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Tests of macrorealism in meson oscillation physics
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Macrorealism formalizes the seemingly intuitive notion that, in contrast with the principles of quantum
mechanics, a physical system can be in a definite state at any given time and moreover its dynamical evolution
is independent of the measurements performed on it. In this study, we carry out a comparative analysis between
three-time Leggett–Garg-type inequalities and the conditions of no-signaling-in-time and arrow-of-time for
macrorealism within the context of meson oscillations. Our findings indicate that, under given initial conditions,
no violations of Leggett–Garg inequalities are observed. However, no-signaling-in-time conditions are found to
be violated, thereby revealing the impossibility of applying a macrorealistic description to the physics of meson
oscillations.
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I. INTRODUCTION

The intersection of particle physics, quantum field theory,
and quantum gravity with the study of fundamental concep-
tual quantum structures and quantum foundations stands out
as one of the most active and dynamic domains in contem-
porary physics research [1–29]. A pertinent illustration is
given by the phenomenon of flavor mixing and oscillations,
such as the case of neutrino oscillations. This phenomenon
not only indicates physics beyond the standard model, but
has provided a suitable experimental platform for testing the
validity of quantum mechanics itself. In particular, the concept
of macroscopic realism (macrorealism), which encodes the
intuition suggested by the experience of our everyday macro-
scopic world and is in conflict with predictions of quantum
mechanics, has been put under scrutiny within flavor oscillat-
ing systems [9,23,30]. The violation of its formal occurrence
in the quantum realm is usually provided by a set of relations
known as the Leggett–Garg inequalities (LGIs) [31,32], which
are deemed as the temporal counterparts of Bell inequalities
[31–35]. Specifically, a violation of LGIs gives a benchmark
of quantumness of the underlying system as the inability of
meeting all the assumptions of macrorealism [31].

It is worth stressing, however, that LGIs provide a neces-
sary but not a sufficient condition for macrorealism [36,37].
Nevertheless, it is still possible derive a set of equalities
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known as no-signaling-in-time (NSIT) [34,36] and arrow-of-
time (AoT) conditions offering a one-to-one correspondence
with macrorealism [36,38]. Indeed, the quantumness of neu-
trino oscillations can be unveiled by NSIT/AoT conditions
even under fulfillment of LGIs, e.g., when wave-packet deco-
herence is considered [26].

In this work, we question the validity of macrorealism
via NSIT/AoT conditions in oscillations of neutral mesons.
In contrast to neutrinos, neutral mesons are decaying parti-
cles, a feature that adds an additional layer of complexity in
macrorealistic scenario that demands consideration. Focusing
on neutral kaons (the most studied neutral meson systems)
and employing an approach grounded in conditional prob-
abilities, we derive LGIs in its canonical form as well as
in another reformulation, commonly referred to as LGIs in
Wigner form (WLGIs), and compare them with predictions
of the NSIT/AoT conditions. Under specific initial condi-
tions, no violations of LGIs or WLGIs are found, while the
NSIT/AoT conditions persistently exhibit violations in such
instances. This result underscores the robustness and efficacy
of the proposed methodology. It is important to stress that
the findings presented in this paper can be equally obtained
by treating particle decay within the framework of an open
quantum system and repeating our computations using the
Kraus operators formalism [39–42].

The remainder of the paper is organized as follows. In
Sec. II, we review the notion of macrorealism and the re-
lated conditions we will employ in our analysis (i.e., LGIs,
WLGIs, and NSIT/AoT). Moreover, we give the basics of
meson oscillations phenomenology by resorting to the explicit
example of neutral kaons. Then, in Sec. III we analyze the
ensuing LGIs, WLGIs, and NSIT/AoT conditions; with these
results, we then establish a comparison among the various
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tests of macrorealism. Finally, Sec. IV contains conclusions
and future perspectives. The explicit computation of joint
probabilities is reported in Appendix for reader’s convenience.

II. PRELIMINARIES

A. Macrorealism and its conditions

Quantum mechanics is known as a theory offering a highly
accurate description of nature, as confirmed by numerous
experiments. The fundamental superposition principle mani-
fests itself in a wide variety of phenomena at different energy
scales, e.g., particle mixing and oscillations, which are exper-
imentally observed in various systems just like neutrinos and
neutral mesons. Nevertheless, quantum mechanics exhibits
several conceptual issues, which are still actively debated. For
example, a naive attempt to apply the superposition principle
at the macroscopic scale inevitably leads to paradoxes, such as
the infamous Schrödinger’s cat. Indeed, our everyday experi-
ence suggests a breakdown of the superposition principle and
the emergence of the laws of classical physics, thus leading
to a natural question: Why and how does the quantum world
blend in the everyday classical world?

Since the standard quantum mechanics does not go be-
yond postulating an ad hoc separation between them, various
interpretations and modifications of the quantum theory
(e.g., Bohmian mechanics and spontaneous collapse models)
have been developed in order to explain the quantum-to-
classical transition. One of the ways to explore it is probing
coherence at macroscopic scale, which requires a proper
device-independent witness for the validity of our intuitive
picture of the everyday macroscopic world. The latter has
been formalized in 1985 by Leggett and Garg into a set of
assumptions summarized as macrorealism [31].

Definition 1. A macrorealistic system S satisfies the two
following assumptions:

(1) Macrorealism per sé: given a set of available macro-
scopically distinct states, S is in one of them at any given time.

(2) Noninvasive measurability: it is possible in principle
to determine the state of S without affecting neither its state
nor its dynamical evolution.

Similarly to local realism and Bell inequalities, macrore-
alism can be consolidated in a set of quantitative conditions,
which can be experimentally falsified. Given a physical sys-
tem S evolving in time, one can perform a series of N
dichotomic measurements of a macroscopic observable O
at times t0, t1, . . . , tN−1, respectively. Therefore, each mea-

surement produces a random outcome Oi := O(ti) ∈ {−1, 1}.
It can be demonstrated that, if a system S is macrorealistic
in accordance with Definition 1, the statistics of outcomes
produced by the considered series of measurements has to
satisfy a certain set of inequalities bounding the corresponding
correlations and known as Leggett–Garg inequalities. In the
simplest case of N = 3 repeated measurements, the set of
LGIs is given as in the following definition [32,43].

Definition 2. Given a series of measurements of an
observable O at times t0, t1, t2, the corresponding set of
Leggett–Garg inequalities (LGIs) is given by

L1(t0, t1, t2) = 1 + C01 + C12 + C02 � 0, (1)

L2(t0, t1, t2) = 1 − C01 − C12 + C02 � 0, (2)

L3(t0, t1, t2) = 1 + C01 − C12 − C02 � 0, (3)

L4(t0, t1, t2) = 1 − C01 + C12 − C02 � 0, (4)

where Ci j := 〈OiOj〉 = ∑
Oi,Oj∈{−1,1} OiOjP(Oi, Oj ) is a cor-

relation function for random outcomes Oi, Oj of mea-
surements at ti and t j , respectively, and P(Oi, Oj ) is the
corresponding joint probability distribution.

Observations of violation of LGIs (1)–(4) suggest a failure
of the macrorealistic view on the system S in terms of Defini-
tion 1, and can hence be seen as a witness of its quantumness
in the sense of ability of outcome statistics predicted by quan-
tum mechanics to violate LGIs.

The LGIs introduced in Definition 2 are not the unique
conditions that can be derived from assumptions of macro-
realism. Indeed, similarly to Bell inequalities in the Wigner
form, other sets of conditions on the outcome statistics were
proposed in literature, which bound directly the joint outcome
probabilities P(Oi, Oj ) instead of the corresponding corre-
lation functions [35,44]. The idea that lies behind them is
that macrorealistic outcome statistics implies the existence
of an overall joint probability distribution for outcomes at
all times t0, . . . , tN−1. Hence, e.g., for N = 3, the probability
distributions P(Oi, Oj ) could be computed by marginalizing
the overall probability distributions P(O0, O1, O2). From the
obvious condition P(O0, O1, O2) � 0, we develop the follow-
ing definition of Leggett–Garg inequalities in Wigner form
[15].

Definition 3. Given a series of measurements of an
observable O at times t0, t1, t2, the corresponding set of
Leggett–Garg inequalities in Wigner form (WLGIs) is given
by

W1(t0, t1, t2) = P(O1, O2) − P(−O0, O1) − P(O0, O2) � 0, (5)

W2(t0, t1, t2) = P(O0, O2) − P(O0,−O1) − P(O1, O2) � 0, (6)

W3(t0, t1, t2) = P(O0, O1) − P(O1,−O2) − P(O0, O2) � 0, (7)

where −Oi is the measurement outcome alternative to Oi, i.e.,
−Oi = ∓1 if Oi = ±1.

Although obvious analogies between macrorealism and
local realism (and, in turn, LGIs/WLGIs and CHSH/Bell
inequalities) can be drawn, there is a crucial difference be-

062209-2



TESTS OF MACROREALISM IN MESON OSCILLATION … PHYSICAL REVIEW A 109, 062209 (2024)

tween them. For local realism, Bell inequalities provide a
necessary and sufficient condition guaranteed by Fine’s the-
orem [45,46]. However, this is not the case for macrorealism:
indeed, it has been proven that all forms of LGIs are necessary
but not sufficient for macrorealism,1 and no counterpart of
Fine’s theorem exists in this case [36,37]. Therefore, while
a violation of LGIs/WLGIs guarantees incompatibility of
the underlying physical system with the macrorealistic view,
their fulfillment can still hide its quantum nature. Neverthe-
less, a test that completely characterizes macrorealism can
be established as two sets of equalities putting constraints
on the outcome probability distributions, one constraining the
signaling from past to future (dubbed no-signaling-in-time)
and one constraining signaling from future to past (dubbed
arrow-of-time) [36].

Definition 4. Given a series of measurements of an
observable O at times t0, t1, t2, the corresponding set of no-
signaling-in-time (NSIT) conditions is given by:

NSIT(1) : P(O2) =
∑
O1

P(O1, O2), (8)

NSIT(2) : P(O0, O2) =
∑
O1

P(O0, O1, O2), (9)

NSIT(3) : P(O1, O2) =
∑
O0

P(O0, O1, O2), (10)

and the set of arrow-of-time (AoT) conditions is given by:

AoT(1) : P(O0, O1) =
∑
O2

P(O0, O1, O2), (11)

AoT(2) : P(O0) =
∑
O1

P(O0, O1), (12)

AoT(3) : P(O1) =
∑
O2

P(O1, O2). (13)

Then, NSIT/AoT imply LGIs (WLGIs), while the opposite
is not true. This was shown in the physically relevant exam-
ple of neutrino oscillations in Ref. [26], where all previous
conditions were studied. There, it was shown that NSIT/AoT
can witness violations of macrorealism when LGIs (WLGIs)
do not. For example, this happens for time intervals much
longer than the wave-packets coherence time. This fact will be
even clearer in the following, where we are going to analyze
the various tests of macrorealism in the framework of meson
oscillations. We will see that, with the chosen initial condi-
tion, no violation of LGIs or WLGIs is experienced, while
NSIT/AoT reveal the quantum nature of the phenomenon.

B. Meson oscillations: An overview

Before proceeding with the analysis of conditions for
macrorealism, we briefly review the phenomenology of neu-
tral meson oscillations. For the sake of simplicity, we focus on
neutral K mesons (kaons), i.e., K0 − K̄0 oscillations, although

1Henceforth, we refer to macrorealism in its strong form. Indeed,
there exists a weaker notion of macrorealism with necessary and
sufficient conditions provided by an augmented set of two- and
three-time LGIs [47]. Nonetheless, the three-time LGIs alone do not
guarantee the validity of a macrorealistic view even in this case.

the described framework and the following results hold true
for other types of neutral mesons as well. Moreover, in our
discussion we omit the tiny effects of CP violation, which
does not add any relevant feature to the analysis.

Oscillations of neutral kaons can be effectively approached
via the nonrelativistic Wigner–Weisskopf approximation
(WWA), based on the non-Hermitian Hamiltonian

Ĥ = M̂ − i

2
�̂, (14)

with the eigenstates |Ki〉, where i = S, L (dubbed as short-
lived and long-lived states, respectively), and the correspond-
ing eigenvalues mi − i

2�i, with (distinct) definite masses mi

and decay widths �i. In the above expression, M̂ = M̂† is the
mass operator, which covers the unitary part of the dynamics
and �̂ = �̂† describes the decay. In turn, the dynamics of a
neutral kaon produced at t0 can be obtained by solving the
Schrödinger equation under the effective WWA Hamiltonian
(14),

|ψ (t )〉 = fS (t )|KS〉 + fL(t )|KL〉, (15)

where fi(t ) = 〈ψ (t = t0)|Ki〉e−(imi+ �i
2 )(t−t0 ).

The physical (flavor) states |K0〉 and |K̄0〉 (kaon and an-
tikaon, respectively) are labeled by the strangeness quantum
number. Crucially, for the hadronic decays, both can decay via
weak interaction into two or three pions. Generally speaking,
the flavor states do not coincide2 with the mass eigenstates
|Ki〉, but are rather their superpositions [48], that is

|K0〉 = 1√
2

(|KS〉 + |KL〉), (16)

|K̄0〉 = 1√
2

(|KS〉 − |KL〉). (17)

Now, suppose that a neutral kaon is produced at t = t0 as
|ψ (t = t0)〉 = |K0〉. Taking into account the dynamics given
by (15), it evolves into the state

|K0(t )〉 = 1√
2

(
e−(imS+ �S

2 )�t |KS〉 + e−i(mL+ �L
2 )�t |KL〉), (18)

where �t = t − t0. Hence, the probabilities of finding a kaon
(survival probability) and antikaon (oscillation probability) at
time t are given by

PK0→K0/K̄0 (t ) = |〈K0/K̄0|K0(t )〉|2, (19)

2In our discussion, for the sake of simplicity we omit the tiny effects
of violation of the CP symmetry in neutral kaon oscillations, which
provides an asymmetry in the oscillation probabilities in (20) and
(21):

PK0→K̄0 (t ) = e−�t

2

|1 − ε|
|1 + ε|

[
cosh

(
��t

2

)
− cos(�mt )

]
,

PK̄0→K0 (t ) = e−�t

2

|1 + ε|
|1 − ε|

[
cosh

(
��t

2

)
− cos(�mt )

]
,

where ε is a complex parameter quantifying CP violation. Never-
theless, we show in the following that the oscillation probabilities
enter the conditions for macrorealism only as a combination
PK0→K̄0 (t )PK̄0→K0 (t ), which is independent of ε.
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respectively, and it can be straightforwardly calculated from
(18) as

PK0→K0/K̄0 (t ) = e−��t

2

[
cosh

(
���t

2

)
± cos(�m�t )

]
,

(20)

where �m = mL − mS is the difference of neutral kaon
masses, � = �S+�L

2 and �� = �S − �L. Similarly, the sur-
vival and oscillation probabilities can be calculated for the
scenario where an antikaon is produced at t = t0, so that
|ψ (t = t0)〉 = |K̄0〉 and

PK̄00→K̄0/K0 (t ) = e−��t

2

[
cosh

(
���t

2

)
± cos(�m�t )

]
.

(21)

Note that the survival and oscillation probabilities do not
sum up to unity, PK0→K̄0 (t ) + PK0→K0 (t ) 	= 1, because of the
hadronic and the (semi)leptonic decays of neutral kaons. This
fact strongly distinguishes the present case from the one of
neutrino oscillations. In particular, the (semi)leptonic decays
were intensively used to study neutral kaon oscillations at
accelerator facilities in the CPLEAR experiment. Therein,
the flavor of the decayed particle is uniquely identified by
a lepton of a definite charge, and the relative decay rates
provide a direct measure of the relative flavor components of
the particle’s state. In turn, the transition probabilities can be
associated with the corresponding decay rates.

III. MACROREALISM IN MESON OSCILLATIONS

A. Oscillation probabilities

In order to characterize the quantumness of neutral kaon
oscillations as done in Sec. II A, it is necessary to define an
observable that can be associated with the flavor of the par-
ticle. This can be done by choosing a dichotomic observable
OF represented by the corresponding operator

ÔF = 2�F − 1, (22)

where �F = |F 〉〈F | is a projector on the state of flavor
F ∈ {K0, K̄0}. A measurement of OF at time ti thus reveals
whether the neutral meson is found at ti in flavor F or not.3

Therefore, we associate its possible outcomes {+1,−1} 
 OF
i

with symbols F and ¬F . This allows us to introduce prob-
abilities P(F |ti ) ≡ P(Oi = +1) and P(¬F |ti ) ≡ P(Oi = −1)
of events “particle is found in flavor F” and “particle is not
found in flavor F ,” respectively. A crucial difference between
this scenario and two-flavor neutrino oscillations can be easily
spotted: for the latter, a negative outcome of measurement
of OF means that the neutrino is found in the conjugated
flavor F̄ (e.g., if F = νe is an electronic neutrino, then F̄ = νμ

is a muonic netrino). This is not the case for neutral kaon
oscillations, because the outcome ¬F includes decay events
as well.

3This choice of the dichotomic observable O is motivated by the
incomplete description of a neutral kaon system when considering
the Hilbert space spanned by the flavor states |K0〉 and |K̄0〉. Indeed,
this space does not include states associated with the decay products.

Before moving on with the derivation of conditions for
macrorealism for neutral kaon oscillations, we derive the
necessary joint probabilities for outcomes of sequential mea-
surements. As neutral mesons are produced in accelerator
facilities in a state of given flavor, we assume the initial state
to be one, which, without loss of generality, is chosen as |F 〉.
Moreover, as we are interested in quantification in terms of
experimentally accessible quantities, we aim in connecting the
joint outcome probabilities with transition probabilities (19).
This is achieved in the following Lemma.

Lemma 1. For a neutral kaon produced at t0 in the flavor F ,
two measurements of the observable OF performed at times t1
and t2, respectively, reveal outcomes O1 ∈ {F,¬F } and O2 ∈
{F,¬F } with probabilities

P(F, F ) = PF→F (�t1)PF→F (�t2),

P(F,¬F ) = PF→F (�t1)(1 − PF→F (�t2)),

P(¬F, F ) = PF→F̄ (�t1)PF̄→F (�t2),

P(¬F,¬F ) = 1 − PF→F (�t1) − PF→F̄ (�t2)PF̄→F (�t2),

where �t1 = t1 − t0 and �t2 = t2 − t1, and F̄ is the flavor

conjugated to F , so that ¯̄ 0K = K0, and P(·, ·) := P(·, ·|t1, t2).
Proof. See Appendix. �

B. (W)LGIs for neutral kaon system

We start by deriving the Leggett-Garg inequalities in their
canonical (1)–(4) as well as Wigner form (5)–(7) for neutral
kaon oscillations. In order to address typical experimental
setups for neutral meson systems, we assume that the kaon
is produced at t0 = 0, and the measurements of OF are per-
formed at equidistant time intervals �t1 = �t2 = t , choosing
therefore t0 = 0, t1 = t , t2 = 2t . Having fixed that, we aim at
the evaluation of the correlation functions

Ci j =
∑

Oi,Oj∈{F,¬F }
Oi Oj P(Oi, Oj ), (23)

which can be straightforwardly obtained by applying Lemma
1, so as to obtain

C01 = 2PF→F (t ) − 1, (24)

C12 = 1 − 2PF→F (t )(1 − PF→F (t )) − 2PF→F̄ (t )PF̄→F (t ),

(25)

C02 = 2PF→F (2t ) − 1. (26)

Substituting these formulas into (1)–(4), we obtain the set of
LGIs constraining neutral kaon transition probabilities:

L1(t ) = PF→F (2t ) + P2
F→F (t ) − PF→F̄ (t )PF̄→F (t ) � 0,

(27)

L2(t ) = PF→F (2t ) − P2
F→F (t )

+ PF→F̄ (t )PF̄→F (t ) � 0, (28)

L3(t ) = −PF→F (2t ) − P2
F→F (t ) + 2PF→F (t )

+ PF→F̄ (t )PF̄→F (t ) � 0, (29)

L4(t ) = −PF→F (2t ) + P2
F→F (t ) + 2(1 − PF→F (t ))

− PF→F̄ (t )PF̄→F (t ) � 0. (30)
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FIG. 1. Functions L1(t ) (blue solid curve, first panel), L2(t )
(red solid curve, second panel), L3(t ) (black dashed curve, second
panel), and L4(t ) (green dashed curve, first panel) as functions of
time scaled by the proper mean lifetime τ = 8.954 × 10−11 s of
a neutral kaon. We assume that the kaon is produced in flavor
F = K0, and the parameters � = 5.5939 × 109 s−1, �� = 1.1149 ×
1010 s−1, and �m = 0.5293 × 1010 h̄ s−1 for neutral kaon system are
chosen in accordance with the corresponding experimental values
provided by the Particle Data Group in Ref. [49]. All the quantities
that appear in the plots are dimensionless.

Without loss of generality, assuming F = K0 and applying the
transition probabilities (19), we plot the functions (27)–(30) in
Fig. 1. In contrast to neutrino oscillations [26], the entire set of
LGIs provide four different constraints for neutral kaon oscil-
lations. Nevertheless, it can be easily noted that, at any point
in time, they are not violated. Therefore, LGIs cannot detect
violation of macrorealism in neutral kaon system and could
lead to an erroneous idea that its oscillations are susceptible of
a macrorealistic interpretation despite their quantum nature.

Before continuing, it must be pointed out that violations
of LGIs are closely related to the choice of observables and
initial conditions. For instance, in Ref. [50] it is possible
to find that, by selecting the strangeness as the dichotomic
observable and considering four-time LGIs (instead of the
three-time LGIs), one comes across a violation of the inequal-
ities even when dealing with meson oscillations. This result
must not be surprising, as there are no ambiguities, overlaps,
and confusions between the framework discussed in Ref. [50]
and the one we are considering here; indeed, they are covering

FIG. 2. Functions W1(t ) (blue solid curve) and W2(t ) (red
dashed curve) as functions of time scaled by the proper mean lifetime
τ = 8.954 × 10−11 s of a neutral kaon. We assume that the kaon
is produced in flavor F = K0, and the parameters � = 5.5939 ×
109 s−1, �� = 1.1149 × 1010 s−1, and �m = 0.5293 × 1010 h̄ s−1

for neutral kaon system are chosen in accordance with the corre-
sponding experimental values provided by the Particle Data Group in
Ref. [49]. All the quantities that appear in the plot are dimensionless.

essentially different scenarios, which are not compatible, and
thus not comparable. Our choice to work with three-time LGIs
is simply dictated by the fact that our purpose is to exhibit
the incompleteness of the LGIs macrorealistic description
with respect to the necessary and sufficient NSIT conditions,
which so far have been explored efficiently for three distinct
measurement times only.

Next, we proceed with questioning the suitability of WL-
GIs for the characterization of the quantumness of neutral
kaon oscillations. WLGIs (5)–(7) directly depend on proba-
bilities of measurement outcomes, which are fixed. Therefore,
we assume O0 = F , O1 = ¬F , and O2 = ¬F , so that −O0 =
¬F , −O1 = F , and −O2 = F . Applying Lemma 1, we obtain
the following set of WLGIs constraining neutral kaon transi-
tion probabilities:

W1(t ) = PF→F (2t ) − PF→F (t ) − PF→F̄ (t )PF̄→F (t ) � 0,

(31)

W2(t ) = PF→F̄ (t )PF̄→F (t ) − PF→F (2t ) � 0, (32)

W3(t ) = PF→F (2t ) − PF→F (t ) − PF→F̄ (t )PF̄→F (t ) � 0.

(33)

Therefore, WLGIs provide two different conditions requiring
negativity of W1(t ) and W2(t ), which are plotted in Fig. 2
under the assumption F = K0. Similarly to the LGIs analyzed
above, we find that WLGIs are satisfied at every point of time,
demonstrating a crucial difference with WLGIs for neutrino
oscillations, which reveal violation of macrorealism at small
times [26]. This means that (W)LGIs are not efficient enough
to test the quantum nature of flavor transitions in neutral
kaon oscillations, and hence the NSIT/AoT (as necessary and
sufficient conditions for macrorealism) have to be addressed.
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FIG. 3. Function N (t ) of the neutral kaon (blue solid curve)
and of the strange B meson (red dashed curve) as functions of
time scaled by the proper mean lifetime τ = 8.954 × 10−11 s for a
neutral kaon and τ = 1.470 × 10−12 s for a strange B meson. We
assume that the kaon is produced in flavor F = K0, and the param-
eters � = 5.5939 × 109 s−1, �� = 1.1149 × 1010 s−1, and �m =
0.5293 × 1010 h̄ s−1 for neutral kaon system are chosen in accordance
with the corresponding experimental values provided by the Particle
Data Group in Ref. [49]. For the strange B meson, the particle is
produced in the flavor F = Bs and the parameters are � = 6.615 ×
1011 s−1, �� = 9.14 × 1010 s−1, and �m = 1.776 × 1013 h̄ s−1. All
the quantities that appear in the plot are dimensionless.

C. Necessary and sufficient conditions for macrorealism
in neutral kaon oscillations

Similarly to WLGIs, the NSIT/AoT conditions depend
directly on the probabilities of measurement outcomes. Never-
theless, only some of the latter are fixed: therefore, we assume
O0 = F , O1 = ¬F , and O2 = ¬F as above, unless there is
summation over the corresponding measurement outcome.
Applying Lemma 1, we find that the set of AoT conditions
is trivially satisfied, while the set of NSIT conditions reduces
to a unique, nontrivial condition with respect to (8), which is
equal to

1 − PF→F (2t ) = 1 − P2
F→F (t ) − PF→F̄ (t )PF̄→F (t ). (34)

For the sake of simplicity, we use (34) to introduce the func-
tion

N (t ) := PF→F (2t ) − P2
F→F (t ) − PF→F̄ (t )PF̄→F (t ), (35)

so that the NSIT condition for macrorealism in neutral kaon
oscillations has the simple form

N (t ) = 0. (36)

Without loss of generality, assuming F = K0 and applying
the transition probabilities (19), we plot the function (35) in
Fig. 3. The plot shows a strong contrast between (W)LGIs and
NSIT/AoT conditions in the case of neutral kaon oscillations:
while the former are never violated (thus failing to catch the
quantum nature of flavor oscillations), the latter are violated at
any time point excluding the trivial cases t = 0 and t → ∞.
This suggests the complete incompatibility of neutral kaon
systems with the macrorealistic view.

Nevertheless, it is necessary to remark that the lack of
violation of LGIs and WLGIs seems to be contingent on the

specific choice of initial conditions, i.e., the production of
neutral kaon in flavor K0 at t = 0. Other choices could lead
to violation of (W)LGIs [42]. However, the strong difference
between predictions of (W)LGIs and NSIT/AoT conditions
discovered so far clearly highlights the limitations of the
former as tools for capturing the quantum nature of the con-
sidered phenomenon.

Let us conclude with a final remark about the possibil-
ity of experimentally testing violations of NSIT/AoT. In
Refs. [9,51], the data from the MINOS and Daya Bay ex-
periments were analyzed to test LGIs. Starting from the
experimental best fits, a set of pseudodata was generated
with a Gaussian distribution. The violations of LGIs were
then compared to those arising from statistical fluctuations
(false positives) in a macrorealistic model, leading to an
observed statistical significance of >5σ . In principle, a sim-
ilar approach could be repeated in the present case for
NSIT/AoT.

IV. DISCUSSION AND OUTLOOK

In this study, we have undertaken an analysis of NSIT/AoT
conditions within the physical framework of meson oscilla-
tions. Our study reveals that, just like the scenario occurred for
two-flavor neutrino oscillations, these conditions boil down to
a singular, nontrivial equality, which is commonly violated by
meson oscillations. Employing the specific choice made for
initial conditions, it is observed that the LGIs and WLGIs
are always fulfilled, while NSIT/AoT reveal a violation of
macrorealism. These findings unambiguously underscore the
efficacy of such a formalism in scrutinizing the intricate inter-
play between particle physics and the foundational aspects of
quantum mechanics.

A significant step forward along this direction would in-
volve the investigation of NSIT/AoT conditions in quantum
field theory (QFT). In Ref. [25], WLGIs were investigated
within the framework of the flavor Fock-space approach of
QFT neutrino physics, allowing for a consistent description
of flavor oscillations at all energy scales. The results of that
study indicate that QFT appears even more incompatible with
macrorealism than quantum mechanics. This finding is in
agreement with similar results on the radically nonclassical
structure of QFT. For instance, in the context of quantum
nonlocality, the vacuum state in QFT generically features
maximum violation of the Bell inequalities [52–54]; more-
over, Bell inequalities can be violated beyond the standard
Tsirelson in the quantum mechanical limit of phenomenologi-
cal models of quantum graivty incorporating a minimal length
[27]. Based on these considerations, given that NSIT/AoT
conditions are necessary and sufficient for macrorealism (akin
to Bell inequalities for local realism), we believe they could
contribute to unveiling foundational characteristics of quan-
tum field theory and, further on, models of quantum gravity
with or without a fundamental scale of length. On a final note,
we also pinpoint that the flavor vacuum and its quantum infor-
mation properties were studied in the case of boson mixing as
well [55–57], so that the analysis performed in this paper can
also be extended to the case of QFT.
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APPENDIX: PROOF OF LEMMA 1

Given a quantum system evolving in time under the initial
condition ρ(t = t0) = ρ0 for its state, a joint probability of
getting outcomes O1 and O2 of measurements of an observ-
able O at t1 and t2, respectively, is given by:

P(O1, O2|t1, t2) = Tr
[
�O2Vt2−t1

[
�O1Vt1−t0 [ρ0]�O1

]]
, (A1)

where �Oi is a projector onto an eigenspace associated with
the measurement outcome Oi, and Vt1−t0 [ρ(t0)] = ρ(t1) is a
dynamical map describing the time evolution of the system.

For the sake of consistency, we recall that the dynamics
of a decaying particle system, such as a neutral kaon system
described via the effective WWA non-Hermitian Hamilto-
nian (14), can be equivalently described as an open system
dynamics via the following Gorini–Kossakowski–Lindblad–
Sudarshan (GKLS) evolution equation for a state � on an
extended Hilbert space H = H f ⊕ Hd , where H f is the flavor
Hilbert space spanned by {|K0〉, |K̄0〉}, and Hd is a Hilbert
space spanned by states {|dk〉}k corresponding to decay prod-
ucts [58]:

�̇ = −i[M, �] − 1
2 (B†B� + �B†B − 2B�B†). (A2)

Due to the tensor sum structure of H, the total state can be
decomposed as � = (

ρ f ρ f d

ρ
†
f d ρd

), and we define

M =
(

M 0
0 0

)
, B =

(
0 0
B 0

)
, (A3)

where M is the mass operator of the WWA Hamiltonian (14),
while B = ∑

k j bk j |dk〉〈 f j |, with {| f j〉} j spanning the flavor
Hilbert space H f , is an operator mapping states from H f

onto Hd , thus covering the decay property [58]. The GKLS
evolution Eq. (A2) can be decomposed into three dynamical
equations:

ρ̇ f = −i[M, ρ f ] − 1
2 {�, ρ f }, (A4)

ρ̇ f d = −iMρ f d − 1
2�ρ f d , (A5)

ρ̇d = Bρ f B†. (A6)

In the above, � = B†B = ∑
k j j′ b∗

k jbk j′ | f j〉〈 f j′ |. It can be
associated with the non-Hermitian term � of the WWA

Hamiltonian (14) by an appropriate choice of bk j and {| f j〉} j ,
so that (A4) coincides with the Schrödinger equation under
the WWA Hamiltonian (14).

As we assume that a neutral kaon is produced at t0 in
a certain flavor state |F 〉 ∈ H f , it is easy to spot that the
component ρ f d remains zero at every point in time, so that
�(t ) = ρ f (t ) ⊕ ρd (t ). Now, associating the dynamical map
Vt [·] with dynamical Eqs. (A4) and (A6), and outcomes F and
¬F of measurements of the observable (22) with projectors
�F = |F 〉〈F | and 1 − �F , respectively, we calculate first the
joint probabilities of finding F in the first measurement and
F/¬F in the second measurement, which are straightforward:

P(F, F ) = Tr
[
�FVt2−t1

[
�FVt1−t0 [�F ]�F

]]
= 〈F |Vt1−t0 [�F ]|F 〉 Tr

[
�FVt2−t1 [�F ]

]
= 〈F |Vt1−t0 [�F ]|F 〉〈F |Vt2−t1 [�F ]|F 〉
= PF→F (t1 − t0)PF→F (t2 − t1), (A7)

P(F,¬F ) = Tr
[
(1 − �F )Vt2−t1 [�FVt1−t0 [�F ]�F ]

]
= 〈F |Vt1−t0 [�F ]|F 〉 Tr

[
(1 − �F )Vt2−t1 [�F ]

]
= 〈F |Vt1−t0 [�F ]|F 〉(1 − 〈F |Vt2−t1 [�F ]|F 〉)
= PF→F (t1 − t0)

(
1 − PF→F (t2 − t1)

)
. (A8)

On the other hand, for the probability P(¬F, F ), we take
into account that the projector onto the eigenspace of ¬F can
be given as

1 − �F = �F̄ + �d = |F̄ 〉〈F̄ | + �d , (A9)

where �d is a projector onto Hd . Hence, we obtain

P(¬F, F ) = Tr
[
�FVt2−t1

[
(1 − �F )Vt1−t0 [�F ](1 − �F )

]]
= Tr

[
�FVt2−t1

[
(�F̄ +�d )Vt1−t0 [�F ](�F̄ + �d )

]]
= Tr

[
�FVt2−t1

[
�F̄Vt1−t0 [�F ]�F̄

+�dVt1−t0 [�F ]�d
]]

= Tr
[
�FVt2−t1

[
�F̄Vt1−t0 [�F ]�F̄

]]
= 〈F̄ |Vt1−t0 [�F ]|F̄ 〉 Tr

[
�FVt2−t1 [�F̄ ]

]
= 〈F̄ |Vt1−t0 [�F ]|F̄ 〉〈F |Vt2−t1 [�F̄ ]|F 〉
= PF→F̄ (t1 − t0)PF̄→F (t2 − t1), (A10)

where the third row is obtained by taking into account that
ρ f d (t ) = 0, and the fourth row follows from orthogonality
of spaces H f and Hd . Finally, the probability P(¬F,¬F )
follows straightforwardly from the normalization condition∑

Oi,Oj∈{F,¬F } P(Oi, Oj ) = 1, i.e.,

P(¬F,¬F ) = 1 − PF→F (t1 − t0)

− PF→F̄ (t1 − t0)PF̄→F (t2 − t1). (A11)
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