regard,
the statistical average of some observable A over the random
configurations of the scatterers is given by

〈A(r)〉 =
∫
Rd

dx1 · · ·
∫
Rd

dxN A(r; x1, . . . , xN ) P(x1, . . . , xN ).

(4)

In particular, we define the local average density of scatterers
per unit volume as

n(r) =
〈

N∑
i=1

δ(r − xi )

〉
. (5)

Unless otherwise stated, 〈· · · 〉 will refer to the config-
urational average (4). Furthermore, we assume that the
positions x1, . . . , xN are independent and identically dis-
tributed random variables, so that P(x1, . . . , xN ) factorizes
into P(x1) · · · P(xN ). In addition, we assume that the scatterers
are contained in region V , and that the distribution is uniform.
Therefore, the scatterer density reads

n(r) =
{

N/V if r ∈ V,

0 otherwise, (6)

where V is the volume of V . In all numerical simulations, we
will use the mean interparticle distance

ς =
(

V

N

) 1
d

, (7)

as the unit length.
In Eq. (3), the potential u(r) is supposed to have a finite

spatial range b much smaller than the wavelength (kb � 1),
so that the point scattering theory developed in Sec. III of
Ref. [44] can be applied. The short-range potential u(r) is
actually defined such that the solution of Eq. (2) for N = 1
reads

ψ (r) = φ(r) + F (k)G+(k, r | x1), (8)

where φ(r) = eik·r is the incident plane wave and F (k) is the
point scattering amplitude. The quantity F (k) is an intrinsic
property of the scatterer and therefore is not affected by the
presence of other scatterers. We will explain more about F (k)
soon.

In Eq. (8), G(k, r | r′) is the free Green’s function which
satisfies (∇2

r + k2
)
G(k, r | r′) = δ(r − r′). (9)

It is worth noting that the wave number k in Eq. (9) is a
complex number (k = kr + iki). This complex nature plays an
important role in this paper. The solution of Eq. (9) reads

G±(k, r) = − 1

2π

(∓ik

2πr

) d−2
2

K d−2
2

(∓ikr), (10)

where Kν (z) is the modified Bessel function [51] and r =
‖r − r′‖. The free Green’s function (10) is characterized by
the asymptotic behavior

G±(k, r)
r→∞−−−→ ± 1

2ik

( ∓ik

2πr

) d−1
2

e±ikr . (11)
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The symbol F (k) in Eq. (8) stands for the point scattering
amplitude [44]

F (k) = 1

πμ(k)[i − cot δ(k)]
. (12)

In Eq. (12), δ(k) is the s-wave phase shift [53–56] and μ(k) is
the local density of states per unit of k2 in free space given by

μ(k) = 〈r|δ(k2 − p̂2)|r〉 = Sd kd−2

2(2π )d
, (13)

where p̂ = −i∇r is the momentum operator. The cross sec-
tion of the point scatterer is related to the scattering amplitude
F (k) by [44]

σpt (k) = π

k
μ(k)|F (k)|2. (14)

The phase shift in the point scattering amplitude (12) intrinsi-
cally depends on the microscopic model used to describe the
scattering over the individual scatterers. When the radius of
the individual scatterers is much smaller than the wavelength,
the scattering amplitude universally behaves as [44]

Fhs(k) = − I (k, α)

I (k, 0)G+(k, α)
, (15)

where I (k, r) = −Im G+(k, r) and α is known as the scatter-
ing length. This quantity must be smaller than the wavelength
for this model to be valid (αk � 1). Beside this, the point
cross section (14) can be maximized by imposing cot δ(k) = 0
in Eq. (12). This provides the parameter-free scattering model

Fmax(k) = 1

iπμ(k)
. (16)

The point scattering model (16) has the particularity of satu-
rating the upper bound for the point cross section [44]

σmax(k) = 1

πkμ(k)
. (17)

Equation (16) thus produces the largest cross section possible
for any given value of k. On the one hand, this is useful
to effectively exploit each individual scatterer, especially in
small point fields (N � 102). On the other hand, this model
should be used with caution at small values of k because the
cross section (17) diverges as O(k1−d ) in dimensions d � 2
in a nonphysical way. Another feature of the model (16) is
the absence of resonance corresponding to the single-point
scattering.

We have now all the ingredients to solve the full wave
equation (2). Given the form of the potential (3), the particle
wave function ψ (r) should read

ψ (r) = φ(r) +
N∑

i=1

aiG
+(k, r | xi ). (18)

The wave amplitudes ai ∀i ∈ {1, . . . , N} in Eq. (18) satisfy the
self-consistent equation

ai = F (k)

⎛
⎝φ(xi ) +

N∑
j( =i)

a jG
+(k, xi | x j )

⎞
⎠. (19)

Equation (19) can be rewritten in matrix form using the
vector notations φ = [φ(x1), φ(x2), . . . , φ(xN )]T and a =
(a1, a2, . . . , aN )T. The result is

M(k) a = φ, (20)

where the N × N multiple-scattering matrix M(k) is defined
by

M(k) = F (k)−11 − G+(k), (21)

and 1 is the identity matrix. The free Green’s matrix G+(k) in
Eq. (21) is given by

G+
i j (k) = G+(k, xi | x j )(1 − δi j ). (22)

The wave function is thus obtained from Eq. (18) where
the coefficients ai = [M(k)−1φ]i are given by the inversion
of the matrix (21). The solution of the linear system (20) and
the corresponding wave function (18) can be computed using
the program MSMODEL [52].

An example of the square modulus of the wave function for
a large random configuration of N = 103 scatterers located
in a two-dimensional (2D) disk-shaped region is shown in
Fig. 1(a) using the incident wave

φ(r) = G+(k, r | r0). (23)

The incident wave (23) represents a quantum particle created
at the center of the medium (r0 = 0). Figures similar to Fig. 1
exist in the literature for other systems [57]. The average of
the square modulus of the wave function over several random
configurations of the scatterers is shown in Fig. 1(b). This
panel illustrates in particular that disorder averaging restores
the spherical symmetry of the problem due to the uniformity
of the scatterer density (6).

B. Scattering resonances

This paper aims at studying the distribution of resonances
which are formally defined as the singular points, or poles, of
the resolvent Q̂(k) of the complete multiple-scattering prob-
lem (2)–(3). This resolvent operator is defined by

Q̂(k) = 1

k2 − p̂2 − U (r̂)
∀k ∈ C \ R, (24)

and is related to the full Green’s function by Q(k, r | r′) =
〈r|Q̂(k)|r′〉. The later function describes the propagation from
r′ to r in presence of the random point field. The poles of
Eq. (24) on the positive imaginary semiaxis of the wave num-
ber (Im k > 0) correspond to the bound states of the system.
The resolvent (24) also displays a continuum of poles, also
known as a branch cut, on the real axis of k which is inter-
preted as the continuum of (unbound) scattering states. To
investigate on the characteristics of the scattering states, and in
particular to study the time required for the quantum particle
to escape the system, it is possible to achieve an analytic con-
tinuation through this branch cut. In general, this continuation
reveals other poles in the vicinity of the real axis of k, but
in the lower half-plane (Im k < 0), which are interpreted as
resonant states. The imaginary part of these poles gives the
escape rate of the particle from the system. Indeed, if we
assume that the wave function behaves as ψ (t ) ∝ e−iωt , then
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FIG. 1. (a) Square modulus of the wave function |ψ (r)|2 computed from Eqs. (18), (20), and (23) using the program MSMODEL [52] in
a 2D disk-shaped random point field of N = 103 scatterers with k = 10 ς−1. The point scattering model is Eq. (16) and the mean free path is
thus s = 2.5 ς . The circle depicts the medium boundary. (b) Same settings as panel (a) but averaged over 64 disorder configurations.

the square modulus will decay as |ψ (t )|2 = e2 Im(ω)t = e−�t .
Therefore, we identify the escape rate as

� = −2 Im[ω(kr + iki )] = −2v(kr )ki + O
(
k3

i

)
, (25)

where k = kr + iki is the position of the resonance pole and
v(k) = ∂kω(k) is the group velocity. Since ki < 0 for a reso-
nance pole, the escape rate (25) is positive.

The advantage of the Foldy-Lax model is to provide a
systematic way of defining the complex resonance poles as-
sociated to the multiple scattering of the wave in the random
point field. Indeed, using the multiple-scattering matrix (21),
the full resolvent (24) reads

Q̂(k) = Ĝ(k) +
N∑
i, j

Ĝ(k)|xi〉[M(k)−1]i j〈x j |Ĝ(k). (26)

Due to Eq. (26), the resonance poles which interest us are the
solutions of the determinantal equation

det M(k) = 0 for k ∈ C. (27)

Equation (27) has infinitely many roots in the complex plane
of k, and the amount of these roots increases with the number
N of scatterers. We thus define the complex resonance density
as [45]

�(2)(kr, ki ) = 1

N

∞∑
p=1

〈δ(2)(k − kp)〉, (28)

where the sum is over the resonance poles and δ(2)(k − kp)
is the two-dimensional Dirac delta over the complex plane
of k. The two-dimensional distribution (28) can be obtained
numerically with the resonance potential method [45] which
consists in the evaluation of

�(2)(kr, ki ) = 1

2πN

(
∂2

∂k2
r

+ ∂2

∂k2
i

)
〈ln |det M(k)|〉. (29)

This average resonance distribution displays the structures
seen, for instance, in Fig. 6 of Ref. [45], and is the focus of
interest in this paper.

C. Disorder-averaged Green’s function

In this section, we develop a theory for the low-energy
peaks in the complex resonance density observed in our pre-
vious paper [45]. These peaks appear at low energy, that
is, in a regime of large wavelength compared to the typical
interscatterer distance (kς � 1). In this regime, we expect
that the wave is no longer able to resolve the spatial hetero-
geneities of the medium and thus perceives a uniform effective
medium [26]. A possible approach to derive an effective-
medium wave equation is to average directly the wave func-
tion over the random configurations of the scatterers, hence
leading to a Dyson-type wave equation [19–21,26,27,47]. As
we will see, this equation successfully predicts the locations
of the resonance peaks at low energy, providing a quantitative
understanding of the numerical observations in our previous
paper [45].

In wave transport theory, an important quantity is the
full Green’s function averaged over the realizations of the
disorder. It can be shown that the average Green’s function
〈Q(k, r | r′)〉 obeys the Dyson-type effective-medium equa-
tion [19–21,26–29,47,58,59]

[∇2
r + k2 − n(r)F (k)

]〈Q(k, r | r′)〉 = δ(r − r′), (30)

where n(r) is the scatterer density (5) and F (k) is the point
scattering amplitude (12). Equation (30) is very close to
the Green’s function equation associated to Eq. (2) but with
the potential U (r) replaced by n(r)F (k). By analogy with
Eq. (9), the average Green’s function has two solutions valid
for k ∈ C: 〈Q+(k, r | r′)〉 which exponentially vanishes for
‖r − r′‖ → ∞ on the domain Im k > 0, and 〈Q−(k, r | r′)〉
which exponentially increases on the same domain.
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Often, it is convenient to introduce the (local) effective
wave number [26–29,60]

κ (k, r) =
√

k2 − n(r)F (k), (31)

such that, in regions of constant n(r), the average Green’s
function essentially behaves as the free Green’s function

〈Q+(k, r)〉 = G+(κ (k), r), (32)

where r = ‖r − r′‖. Due to the complex nature of the point
scattering amplitude F (k), the effective wave number κ is
itself complex, meaning that the average Green’s function ex-
ponentially decays with the distance r from the point source,
even for k ∈ R because of disorder. This decay can be high-
lighted using the asymptotic behavior (11)

|〈Q+(k, r)〉|2 r→∞−−−→ πμ(|κ|)
|κ|Sd rd−1

e−2 Im κr . (33)

The imaginary part of κ , given by Eq. (31) with n(r) = n, can
be expanded if we assume that k2 is relatively large compared
to nF (k). We find

2 Im κ (k) = 2 Im
(

k − n

2k
F (k) + O

[
1
k3 (nF )2

])
� 2ki − n

k
Im F (k). (34)

In virtue of the optical theorem, given for instance by Eq. (44)
of Ref. [44], it turns out that the last term of Eq. (34) is just
the inverse of the scattering mean free path [26,27,61]

1

s
= nσ = −n

k
Im F (k). (35)

The characteristic length s represents the mean distance be-
tween two successive collisions of the wave in the medium
and thus plays a crucial role in transport theory. This decay
represents the loss of coherence of the incident wave due to
the disorder. Another contribution to the decay in Eq. (34)
comes from the intrinsic imaginary part of k which is essential
for the study of complex resonances as we saw in Eq. (25). In
anticipation of future calculations, we already introduce the
notation

γ = 2ki, (36)

such that the behavior (33) of the average Green’s function
reads

|〈Q+(k, r)〉|2 r→∞−−−→ πμ(|κ|)
|κ|Sd rd−1

e−(γ+nσ )r . (37)

We will see in Sec. III A that the effective-medium equa-
tion (30) can be used to predict the peaks in the resonance
density in the low-energy region.

D. Semiclassical transport

The issue with the effective-medium equation (30) is that,
due to the destructive interference caused by the disorder
averaging, the wave undergoes exponential damping at the
scale of the mean free path, alike in absorption processes.
Therefore, this equation is not adapted to describe the mul-
tiple scattering which takes place on scales larger than one
mean free path and which is responsible in particular for the
spatial diffusion of the wave intensity. We may expect that this

multiple scattering will significantly affect the distribution of
the complex resonances since their location is governed by
the characteristic escape rate from the disordered region. To
address the issue of multiple scattering, we need to consider a
more elaborate theory for wave transport that is referred to as
the semiclassical theory [62,63]. The central quantity of this
theory is the intensity of the full Green’s function

ρ(r, γ ) = ∣∣Q+(
k0 + i

2γ , r | r0
)∣∣2

, (38)

where r0 is the source point of the wave. Note that ρ(r, γ )
fluctuates with the disorder as seen in Fig. 1(a) but possesses
a well-defined average shown in Fig. 1(b). The equation gov-
erning the disorder-averaged intensity, 〈ρ(r, γ )〉, is known
as the Bethe-Salpeter equation and reads [19–21,24,26–
28,58,59,64,65]

〈ρ(r)〉 = K (r | r0) +
∫
Rd

dr′K (r | r′)n(r′)σ (k)〈ρ(r′)〉,
(39)

where the transport kernel K (r | r′) is defined by the square
modulus of the effective Green’s function

K (r | r′) = |k|
πμ(|k|) |〈Q

+(k, r | r′)〉|2. (40)

The integral kernel K (r | r′) can be interpreted as the proba-
bility density for the next collision point r given the previous
collision happened at r′. The usefulness of the prefactor in
Eq. (40) is that the far-field behavior of K (r | r′) does not ex-
plicitly depend on the wave number k. In the weak scattering
regime (|κ| � |k|), one finds from Eq. (37)

K (r | r′)
r→∞−−−→ e−(γ+nσ )‖r−r′‖

Sd‖r − r′‖d−1 . (41)

Note that the small imaginary part of k = k0 + iki can be
neglected in the cross section because the equation only con-
siders time scales much longer than the oscillation period of
the wave (ki � k0). It is thus safe to write σ (k) � σ (k0).

The main assumption behind the Bethe-Salpeter equa-
tion (39) is that the wavelength is much smaller than the mean
free path1

k0s � 1. (42)

The condition (42) is known in the literature as the weak scat-
tering regime [26], or the weak disorder regime [27]. In this
regime, coherent effects such as localization play less signifi-
cant roles, especially in two and three dimensions. Note that,
in the context of gaseous particle detectors, the condition (42)
is usually met. In this regard, some orders of magnitude are
given in Table I. Therefore, we find reasonable to neglect these
effects in this paper.

The formal solution of the transport equation (39) is
given by

〈ρ(r̂)〉 = 1

1 − K̂n(r̂)σ (k)
K (r̂ | r0). (43)

1Note that since the mean free path is at least equal to the mean
interatomic distance (s � ς ), the condition (42) is necessarily satis-
fied for k0ς � 1.
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TABLE I. Orders of magnitude for the wave number and the
mean free path of some particles in dry ambient air (P = 105 Pa and
T = 273 K). The molecular density is n = 0.0265 nm−3. The visible
light data only assumes the Rayleigh scattering.

Particle k0 s k0s

Electron, 10 eV [66,67] 16 nm−1 0.4 µm 6 × 103

Alpha, 5 MeV [68] 1 fm−1 1 µm 1 × 109

Photon, 550 nm [69] 11 µm−1 100 km 1 × 1012

As we will see in Sec. III, the integral equation (39) provides a
prediction of the position of the peaks in the resonance density
observed in our previous paper [45]. According to Eqs. (38)
and (43), we expect that most of the complex resonances occur
in the vicinity of the singularities of 〈ρ(r, γ )〉 in the variable
γ . These singularities are given by the eigenvalue problem

〈ρ(r)〉 =
∫
Rd

dr′K (r | r′)n(r′)σ (k)〈ρ(r′)〉, (44)

where the free variable γ [defined in Eq. (36) and used in
Eq. (41)] plays the role of the sought eigenvalue and the den-
sity 〈ρ(r)〉 is the associated eigenfunction. The singular values
γ given by Eq. (44) are expected to correspond to the main
structures observed in the resonance density �(2)(kr, ki ) in
the high-energy regime where the coherent (phase-dependent)
effects are negligible.

III. NUMERICAL RESULTS

In this section, the predictions of the effective-medium
equations of Secs. II C and II D are compared to the ex-
act density of complex resonances obtained numerically
using the resonance potential method developed in our

previous paper [45]. In that paper, two distinctive structures
are observed in the complex resonance spectrum as follows.

(1) Peaks at low energy that is in the region

|k|ς � j d−2
2

, (45)

where ς is the mean interscatterer distance (7) and j d−2
2

is
the first zero of the Bessel function J d−2

2
(z). These peaks are

explained in Sec. III A by the Dyson-type effective-medium
equation (30).

(2) A nearly horizontal resonance band at larger energies
which is characterized in Sec. III B using the Bethe-Salpeter
equation of the form (44).

A. Low-energy peaks in the resonance density

We first consider the low-energy peaks in the resonance
density shown in Fig. 2. We solve the effective-medium equa-
tion (30) for the resonance poles in a spherical disordered
medium of radius R. The details of this calculation are given
in Appendix A using the partial wave method [53–56], and the
result is the equation

κ
Jν+1(κR)

Jν (κR)
= k

H+
ν+1(kR)

H+
ν (kR)

, (46)

for a complex resonance at k ∈ C. In Eq. (46), κ is the effec-
tive wave number (31) with n(r) = n, Jν (z) and H+

ν (z) are the
Bessel and Hankel functions, respectively, and the order ν is
given by

ν =  + d − 2

2
, (47)

where  is the orbital quantum number ( ∈ {0, 1, 2, . . .}).
The comparison between the numerical solutions of

Eq. (46) for k ∈ C and the actual peaks of the resonance den-
sity obtained is shown in Fig. 2(a) for a two-dimensional (2D)
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FIG. 2. (a) Resonance density (28) computed with the program MSMODEL [52] in a 2D disk-shaped random point field for N = 50 and
using the point scattering model (15) with α = 0.1 ς . The parameters are thus R = 3.99 ς and s � 1 ς (multiple-scattering regime). The
density is averaged over 28 disorder configurations. The resonances of the effective medium, obtained by numerically solving Eq. (46), are
depicted by small circles labeled with the corresponding angular momentum . The dashed line demarcates the low-energy region (45).
(b) Same as panel (a) but in a 3D spherical random point field for N = 100. The parameters are thus R = 2.88 ς and s � 10 ς (quasiballistic
regime).
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FIG. 3. First complex zeros of the Hankel function H+
ν (z) for

arg z ∈ [−π, 0] at integer and half-integer orders (even and odd di-
mensions, respectively). The dotted curves represent the trajectory of
the zeros when ν is continuously increased. Zeros at the same order
are connected by a solid line. The other zeros around arg z = −π for
ν ∈ Z are not shown.

point field and in Fig. 2(b) for a three-dimensional (3D) point
field. In these two panels, instead of Eq. (16), we use the point
scattering model (15) with the scattering length α = 0.1 ς to
avoid the divergent behavior of the maximum cross section in
the small-k regime.

The adequacy between the roots of Eq. (46) and the peaks
in Figs. 2(a) and 2(b) is remarkable and supports the validity
of the effective-medium equation (30) to describe the reso-
nance density at large wavelength (kς � 1). It shows that, in
this low-energy regime, the incident wave mainly perceives
the random point field as a semitransparent sphere without the
details due to disorder.

Moreover, it turns out that the resonance structure shown
in Fig. 2 is little affected by the geometric shape of the
disordered medium or the scattering parameters such as the
cross section of the point scatterers. Indeed, the same kind of
structure can be observed for a cubic medium, instead of a
spherical medium. The robustness of this resonance structure
allows us to make a quite radical simplification of the reso-
nance equation (46). Indeed, given the weak influence of the
cross section of the point scatterers, it would be possible to let
the parameter κ tend to infinity, leading to

H+
ν (kR) = 0. (48)

This is the equation of resonances corresponding to the scat-
tering by a hard sphere of radius R. The roots of Eq. (48)
are shown in Fig. 3 and indeed form structures similar to
those in Fig. 2. This observation confirms the robustness of
this low-energy resonance structure against possibly signifi-
cant changes of the scattering parameters. Nevertheless, the
hard-sphere resonance equation (48) is not as accurate as
Eq. (46) because it completely neglects the scattering within
the medium. This is why the roots of Eq. (48) are not shown
in Fig. 2. In contrast, the prediction of the resonance equa-
tion (46) of the effective-medium theory is more reliable
because it includes the effects of finite values of κ .

In the 2D case [Fig. 2(a)], a slight shift between simulation
and prediction can be noticed. In addition, the predictions in
the upper right side of Fig. 2(a) do not match the resonance
band close to the real k axis. These disagreements are likely

due to multiple-scattering effects because the regime here
is diffusive (R/s � 4). Indeed, this would explain why the
agreement with Eq. (46) is better in the 3D case [Fig. 2(b)]
where the scattering regime is quasiballistic (R/s � 0.3). To
take into account multiple-scattering effects, we need to go be-
yond the approach used in this section, which is based solely
on the effective-medium equation (30). One possible strategy
would be to solve a coupled system formed by Eqs. (30), (40),
and (44) for singular values of k ∈ C.

B. Depth of the resonance band

Now we consider the band of resonance poles almost
parallel to the real k axis and visible in the upper right cor-
ner of Figs. 2(a) and 2(b). In this high-energy region where
|k|ς � j d−2

2
, we assume that coherent effects are negligible

and that the transport is semiclassical so that we may use the
Bethe-Salpeter equation of the form (44). To solve this eigen-
problem, we use the diffusion approximation which holds
when the mean free path is much smaller than the charac-
teristic size of the disordered medium (s � R). As shown
in Appendix B, the integral equation (44) can be cast in
this regime into the following diffusion equation and Robin
boundary condition:

s

d
∇2

r 〈ρ(r)〉 − γ 〈ρ(r)〉 = 0 for r ∈ V,

(49)
2Vd−1

Sd
sn · ∇r〈ρ(r)〉 + 〈ρ(r)〉 = 0 for r ∈ ∂V .

The first line of Eq. (49) can be written in the more familiar
form (∇2

r + β2
)〈ρ(r)〉 = 0, (50)

where β is the Fourier variable for space, analogous to a
wave number. As in Sec. III A, we assume that the medium
is spherical so that the solution of Eq. (50) reads

〈ρ(r)〉 = j (d )
0 (βr), (51)

where j (d )
 (z) is the generalized spherical Bessel function de-

fined in Eq. (A6). Using Eq. (51), the differential problem (49)
becomes the following nonlinear system for the pair (γ , β )

s

d
β2 + γ = 0,

(52)
2Vd−1

Sd
βs j (d )

0

′
(βR) + j (d )

0 (βR) = 0.

The roots of the system (52), denoted as βn and γn, fully
characterize the diffusion eigenmodes in space and time, re-
spectively. Furthermore, the spectral decomposition of the
diffusion problem (49) allows us to write the general solution
for the density and its time evolution. Through inverse Laplace
transform, one has the expansion

〈ρ(r, t )〉 =
∞∑

n=1

cneγnvt j (d )
0 (βnr), (53)

where v is the group velocity and cn are arbitrary constants
depending on the initial condition at t = 0. Since the density
must be positive, the constant c1, associated with the funda-
mental mode, should be the largest one. Note that the values

062211-7



DAVID GASPARD AND JEAN-MARC SPARENBERG PHYSICAL REVIEW A 109, 062211 (2024)

TABLE II. First zeros of the Bessel function J d−2
2

(z), denoted as
j d−2

2 ,n in the text [51]. No closed form exists for these zeros, except
for d = 1 and d = 3.

d 1 2 3 4

n = 1 π

2 2.40483. . . π 3.83171. . .

n = 2 3π

2 5.52008. . . 2π 7.01559. . .

n = 3 5π

2 8.65373. . . 3π 10.1735. . .

n = 4 7π

2 11.7915. . . 4π 13.3237. . .

n = 5 9π

2 14.9309. . . 5π 16.4706. . .

of γn are negative. Therefore, Eq. (53) describes the decay
of the density in time due to the escape of the particle from
the medium. In the long time limit (t → ∞), the fundamental
mode dominates the other ones since γ1 has the smallest value.
Of course, the superiority of the fundamental mode is required
by the constraint on the positivity of the density.

Although the boundary condition in Eq. (52) cannot be
solved for β in closed form, it is possible to continue the
calculation further if the mean free path is sufficiently small
(s � R). Indeed, for a small enough s, one may recognize
in the second line of Eq. (52) the first-order expansion of

j (d )
0 (βReff ) = 0, (54)

where Reff is the effective radius

Reff = R + 2Vd−1

Sd
s. (55)

The condition (54) obviously expresses the geometrical inter-
pretation of Reff as the radius where the extrapolated density
vanishes. The roots of Eq. (54) are given by the zeros of
j (d )
0 (z), or, more explicitly, by the zeros of J d−2

2
(z). Thus, we

obtain the full spectrum of diffusion eigenmodes

βn =
j d−2

2 ,n

Reff
, (56)

where jν,n ∀n ∈ {1, 2, 3, . . .} denotes the nth zero of the
Bessel function Jν (z). The first zeros of interest are given in
Table II for the lowest dimensions. According to the first line
of Eq. (52), the values of γ corresponding to Eq. (56) read

γn = −s

d

(
j d−2

2 ,n

Reff

)2

. (57)

The result (57) turns out to be an accurate approximation of
the sought eigenvalues of Eq. (44). The quantity (57) is also
related to the escape rate of the particle per unit time by �n =
|γn|v with n = 1.

Finally, using the relationship (36), the diffusion rate of
Eq. (57) translates into the estimate

kidiff,n = − s

2d

(
j d−2

2 ,n

Reff

)2

, (58)

with n = 1 for the position of the resonance band. The re-
sult (58) is considerably more accurate than our previous
estimate, Eq. (68) of Ref. [45], since it accounts for the
Robin boundary condition (52) which is more precise than the
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FIG. 4. (a) Cross-sectional view of the resonance density (28)
along the vertical axis kr = 6 ς−1 for a 2D disk-shaped random
point field with N = 500 and using the point scattering model (16).
The parameters are thus R = 12.6 ς and s = 1.5 ς . The density is
averaged over 210 disorder configurations. The vertical dotted lines
indicate the diffusion eigenmodes given by Eq. (52). (b) Same as
panel (a) but in the 3D case with R = 4.92 ς and s = 2.865 ς .

Dirichlet condition j (d )
 (βR) = 0. Equation (58) is also more

general than our previous estimate because it predicts other
diffusion eigenmodes for n > 1 than the fundamental one.

The comparison between the prediction (58) and the nu-
merical results is shown in Fig. 4 for the 2D and 3D cases.
The resonance density (solid curve) is computed with the
program MSMODEL [52] exploiting the resonance potential
method of our previous paper [45]. Note that the final increase
of the density in Fig. 4(a) near ki = 1 ς−1 is due to numerical
round-off errors in computing the determinant of M(k) and
is thus not physical. This phenomenon was discussed in our
previous paper [45].

The adequacy between the fundamental diffusion mode
(n = 1) and the maximum of the resonance band in Fig. 4
is remarkable. This is especially true in three dimensions
because the scale parameter nσR = 1.72 is not much larger
than 1 compared to what the diffusion approximation could
have required. In fact, the quality of the approximation (58)
greatly depends on the expression of Reff and on the boundary
condition. Indeed, if the magnitudes of R and s were the
same, then there would be a factor of two between R and Reff ,
and thus a factor of four in kidiff,n, which is significant. This
shows that the accuracy of the prediction (58) is not obvious
and relies on the value (55) of the effective radius Reff .

Noticeably, the other diffusion eigenmodes do not lead to
any perceptible structure in Fig. 4. We could have thought
that Eq. (58) predicts the existence of additional bands deeper
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in the complex plane. However, we did not find any match,
not even in much larger point fields, up to N = 5000. Only
the fundamental mode (n = 1) appears to play a significant
role. Furthermore, regarding the one-dimensional (1D) case,
these higher-order modes do no coincide with the faint bands
in Fig. 6(a) of our previous paper [45]. All these observa-
tions lead us to conjecture that these higher-order diffusion
eigenmodes do not exist in the quantum case. In this regard,
we note that similar distributions, which are devoid of the
influence of these extra modes, have been observed in the
literature [36,37,40,41].

A likely reason of this absence is that the transport equa-
tion (39), on which Eq. (58) is based, only describes the
incoherent (phase-independent) contribution to wave trans-
port. Therefore, this equation is unable to predict the full
resonance distribution in the complex k plane because the
latter would be intrinsically determined by coherence and
constructive interferences in the same way as the energy
eigenstates in quantum mechanics. Accordingly, the coherent
contributions would smooth out the comb of higher-order
diffusion eigenmodes in Fig. 4.

In principle, the resonance distribution could be deter-
mined with advanced methods capable of describing the
coherent contributions to wave transport such as the nonlinear
sigma model [70]. This field-theoretical method is based on
the average of some generating function over the realizations
of a random potential. Upon averaging, the linear wave equa-
tion in the disordered medium is then cast into a disorder-free
nonlinear wave equation which can be solved semiclassically.
This method has proven particularly effective in determining
the full statistics of certain observables [41,70,71].

IV. CONCLUSION AND PERSPECTIVES

In this paper, we studied the Foldy-Lax model to describe
the propagation of a quantum particle in a disordered medium
such as a gaseous detector. In this model, the atoms compos-
ing the medium are represented by point scatterers pinned in
space at random positions. We studied the properties of this
system under the perspective of the resonance poles in the
complex plane of the wave number k. We developed equa-
tions for disorder-averaged quantities, in particular, the wave
function and the distribution of complex resonances. These
equations were compared to numerical simulations performed
with the program MSMODEL [52].

More specifically, we showed in Sec. III A that the peaks
in the resonance density at low energy (|k|ς � j d−2

2
) are

predicted by the effective-medium equation for the disorder-
averaged wave function. This means that, when the particle
wavelength is larger than the mean interscatterer distance, the
wave only probes the geometric shape of the medium and not
the details due to the disorder.

Finally, in Sec. III B, we solved the Bethe-Salpeter equa-
tion in the diffusion regime to estimate the location of the
resonance band at high energy (|k|ς � j d−2

2
). We showed that

the fundamental diffusion eigenmode precisely corresponds
to the imaginary part of the resonance band, thus confirming
that this band is related to the escape time of the particle in the
medium. However, the higher-order diffusion modes given by
the diffusion equation do not lead to visible structures in the

resonance density. A likely reason is that the Bethe-Salpeter
equation ignores the coherent effects that should be taken into
account to describe the full shape of the resonance density.
In the future, we plan to use advanced methods accounting for
coherent contributions to wave transport, such as the nonlinear
sigma model [41,70,71] to finely characterize the distribution
of resonance widths in strongly open systems.
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APPENDIX A: SCATTERING BY A SPHERE
AND RESONANCES

In this Appendix, we derive the formula (46) for the com-
plex resonance poles corresponding to the scattering by a
spherical effective medium. The wave equation is Eq. (30)
with the spherical-shaped density

n(r) =
{

n if ‖r‖ � R,

0 otherwise,
(A1)

where R is the radius of the disordered medium. The effective
wave number in the region ‖r‖ � R is thus given by Eq. (31).
To solve Eq. (30) given the spherical symmetry of Eq. (A1),
we will use the partial wave method developed in Sec. 1.2 of
Ref. [58]. In this method, the average wave function can be
expanded in partial waves as

〈ψ (r)〉 =
∞∑

=0

〈ψ(r)〉P(d )
 (cos θ ), (A2)

where P(d )
 (cos θ ) denotes the Gegenbauer polynomials gen-

eralizing the Legendre polynomials to arbitrary dimension d
and defined by

P(d )
 (x) = �( + d − 2)

! �(d − 1)
2F1

(
−,+d−2

d−1
2

;
1 − x

2

)
, (A3)

where 2F1(a,b
c ; z) is the Gauss hypergeometric function [51].

In Eq. (A2), cos θ = � · �0 is the cosine of the angle of
� = r/r with respect to the direction �0 of the incident plane
wave. The radial components of the average wavefunction in
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Eq. (A2) satisfy the radial Schrödinger equation[
d2

dr2
+ d − 1

r

d

dr
+ k2 − ( + d − 2)

r2

(A4)

− n(r)F (k)

]
〈ψ(r)〉 = 0,

where the density is given by Eq. (A1) for a spherical-shaped
medium of radius R. According to this expression of the den-
sity, we have to split the wave function 〈ψ(r)〉 in two regions
r � R and r > R. In this regard, we consider the following
ansatz:

〈ψ(r)〉 =
{

j (d )
 (κr) for r � R,

S(k)h+(d )
 (kr) + h−(d )

 (kr) for r > R,

(A5)
where κ =

√
k2 − nF (k) and the generalized spherical Bessel

functions are defined by

j (d )
 (z) = �

(
d
2

)(2

z

) d−2
2

J+ d−2
2

(z),

h±(d )
 (z) = �

(
d
2

)(2

z

) d−2
2

H±
+ d−2

2

(z),

(A6)

in terms of the standard Bessel function Jν (z) and the standard
Hankel functions H±

ν (z) [51]. The function j (d )
 (z) is finite and

regular at z = 0, hence its presence in the inner region of the
ansatz (A5). Imposing the continuity condition on the wave
function and its derivative at the boundary r = R, we get the
following expression for the scattering matrix element:

S(k) = −W
[
h−(d )

 (kr), j (d )
 (κr)

]
r=R

W
[
h+(d )

 (kr), j (d )
 (κr)

]
r=R

, (A7)

where W[ f (r), g(r)] = f (r)∂rg(r) − g(r)∂r f (r) denotes the
Wronskian with respect to r.

We look for the resonance poles in the scattering matrix el-
ement (A7) coming from the cancellation of the denominator

W
[
h+(d )

 (kr), j (d )
 (κr)

]
r=R = 0. (A8)

Finally, expressing j (d )
 (z) and h+(d )

 (z) in terms of the stan-
dard Bessel and Hankel functions, Jν (z) and H+

ν (z), we
retrieve the resonance equation (46).

APPENDIX B: DIFFUSION APPROXIMATION

One way to obtain the diffusion equation (49) consists in
estimating the convolution integral in Eq. (39)

K ∗ (nσ 〈ρ〉) = nσ

∫
V

K (r | r′)〈ρ(r′)〉dr′, (B1)

where ∗ denotes the convolution product and V the volume of
the medium.

1. Diffusion in the bulk

We first look at the bulk of the medium, that is to say,
far away from the boundary. In this region, it is reasonable
to extend the integral to Rd , hence neglecting the possible

edge effects. We will consider the special case of the boundary
equation later. Omitting the constant prefactor nσ , the convo-
lution integral (B1) reads

K ∗ 〈ρ〉 =
∫
Rd

K (r | r′)〈ρ(r′)〉dr′. (B2)

On length scales much larger than the mean free path (r �
s), an excellent approximation of the kernel K (r | r′) is

K (r | r′) � e−(γ+nσ )‖r−r′‖

Sd‖r − r′‖d−1 , (B3)

according to Eq. (41). Since nσ is very large, the kernel
K (r | r′) looks like the Dirac delta function δ(r − r′) plus a
correction involving the nonzero variance of the kernel (B3).
To exploit this feature, we may expand the density 〈ρ(r′)〉 in
the neighborhood of the observation point r

〈ρ(r′)〉 = 〈ρ(r)〉 + (r′
i − ri )

∂

∂ri
〈ρ(r)〉

+ 1

2!
(r′

i − ri )(r
′
j − r j )

∂

∂ri

∂

∂r j
〈ρ(r)〉 + · · · , (B4)

where we assumed the implicit summation of repeated in-
dices. We suppose that the first three terms of Eq. (B4) will
suffice to approach 〈ρ(r′)〉. The convolution integral (B2) then
amounts to evaluating the first moments of the distribution
K (r | r′). The zero-order moment reads∫

Rd

e−(γ+nσ )‖r−r′‖

Sd‖r − r′‖d−1 dr′ = 1

γ + nσ
. (B5)

This can be easily shown using the translational and rotational
invariances of the integral and the fact that dr′ = Sd (r′)d−1dr′.
The remaining integral is just

∫ ∞
0 e−βxdx = 1

β
. The first-order

moment ∫
Rd

e−(γ+nσ )‖r−r′‖

Sd‖r − r′‖d−1 (r′ − r) dr′ = 0, (B6)

is equal to the zero vector because the distribution is symmet-
ric with respect to the point r′ = r. This also means that the
particle does not undergo any drift or external forces. In fact,
all the odd-order moments are zero for the same reason. The
second-order moment, which is a 3 × 3 matrix, reads∫

Rd

e−(γ+nσ )‖r−r′‖

Sd‖r − r′‖d−1 (r′
i − ri )(r

′
j − r j )dr′ = 2!

(γ + nσ )3

δi j

d
.

(B7)

The off-diagonal elements (i = j) are zero because of the
spherical symmetry of the distribution. In addition, the three
diagonal elements (i = j) are equal for the same reason. These
elements can be calculated in spherical coordinates, letting
ri = r cos θ , but we do not show it here explicitly. Combining
Eqs. (B5)–(B7), the convolution integral (B2) is approached
by

K ∗ 〈ρ〉 � 〈ρ(r)〉
γ + nσ

+ ∇2
r 〈ρ(r)〉

d (γ + nσ )3
. (B8)

The integral transport equation (39) then becomes

〈ρ(r)〉 = K (r | r0) + nσ

( 〈ρ(r)〉
γ + nσ

+ ∇2
r 〈ρ(r)〉

d (γ + nσ )3

)
. (B9)
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Multiplying both sides of Eq. (B9) by (γ + nσ ) readily
leads to

γ 〈ρ(r)〉 = (γ + nσ )K (r | r0) + nσ

d (γ + nσ )2
∇2

r 〈ρ(r)〉.
(B10)

Note that Eq. (B10) is not exactly the standard diffusion equa-
tion because the Laplace variable γ , which can be interpreted
as a time derivative (γ ↔ ∂vt ), is not only in the left-hand side,
but also in the right-hand side. However, since we are only
interested in time scales much longer than the intercollisional
time [t � (nσv)−1], the variable γ is much smaller than nσ

and can be neglected in the right-hand side of Eq. (B10).
Then, using the property (γ + nσ )K (r | r0) � δ(r − r0) in
the diffusive regime, Eq. (B10) becomes

γ 〈ρ(r, γ )〉 = δ(r − r0) + 1

dnσ
∇2

r 〈ρ(r, γ )〉, (B11)

from which we obtain the first line of Eq. (49) since s = 1
nσ

.

2. Leakage boundary conditions

Aside from the equation in the bulk, in a finite medium,
we also need a condition on the density at the boundary to
describe the fact that the wave can freely exit the medium.
Since the medium is much larger than the mean free path, it
can be approached by a semi-infinite region

V � {r ∈ Rd | r · n � 0}, (B12)

where n is the outward-pointing normal vector to the bound-
ary of the medium. This assumption is motivated by the
fact that, at the scale of the mean free path, the boundary
is perceived as nearly flat. In this way, the boundary is just
an infinite plane of equation r · n = 0. To obtain a boundary
condition on 〈ρ(r)〉, we will approximate the integral trans-
port equation (39) for any point r on the boundary. More
specifically, we want to estimate the integral

K ∗ 〈ρ〉 =
∫

r′ ·n�0
K (r | r′)〈ρ(r′)〉dr′, (B13)

where the integration domain covers the semi-infinite re-
gion (B12). As done in Eq. (B4), we expand the density
〈ρ(r′)〉 in Taylor series at r′ = r

〈ρ(r′)〉 = 〈ρ(r)〉 + (r′ − r) · ∇r〈ρ(r)〉 + · · · . (B14)

We neglect the higher-order terms in Eq. (B14) because we
do not want the boundary condition to possess a second-order
derivative. Indeed, the diffusion equation (B9) is of second
order in space. Note that, in Eq. (B13), the observation point
r is supposed to lie on the boundary, i.e., to satisfy r · n = 0.
Without loss of generality, we can set r = 0 due to the trans-
lational symmetry of Eq. (B13) in the plane of the boundary.
The zero-order moment of the kernel reads∫

r′ ·n�0
K (0 | r′) dr′ =

∫
r′ ·n�0

e−(γ+nσ )r′

Sd (r′)d−1
dr′

= 1

2(γ + nσ )
. (B15)

This is just half the result (B5) since it is integrated over half
the space. The first-order moment∫

r′ ·n�0
r′K (0 | r′) dr′ =

∫
r′ ·n�0

r′ e
−(γ+nσ )r′

Sd (r′)d−1
dr′, (B16)

requires more caution because it is not spherically symmetric.
Thus, we need to resort to spherical coordinates. Using the
differential volume element in spherical coordinates

dr = Sd−1(sin θ )d−2rd−1dθdr, (B17)

and projecting over the normal vector n, Eq. (B16) becomes∫
r′ ·n�0

(r′ · n)K (0 | r′) dr′

= Sd−1

Sd

∫ π

π
2

dθ cos θ (sin θ )d−2
∫ ∞

0
dr′ r′e−(γ+nσ )r′

.

(B18)

In Eq. (B18), θ denotes the angle between r′ and the normal n.
The radial and angular integrals of Eq. (B18) are elementary,
leading to∫

r′ ·n�0
(r′ · n)K (0 | r′) dr′ = Sd−1

Sd

−1

d − 1

1

(γ + nσ )2
. (B19)

Restoring the arbitrary direction of the normal r and using the
fact that Vd = Sd/d , we finally obtain from Eq. (B19)∫

r′ ·n�0
r′K (0 | r′)dr′ = −n

Vd−1

Sd

1

(γ + nσ )2
. (B20)

Due to the rotational symmetry of the integral in the plane
of the boundary, there is no component of the first-order
moment (B20) parallel to the boundary. In addition, note the
minus sign in the right-hand side of Eq. (B20) which is a direct
consequence of the integration domain r′ · n � 0. Combining
Eqs. (B15) and (B20), the convolution integral (B13) can be
approximated by∫

r′ ·n�0
K (r | r′)〈ρ(r′)〉dr′

� 〈ρ(r)〉
2(γ + nσ )

− Vd−1

Sd

n · ∇r〈ρ(r)〉
(γ + nσ )2

. (B21)

Now, we can substitute the approximation (B21) into the
integral equation (39). The source term K (r | r0) can be ne-
glected because we assume that it is located far away from the
boundary, typically somewhere in the bulk. This gives us

〈ρ(r)〉 = nσ

( 〈ρ(r)〉
2(γ + nσ )

− Vd−1

Sd

n · ∇r〈ρ(r)〉
(γ + nσ )2

)
, (B22)

which, after some rearrangements, leads to(
γ + nσ

2

)
〈ρ(r)〉 + Vd−1

Sd

nσ

γ + nσ
n · ∇r〈ρ(r)〉 = 0. (B23)

When considering times much longer than the intercollisional
time, the variable γ in Eq. (B23) can be neglected in front
of nσ . In this way, we obtain a version of Eq. (B23) which
no longer depends on γ , i.e., giving the time-independent
boundary condition

nσ

2
〈ρ(r)〉 + Vd−1

Sd
n · ∇r〈ρ(r)〉 = 0, (B24)
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on the density 〈ρ(r)〉 for all r ∈ ∂V . This is the Robin bound-
ary condition given in the second line of Eq. (49). Since the
coefficients of the two terms in Eq. (B24) are positive, this
condition expresses the fact that the density has an inward-

facing gradient. In the far diffusive regime (nσR → ∞), this
condition reduces to a simple Dirichlet boundary condition:
〈ρ(r)〉 = 0. Although this regime is valid for a very large
medium, we do not consider this extreme case in this paper.
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