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Strong local passive state in the minimal quantum energy teleportation model
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Like quantum state teleportation, quantum energy teleportation (QET) can transmit energy through local
operation and classical communication. This QET process even can extract energy from a strong local passive
(SLP) state, from which any local operation can only inject energy. However, finding a SLP state is an important
open question. In this paper, in the Hamiltonian of the minimal QET model, we obtain a set of SLP pure states
by correlation matrix analysis. Our method is computable and easier to understand in certain Hamiltonians and
states. Through the method of mathematic programming, we find an amazing phenomenon in which the energy
teleportation efficiency can be greater than 1 and we reveal the essence of this phenomenon. It can be extended
to the mixed state and spin chain model. Our result shows that quantum steering plays an important role in the
QET protocol.
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I. INTRODUCTION

As is well known, quantum teleportation is a very im-
portant achievement in quantum information processing [1].
A natural question arises whether energy can be transmitted
similarly by quantum entanglement. To answer this question,
Hotta proposed the theory of quantum energy teleportation
(QET) [2] and subsequently the minimal QET protocol [3].
This protocol was realized recently in [4,5].

The QET protocol is important because it can extract en-
ergy from the strong local passive (SLP) state [6,7]. The local
passive (LP) state is a kind of multipartite state from which
we cannot extract energy with local unitary operation. For the
SLP state, no local operation, including completely positive
and trace-preserving (CPTP) maps, can extract energy from
local subsystems.

In the QET protocol, Alice and Bob share a certain en-
tangled state, which cannot extract any energy from Bob’s
subsystem B. Alice measures her subsystem A and then B will
collapse to a corresponding state. Bob’s collapsed state is not
under the lowest energy, which can be extracted energy by
unitary operations, but first Alice should tell Bob the mea-
surement result of her particle. In the real world, the speed of
energy transfer must be less than or equal to the vacuum speed
of light. This means that when Bob extracts energy from his
subsystem B, the energy injected into subsystem A has not yet
spread to subsystem B. This protocol is called QET.

Since the QET protocol was proposed, many researchers
have shown great interest in it, especially after its realization.
Various models have been studied, such as spin chain sys-
tems [8–11], trapped ions systems [12], and so on [13–21].
In addition, some researchers considered that the problem of
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black hole information loss [22–24] and quantum field theory
[18,25] would benefit from the research on QET. Yusa et al.
proposed an experimental protocol based on the quantum Hall
effect to realize QET [26]. Rodríguez-Briones et al. realized
QET in a nuclear magnetic resonance system in [4]. Also
Ikeda completed a QET experiment on superconductor quan-
tum hardware [5]. There is no doubt that these experiments
have proven the validity of QET, but there is still an important
open question about the efficiency of the energy transfer.

Most previous researchers believed that the transmitted
energy in the QET protocol is not really transmitted, which is
from quantum systems; however, if that were true, the energy
transfer efficiency could be greater than 1. Researchers have
not yet obtained this result. To resolve this issue, first we
should find an appropriate SLP state in the minimal QET
model. By the method of correlation matrix analysis, we
obtain a set of SLP pure states. Compared with previous meth-
ods, our method is computable. In fact, if the Hamiltonian and
correlation matrix are given, we can determine whether the
quantum state is a SLP state easily. Then, using the methods of
mathematical programming, we find the lowest-energy state
with a measured subsystem. Combining with the SLP state
we find, we get the result that the energy transfer efficiency
is greater than 1; even in some special case, we can extract
energy without injecting any additional energy. In the QET
field, this method can be generalized to mixed states and the
spin chain model.

II. THE SLP PURE STATE IN THE MINIMAL QET MODEL

We consider the Hamiltonian of the minimal QET
model [3]

H0 = H1 = hσz,

HV = 2kσx ⊗ σx, (1)
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where σx,y,z are Pauli operators, h and k are real numbers, and
h, k ∈ (0,+∞). In this case, the quantum state

|ψ〉 = cos θ |00〉 − sin θ |11〉, θ ∈
[π

4
,
π

2

)
, (2)

is a state from which any local unitary operation on subsystem
B cannot extract energy. The reason is as follows.

Any two-qubit state density matrix can be written as

ρ = 1
4

∑
i, j=0,1,2,3

ti jσi ⊗ σ j, (3)

where σ0,1,2,3 represent identity and σx,y,z. The correlation
matrix T = (ti j ) of |ψ〉 is

T =

⎛
⎜⎜⎝

1 0 0 cos 2θ

0 − sin 2θ 0 0
0 0 sin 2θ 0

cos 2θ 0 0 1

⎞
⎟⎟⎠. (4)

With this form, the total energy is E = Tr[(H0 + H1 + HV )ρ],
where

E = ht03 + ht30 + 2kt11. (5)

Note that θ ∈ [π
4 , π

2 ) and thus cos 2θ < 0. In fact, any LP
state must be satisfied for t03, t30, t11 < 0. Otherwise, we can
always find some appropriate local unitary operations which
make t03 → −t03, t30 → −t30, or t11 → −t11 (the three cases
can be achieved at the same time) and extract energy. This
means that if any of t03, t30, t11 > 0, the state cannot be a LP
state.

As is well known, we can transform SU(2) operators to
SO(3) operators as

Ux =
(

cos ϕ −i sin ϕ

−i sin ϕ cos ϕ

)
�→

Ox =
⎛
⎝1

cos 2ϕ − sin 2ϕ

sin 2ϕ cos 2ϕ

⎞
⎠,

Uy =
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
�→

Oy =
⎛
⎝cos 2ϕ − sin 2ϕ

1
sin 2ϕ cos 2ϕ

⎞
⎠,

Uz =
(

1
eiϕ

)
�→

Oz =
⎛
⎝cos ϕ − sin ϕ

sin ϕ cos ϕ

1

⎞
⎠. (6)

With this process, SU(2) operators acting on the density ma-
trix can be written as SO(3) operators acting on the correlation
matrix. The correlation matrix is a 4 × 4 matrix. Note that
t00 ≡ 1 preserves the trace of the density matrix as 1. We can
direct sum 1 to SO(3) operators, which keeps t00 the same; in
addition, the local operators acting on the two subsystems do
not affect each other. In this form, the local unitary operation
in the first subsystem can be seen as row transformation of the
correlation matrix T with i = 1, 2, 3 and in the second subsys-
tem it can be seen as column transformation with j = 1, 2, 3.

The i and j are rank and column indicators [see Eq. (3)]. Thus
the local operation can be written as

(U1 ⊗ U2)ρ(U1 ⊗ U2)† �→ (1 ⊕ O1)T (1 ⊕ O2)†. (7)

From Eq. (5) we can find that any unitary operation on sub-
system B in the σx and σz directions makes t03 → t03 cos ϕ and
t11 → t11 cos ϕ, respectively. Both unitary operations can only
input energy into subsystem B. The unitary operators in the σy

direction will also input energy. In this case,

E ′ = ht03 cos ϕ + ht30 + 2kt11 cos ϕ � E , (8)

where the greater than or equal to sign is because t03, t30, and
t11 are negative.

Then any unitary operation can be written as

U (φ, α1, α2, α3) = eiφUz(α1)Uy(α2)Uz(α3). (9)

When the global phase eiφ does not change the quantum state,
we will generally omit it. According to Eqs. (6) and (7) and the
correlation matrix (4), we can get any unitary operator acting
on subsystem B, which results in

t30 �→ t ′
30 = t30,

t03 �→ t ′
03 = cos(2α2)t03,

t11 �→ t ′
11 = [cos2 α2 cos(α1 + α3)

− sin2 α2 cos(α1 − α3)]t11

= Ct11,

(10)

where −1 � C � 1. Thus t ′
03 � t03, t ′

11 � t11, and

E ′ = ht ′
03 + ht ′

30 + 2kt ′
11 � E . (11)

This means that the state |ψ〉 is the state from which any
local unitary operation on subsystem B cannot extract energy.
Similarly, any local unitary operation on subsystem A also
cannot extract energy.

It is worth noting that even if any local unitary operation
on subsystem A (or B) could not extract energy, we cannot
say that the state is a LP state. Using Eqs. (6) and (7) and
the correlation matrix (4), we find that the local operation
Uy( π

4 ) ⊗ Uy(−π
4 ) may change the system energy,


E = −2k + 2k sin 2θ − 2h cos 2θ. (12)

If 
E � 0, the state will be a LP state. Solving Eq. (12) results
in two situations. First, if h � k, the quantum state |ψ〉 is
always a LP state. Second, if h < k, the quantum state |ψ〉
is a LP state when θ ∈ [π

4 , arctan k+h
k−h ).

Furthermore, any local operation on subsystem B also
cannot extract energy if this state is a SLP state. The local
operations can be written as local CPTP maps, which can
be represented as the combination of rotation, scaling, and
translation in the Bloch sphere. For rotation corresponding to
a unitary operation, now we consider scaling and translation.

Obviously, to make sure one map is positive, this scaling
operation must be shrunken. In this case, any scaling operation
on subsystem B can only inject energy; it cannot also extract
energy.
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For translation operation, we must shrink the Bloch sphere.
With the reduced density matrix of subsystem A,

ρA = TrB(|ψ〉〈ψ |) =
(

cos2 θ 0
0 sin2 θ

)
, (13)

the Bloch vector has no σx-direction component. Thus if we
compress the Bloch sphere of subsystem B to one point, be-
cause the σx-direction component in subsystem A is 0, any
σx-direction component in B will not impact the energy of
HV ; it will make 〈HV 〉 → 0. So if we compress the Bloch
sphere to state |1〉, perhaps we can maximize the energy
extraction. Note that, in this process, the curvature radius of
the compressed Bloch sphere at |1〉 is always equal to the
radius of the Bloch sphere. Then we can obtain an amplitude
damping class channel compressed towards |1〉. The details
are given in Appendix A. If we make the noisy strength of
the amplitude damping class channel be p, in this case, t ′

11 =
−(

√
1 − p) sin 2θ and t ′

03 = −p + (1 − p) cos 2θ , resulting in

EV = 〈HV 〉 = −2k sin 2θ,

E ′
V = 〈H ′

V 〉 = −2k(
√

1 − p) sin 2θ,


EV = E ′
V − EV = 2k sin 2θ (1 −

√
1 − p) (14)

and

E1 = 〈H1〉 = h cos 2θ,

E ′
1 = 〈H ′

1〉 = h[−p + (1 − p) cos 2θ ],


E1 = E ′
1 − E1 = −hp − hp cos 2θ. (15)

If 
EV + 
E1 � 0, no CPTP map on subsystem B can extract
energy. Solving the inequality


E = 
EV + 
E1

= 2k sin 2θ (1 −
√

1 − p) − hp − hp cos 2θ � 0,
(16)

we can get that θ � arctan hp
2k(1−√

1−p)
and ∂
E

∂ p � 0. When

p = 1, we have θ � arctan h
2k . In other words, if θ ∈

[arctan h
2k , π

2 )
⋂

[π
4 , π

2 ), the state |ψ〉 will be a SLP state in
the minimal QET model for subsystem B.

In fact, for the case of a certain Hamiltonian and quantum
state, we can always use Eqs. (6) and (7) to analyze whether
the state is a LP state or a SLP state. If we compress the Bloch
sphere to an arbitrary point, we can also convert this problem
to the above form by using appropriate unitary operations. If
it is a multiqubit question, we can use the correlation tensor
instead of the correlation matrix.

III. MAXIMAL EXTRACTED ENERGY
IN THE QET MODEL

In the minimal QET model, the state |ψ〉 is the ground state
under the Hamiltonian. In this process, energy will be injected
into subsystem A and extracted from B at a long distance; the
injected energy is greater than the extracted energy. However,
if we use the SLP state instead of the ground state, the ex-
tracted energy may be greater than the injected energy.

For the pure state |ψ〉, if we act a projector on subsystem
A, subsystem B will collapse to a pure state. This system will
be a product pure state.

From Eqs. (1) and (4) we know that quantum energy tele-
portation must be measured on subsystem A in the σx direction
because only in the σx direction could 〈H1〉 and 〈HV 〉 remain
unchanged. In this case, subsystem A will collapse to |0〉+|1〉√

2

and |0〉−|1〉√
2

with Bloch vectors (1, 0, 0)T and (−1, 0, 0)T .
At the same time, any two-qubit product state with Bloch

vectors (a1, a2, a3)T and (b1, b2, b3)T can be written as

ρ = 1

4

(
1 +

∑
i

aiσi ⊗ 1 +
∑

j

b j1 ⊗ σ j +
∑
i, j

aib jσi ⊗ σ j

)
.

(17)

In the QET protocol, after the measurement in subsystem
A, the state of A is ρA = 1

2 (1 ± σx ), and subsystem B will
be ρB = 1

2 (1 ∓ σx sin 2θ + σz cos 2θ ) with b1 = ∓ sin 2θ and
b3 = cos 2θ . From Eqs. (1) and (17) (note that a1 = ±1) we
can easily find that only b1 and b3 can affect HV and H1.
Furthermore, because |ψ〉 is a pure state, subsystem B with
measured A must be a pure state, which satisfies b2

1 + b2
3 = 1.

Acting a unitary operation on B to the minimal energy state,
we can extract energy from the SLP state |ψ〉.

Measuring on subsystem A in the σx direction, if we get the
positive result +1, the state of B will be

ρB =
(

1+cos 2θ
2 − sin 2θ

2

− sin 2θ
2

1−cos 2θ
2

)
, (18)

with b1 = − sin 2θ and b3 = cos 2θ . This means that we can
adjust θ to obtain an appropriate ρB. This process is called
quantum steering [27–29]. In this case, because a1 = +1,
EV = 2ka1b1 = 2kb1. Thus

〈HV 〉 = −2k sin 2θ, 〈H1〉 = h cos 2θ,

EB = −2k sin 2θ + h cos 2θ. (19)

Now we should find the minimal energy in the Hamil-
tonian. Letting b1 = X and b3 = Z , we have the following
mathematic programming:

find E ′
B = min q = 2kX + hZ

s.t. X 2 + Z2 = 1 (20)

(see Fig. 1). This mathematic programming method can be
easily extended to other two-qubit mixed states (see Ap-
pendix B). We use it to calculate the spin model of hyperbolic
quantum networks [30] in Appendix C.

Obviously, when the line is tangent to the circle, we can get
E ′

B. According to the distance relationship between the line
and the center of the circle, we have

|E ′
B|√

(2k)2 + h2
= 1, (21)

with E ′
B = −√

4k2 + h2. Solving the equations

2kX + hZ − E ′
B = 0,

X 2 + Z2 = 1, (22)
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FIG. 1. Profile of the Bloch sphere on the xOz plane, with the y
axis perpendicular to the plane facing inward. Here q = 2kX + hZ
can be represented as a straight line with slope − 2k

h (black dashed
line). This problem can be transformed into a mathematic program-
ming problem. The red vector is the state vector corresponding to the
minimal energy.

we have

X = − 2k√
4k2 + h2

,

Z = − h√
4k2 + h2

. (23)

So the minimal-energy state of subsystem B is

ρ ′
B =

(
1
2 − 1

2
√

4k2+h2 − k√
4k2+h2

− k√
4k2+h2

1
2 + 1

2
√

4k2+h2

)
. (24)

Similarly, if subsystem A gets the negative result −1 in the
σx direction, the above X will become −X and the minimal
energy E ′

B is still unchanged.
Now we can obtain the extracted energy

−
EB = EB − E ′
B

= −2k sin 2θ + h cos 2θ +
√

4k2 + h2. (25)

When θ = arctan −h+√
h2+8k2

4k , the state |ψ〉 cannot teleport
any energy.

For the maximal −
EB, because the state vector of sub-
system B must be in the third quadrant of the xOz plane, the
maximal EB could be

max EB = max(−h,−2k) (26)

(see Fig. 2). Under certain h and k, we can use appropriate
ρB to achieve the above results by quantum steering. Thus the
maximal −
EB should be

max(−
EB) =
{−h + √

4k2 + h2, h � 2k
−2k + √

4k2 + h2, h � 2k
(27)

FIG. 2. Profile of the Bloch sphere on the xOz plane, with the y
axis perpendicular to the plane facing inward. The Hamiltonian limits
the state vector of subsystem B to be in the third quadrant of the xOz
plane. The maximal EB is divided into two situations with red state
vectors.

and the maximal energy teleportation efficiency is
η = max(−
EB )

−h cos 2θ
.

We find that this efficiency can be greater than 1. This
means that in some special case, the injected energy by mea-
suring subsystem A will be less than the energy extracted from
subsystem B. In addition, the energy is not really transferred.
We believe that, in the QET protocol, the measurement de-
stroys quantum entanglement, so the system could release
energy. After that we can use the quantum steering of the
prepared state to allocate energy and then achieve quantum
energy teleportation.

IV. EXAMPLE

We prepare an example for the minimal QET model. In
this example, we use a certain SLP state to show that the en-
ergy transfer efficiency is greater than 1 and even approaches
infinity. For some special SLP state, from the minimal QET
protocol, we cannot extract any energy at all.

As previously mentioned, the maximal-energy teleporta-
tion efficiency can be greater than 1. We provide an example
to illustrate this problem.

In the minimal QET model, we set h = 2k = 1. We can
prove that the state |ψ0〉 = 1√

2
(|00〉 − |11〉) is a SLP state,

in which θ = arctan 1 ∈ [arctan h
2k , π

2 ), that is to say, no local
operation can extract energy from subsystem B.

In the initial situation, from Eq. (1) we can get

EA = 〈H0〉 = tr(H0ρ) = 0,

EB = 〈H1〉 + 〈HV 〉 = −2k = −1, (28)

where ρ is the density matrix of the quantum state. After sub-
system A has been measured in the σx direction, suppose the
measurement result is +1 with probability px|+1 = 1

2 . Then
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state |ψ0〉 becomes

|ψ+〉 = 1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 − |1〉) (29)

and its correlation matrix is

T+ =

⎛
⎜⎜⎝

1 −1 0 0
1 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (30)

Unitarily operating subsystem B in the σy direction with ϕ =
−π

8 , we can get the minimal-energy state |ψ ′〉 as

|ψ ′〉 =
[
1 ⊗ Uy

(
−π

8

)]
|ψ〉, (31)

where

Uy

(
−π

8

)
=

(
cos(−π

8 ) − sin(−π
8 )

sin(−π
8 ) cos(−π

8 )

)
(32)

and the correlation matrix of |ψ ′〉 is

T ′ =

⎛
⎜⎜⎜⎜⎝

1 −
√

2
2 0 −

√
2

2

1 −
√

2
2 0 −

√
2

2

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠. (33)

Then we can easily calculate that

E ′
A = tr(H0ρ

′) = 0,

E ′
B = −

√
2

2
× 2k −

√
2

2
× h = −

√
2. (34)

Thus we can find that


EA = E ′
A − EA = 0,


EB = E ′
B − EB = −

√
2 + 1. (35)

In this process, the energy of subsystem A remains unchanged,
but −
EB = √

2 − 1 is extracted from subsystem B. The
energy teleportation efficiency η = −
EB


EA
is infinite.

Similarly, if the measurement result in subsystem A is −1
with probability px|−1 = 1

2 , this process is equal to making
subsystem B of |ψ+〉 [see Eq. (29)] rotate π on the σz axis, and
the 
EA, 
EB, and η in energy teleportation are unchanged.
That is why we consider the transmitted energy to be from the
entangled system itself.

Additionally, we give in Fig. 3 a plot of −
E as a function
of θ , where θ ∈ [π

4 , π
2 ), h = 2k = 1, and 
EA = 0. When θ =

3π
8 , we cannot teleport any energy through the QET protocol

because the collapsed subsystem B is in the lowest-energy
state. This is caused by quantum steering; any entangled pure
state has the maximal quantum steering [29].

V. CONCLUSION

In this article we obtained a set of LP pure states and SLP
pure states in the minimal QET model by correlation ma-
trix analysis. With a certain Hamiltonian and quantum state,
our method is computable and relatively easy to understand,
which can be generalized to other Hamiltonian systems.

FIG. 3. Plot of the maximal extractable energy −
E as a func-
tion of θ , where h = 2k = 1. In this case, the state |ψ〉 = cos θ |00〉 −
sin θ |11〉 is the SLP state with θ ∈ [ π

4 , π

2 ). The maximal energy

is
√

2 − 1 for θ = π

4 and θ → π

2 and the minimal energy is 0 for
θ = 3π

8 .

In the initial concept of the minimal QET model, to ensure
that local operation cannot extract any energy from subsystem
B, the quantum state must be the ground state in the Hamil-
tonian. However, the ground state is only a part of the SLP
state. We found a set of SLP pure states and confirmed they
can be used in the QET protocol. Furthermore, we found that
the energy teleportation efficiency can be greater than 1. In
some cases the injected energy in subsystem A is less than
the energy extracted from subsystem B. Considering the law
of conservation of energy, this is evidence that the extracted
energy is from the quantum system itself. This amount of
energy cannot be extracted directly unless the entanglement
is broken by measuring in subsystem A. In addition, some
special quantum states do not need to inject additional energy
in subsystem A but can extract energy from subsystem B. In
contrast, some special quantum states cannot teleport any en-
ergy. This is because, after measuring subsystem A, subsystem
B will collapse to the minimal-energy state. This characteristic
shows that quantum steering plays an important role in the
QET protocol.

In addition, our method is computable and easier to under-
stand than previous works. It can be used in the QET protocol
with mixed states or the spin chain model. We believe that
our work can inform extensive studies of the passive state and
QET protocol.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-
ence Foundation of China (Grants No. 12175179 and No.
12247103) and the Natural Science Basic Research Pro-
gram of Shaanxi Province (Grants No. 2021JCW-19 and No.
2019JQ-863).

062208-5



WU, FAN, WANG, LIU, LIU, AND YANG PHYSICAL REVIEW A 109, 062208 (2024)

APPENDIX A: CPTP MAPS IN THE TWO-QUBIT SYSTEM

Any CPTP maps  can be written as a set of Kraus opera-
tors Kk with

(ρ) =
∑

k

KkρK†
k . (A1)

The CPTP maps (or Kraus operators) have four character-
istics: They must be (i) linear, (ii) Hermite preserving, (iii)
trace preserving, and (iv) completely positive. By completely
positive we mean that in a two-qubit system ρ12,  ⊗ 1(ρ12)
must be positive. The positive maps just require positive (ρ).
For example, the partial transpose map is positive but not
completely positive.

In a linear space, we can always map an area to another area
by rotation, scaling, and translation. Since the Bloch space is a
linear space, the CPTP maps have the same forms. Any single
qubit can be written in the form of a Bloch vector with

ρ = 1
2 (a0σ0 + a1σ1 + a2σ2 + a3σ3), (A2)

where �a = (a1, a2, a3)T is the Bloch vector and a0 ≡ 1. The
rotation in the quantum state is equal to unitary operation
U and in the Bloch space it is equal to special orthogonal
operation O. The CPTP maps acting on �a will be

(�a) = O

⎛
⎝μ1 + η1a1

μ2 + η2a2

μ3 + η3a3

⎞
⎠, (A3)

where η1,2,3 are scaling factors and μ1,2,3 are translation
factors.

In the real world, there are three kinds of basic noisy
channels (or decoherent processing), which compress the
Bloch space to a spherical center (depolarizing channel),
any spherical diameter (phase-flip channel, bit-flip channel,

phase-bit-flip channel, etc.), or any point on the Bloch sphere
(amplitude damping channel). Except for the depolarizing
channel, which compresses the Bloch space to a spherical
center, we can always take an appropriate unitary operator
to compress the Bloch space to any diameter or point on the
sphere. Any feasible noisy channel can be represented as a
composition of the above basic noisy channels. Generally,
the μ and η in Eq. (A3) are related to the noisy strength
p, i.e., the greater p is, the less μ and η are. In addition,
some CPTP maps only have mathematical forms; we cannot
achieve them by physical processing. Since the strong local
passive state should extract energy by physical processing, we
only consider the feasible noisy channel forms, which can be
combined by the basic noisy channels.

This scaling operation of the linear map is from (σi ) =
ηiσi, with i �= 0. Because a1, a2, and a3 are arbitrary, the trans-
lation factors are only from σ0, with (σ0) = σ0 + ∑

i μiσi

and i �= 0. Because the CPTP maps always map a quantum
state to another quantum state, the η are non-negative and
0 � η � 1. The translation factors μ are constrained by η to
ensure that the compressed Bloch sphere is still inside the
Bloch space, so

∑
i μ

2
i � 1 is necessary. This means that the

compressed Bloch sphere is translated the distance of | �μ| in
the direction of �μ.

In a two-qubit system, the Bloch vector can be extended to
the correlation matrix T = (ti j ), where

ti j = tr(σi ⊗ σ jρ), i, j = 0, 1, 2, 3. (A4)

Then any local operation can be represented as the row and
column transformations of the correlation matrix. The opera-
tion on the first qubit is row transformation and on the second
qubit it is column transformation. So for any CPTP map acting
on the second qubit (subsystem B), the correlation matrix
will be

1 ⊗ (T ) = (1 ⊕ O1)

⎛
⎜⎜⎜⎝

1 μ1 + η1t01 μ2 + η2t02 μ3 + η3t03

t10 μ1t10 + η1t11 μ2t10 + η2t12 μ3t10 + η3t13

t20 μ1t20 + η1t21 μ2t20 + η2t22 μ3t20 + η3t23

t30 μ1t30 + η1t31 μ2t30 + η2t32 μ3t30 + η3t33

⎞
⎟⎟⎟⎠(1 ⊕ O2)†, (A5)

where O1 and O2 are SO(3) operators and O1 = 1. For the sign
of the direct sum ⊕ see Eq. (7).

Now let us look at the minimal QET model. The Hamilto-
nian is as in (1). With the relation of the Pauli operator

tr(σiσ j ) = 0, ∀ i �= j, (A6)

the energy can be easily calculated as

E0 = ht30,

E1 = ht03,

EV = 2kt11, (A7)

that is to say, the energy of the quantum system is only related
to t30, t03, and t11. Therefore, in the minimal QET model, for
any strong local passive state, t30, t03, and t11 should be small
enough. We can always find an appropriate rotation operator

that makes t01, t02, t10, and t20 become 0. The state |ψ〉 =
cos θ |00〉 − sin θ |11〉 with θ ∈ [π

4 , π
2 ) is a perfect choice.

From Eq. (A5) we can find that t30 remains unchanged.
Because t10 = 0, t12 = 0, and t13 = 0, any CPTP map can
only make t11 increase [note that t11 is negative for the state
|ψ〉 and the effect of the unitary operator O2 is similar to
Eqs. (10) and (11)]. In other words, we can only extract energy
from H1 by decreasing t03. At the same time, we should make
t11 increase slowly enough to minimize energy injection as
much as possible. Thus, we can translate the compressed
Bloch sphere to the point of state |1〉. In this process, the
compressed Bloch sphere and Bloch space are inscribed at the
point of state |1〉. Also, the curvature radius of the compressed
Bloch sphere at state |1〉 is always equal to the radius of
the Bloch space (see Fig. 4). According to the law that the
density matrix must be semipositive, we can get that for a
definite Bloch vector �b = (b1, b2, b3)T , the CPTP map will
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FIG. 4. Profile of the Bloch sphere on the xOz plane. This
noisy channel form, which may extract energy from subsystem B,
will compress the Bloch sphere to the state |1〉, whose Bloch vec-
tor is (0, 0, −1)T . The color depth of the ellipsoids (compressed
Bloch sphere) represents the noisy strength; the darker the color,
the stronger the noisy strength. All the ellipsoids are inscribed on
the point of |1〉, and on this point, all the ellipsoids have the same
curvature radius as the Bloch space.

map �b to �b′ = (
√

ηb1,
√

ηb2,−(1 − η) + ηb3)T . This process
can be represented as an amplitude damping class channel
with Kraus operators

K1 =
(√

1 − p 0
0 1

)
, K2 =

(
0 0√
p 0

)
, (A8)

where p = 1 − η is the noisy strength. With this CPTP map,
we can calculate the energy change of the system 
E . If

E � 0 in p ∈ [0, 1], the state |ψ〉 will be a strong lo-
cal passive state with local operation on subsystem B. Note
that 
E = 0 when p = 0; thus we can calculate ∂
E

∂ p to
find the minimal 
E in different θ . Therefore, in the min-
imal QET model, as illustrated in the main text, if θ ∈
[arctan h

2k , π
2 )

⋂
[π

4 , π
2 ), the state |ψ〉 will be a strong local

passive state.

APPENDIX B: MINIMAL-ENERGY STATE
WITH MEASURED SUBSYSTEM A

From the above, we can get that in the minimal QET model,
the correlation matrix of the strong local passive state has the
form

T =

⎛
⎜⎜⎝

1 0 0 b
0 v 0 0
0 0 m 0
a 0 0 n

⎞
⎟⎟⎠. (B1)

As is well known, the projector in the σi direction will erase
the information in other directions. With t10 = 0, we have
px|+1 = 1

2 and px|−1 = 1
2 . The px|±1 is the probability of

projection results in the σx direction with positive and negative
results.

Making the correlation matrix be T+ and T− in different
results, we will have

T+ =

⎛
⎜⎜⎝

1 v 0 b
+1 v 0 b
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, T− =

⎛
⎜⎜⎝

1 −v 0 b
−1 v 0 −b
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠.

(B2)

Noting that t10t01 = v after measuring subsystem A, the Bloch
vector of subsystem B will be �β = (±v, 0, b)T . Let the Bloch
vector of the minimal energy state be �β ′ = (X, 0, Z ). The
process of finding the minimal energy of the system can be
seen as a mathematic programming as

find E ′
B = min q = ±2kX + hZ

s.t. X 2 + Z2 = |�β|2 (B3)

and

|E ′
B|√

(±2k)2 + h2
= |�β| (B4)

so that

E ′
B = −|�β|

√
4k2 + h2. (B5)

Here and in the following the signs ± depend on the measure-
ment results ±1.

Solving the equations

±2kX + hZ − E ′
B = 0,

X 2 + Z2 = |�β|2, (B6)

we have

X = ∓ 2k|�β|√
4k2 + h2

,

Z = − h|�β|√
4k2 + h2

. (B7)

So we can get the minimal-energy state

ρB = 1
2 (σ0 + Xσ1 + Zσ3). (B8)

APPENDIX C: SPIN MODEL OF HYPERBOLIC
QUANTUM NETWORKS

Ikeda studied the QET in the hyperbolic quantum network
[30]. In quantum networks, people can deliver quantum re-
sources instantaneously to the vast number of nodes. This
hyperbolic quantum network is tiled with a {3, q} tiling, which
is tessellations of the plane consisting of regular triangles and
each vertex is connected to q vertices. Generally, for the {p, q}
tiling, when (p − 2)(q − 2) > 4, the network is hyperbolic
and otherwise Euclidean (see Fig. 5).

For the {3, q} (q � 6) tiling, the Hamiltonian is

HZ,i = hσ z
i (i = 0, 1, . . . , q),

HX, j = kσ x
0 ⊗ σ x

j ( j = 1, 2, . . . , q),

Hhyp =
q∑

i=0

HZ,i +
q∑

j=1

HX, j . (C1)

062208-7



WU, FAN, WANG, LIU, LIU, AND YANG PHYSICAL REVIEW A 109, 062208 (2024)

FIG. 5. Euclidean lattice with {3, 6} tiling and the hyperbolic lattice with {3, 7} and {3, 10} tiling [30]. We calculate the {3, 7} lattice unit
(spin 8) as an example.

The ground state of the total Hamiltonian Hhyp is |g〉. In
Ref. [30] the Hamiltonian is written as H ′

Z,i = HZ,i + εi,
H ′

X, j = HX, j + ε j , and H ′
hyp = ∑q

i=0 H ′
Z,i + ∑q

j=1 H ′
X, j . Each

of εi and ε j makes

〈g|H ′
hyp|g〉 = 〈g|H ′

i |g〉 = 〈g|H ′
j |g〉 = 0. (C2)

These εi and ε j are constants and they do not influence the
results of calculations.

Here we choose q = 7, h = 9, and k = 2. In this case,
the density matrix is a 256 × 256 matrix. We will show
the calculation process with the numerical method (keeping
four significant digits after the decimal point), where ε0 =
−8.6079, ε j = −8.9398, and ε j = −0.2290. Projective mea-
surement of the central particle (i = 0) in the σx direction with
P0(x| ± 1) = 1

2 (1 ± σx ), we can get the state of

ρ =
∑

m={±1}
P0(x|m)|g〉〈g|P†

0 (x|m). (C3)

Then, from Ref. [30], the receivers at i = 1, 2, . . . , 6 can
extract energy by unitary operators Uj (m) with the form

Uj (m) = cos θ1 − im sin θσ y (C4)

and θ obey

cos(2θ ) = ξ√
ξ 2 + λ2

= 0.9946,

sin(2θ ) =− λ√
ξ 2 + λ2

= −0.1037, (C5)

where

ξ = 〈g|σ y
j H ′

hypσ
y
j |g〉 = 18.3377,

λ = 〈g|σ x
i σ̇

y
j |g〉 = 1.9119, (C6)

with σ̇
y
j = i[H ′

hyp, σ
y
j ] = i[H ′

j, σ
y
j ]. So the maximal average

energy that a receiver gains is

−
Ej = tr(ρQETH ′
j ) = 0.0497, (C7)

where

ρQET =
∑

m={±1}
Uj (m)P0(σ x|m)|g〉〈g|P†

0 (σ x|m)U †
j (m). (C8)

For our method, ρ0 j is defined as the reduced density ma-
trix of ρ with central and jth particles; we can get its Bloch
vector �β with length |�β| = 0.999 889 415 0. So the minimal
energy will be

E ′
j = −|�β|

√
k2 + h2 = −9.2185. (C9)

The energy of ρ j is

Ej = tr(h1 ⊗ σ zρ0 j ) + tr(kσ x ⊗ σ xρ0 j ) = −9.1688 (C10)

and the maximal average energy that a receiver gains is

−
Ê j = Ej − E ′
j = 0.0497. (C11)

If we need Uj , we can calculate �β and the minimal-energy
state �β ′ (see Appendix B) and then get the angle ϕ between
them. Substituting this ϕ into Eq. (6), we obtain Uj . So
we can find that 
Ej = 
Ê j , i.e., the two methods get the
same theoretical result. Our method is easier to calculate and
understand.
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