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Unveiling quantum complementarity tradeoffs in relativistic scenarios
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Complementarity plays a pivotal role in understanding a diverse range of quantum phenomena. Here, we show
how the tradeoff between quantities of a complete complementarity relation is modified in an arbitrary spacetime
for a particle with an internal spin. This effect stems from local Wigner rotations in the spacetime, which
couple the spin to the system’s external degrees of freedom. To conduct our study, we utilize two generalized
delayed-choice interferometers. Despite differences in complementarity tradeoffs inside the interferometers, the
interferometric visibility of both setups coincides in any relativistic regime. Our results extend the finding that
general relativity induces a universal decoherence effect on quantum superpositions, as local Wigner rotations,
being purely kinematical, preclude any spin dynamics. To illustrate, we analyze the Newtonian limit of our
results.
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I. INTRODUCTION

Bohr’s complementarity principle suggests that physical
systems may have properties that only emerge once the entire
physical context for their probing is settled [1,2]. This idea
sparks debates to this date [3–8], with various theoretical
approaches attempting to quantify it [9–26]. Besides founda-
tional debates, it is also known that complementarity is needed
for the achievability of some tasks, e.g., it is a resource for
unambiguous exclusion and encryption [27].

This work follows recent efforts to investigate the interplay
between gravity and quantum mechanics and to characterize
general relativistic effects in quantum phenomena [28–45].
We consider, in particular, the case of massive particles with
an internal spin. Our objective is twofold. First, we aim to
understand how complementarity is affected by a general
spacetime structure, a fundamental result that can serve as
a basis for modifications of protocols that make use of this
concept. Second, we aim to analyze whether an existing result
by Zych et al. [30] for spinless particles continues to hold
(in leading order) for spin particles. The latter work showed
how the visibility of an interferometer is affected by general
relativistic effects if a spinless particle with an internal clock
transverses it. However, for spin particles, Wigner rotations
[46–48] have to be taken into account, as we will discuss in
more detail.

In our investigation, we make use of complete comple-
mentarity relations (CCRs) [23,49]. In particular, to study
complementarity inside an interferometer, where path coher-
ence (and not visibility [16,19,50–52]) can be taken as a good
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measure of nonclassicality, we consider the CCR [23]

Cre(ρS ) + Pvn(ρS ) + S(ρS ) = log2 dS, (1)

where Cre(ρS ) is the path relative entropy of coherence,
Pvn(ρS ) is the von Neumann predictability, and S(ρS ) is the
von Neumann entropy associated with a system S in the
state ρS .

The coherence Cre(ρS ) := S(ρS||�Z (ρS )), where
�Z (ρS ) := ∑

η ZηρSZη denotes the output of a non-selective
measurement of Z = ∑

η zηZη with projectors Zη = |η〉〈η|
associated with paths of the interferometer, captures
a wavelike behavior of the system. The predictability
Pvn(ρS ) := S(�Z (ρS )||�ZX (ρS )) = Smax − S(�Z (ρS )), where
X is a discrete-spectrum observable whose eigenbasis is
mutually unbiased to the eigenbasis of Z , measures how
much the probability distribution associated with �Z (ρS )
differs from the uniform probability distribution IS/dS .
It can be interpreted as a priori path information [10],
capturing a particlelike behavior of the system. Finally, S(ρS )
can be thought of as the relative entropy of entanglement
between system S and its purification. These correlations
store which-path information about the external degrees of
freedom of the system, also leading to a particlelike behavior.
It should be noted that, despite the long discussion about
entanglement in relativistic scenarios [28,53–58], the CCR in
Eq. (1) has been shown to be Lorentz invariant [59–61].

The interferometers considered in our analysis are two
variations of Wheeler’s delayed-choice experiment [62,63],
known as quantum delayed-choice experiment (QDCE) [64]
and quantum-controlled reality experiment (QCRE) [50].
QDCE consists of a Mach-Zehnder interferometer in which
the beam splitter (BS) at the end of the interferometer is
prepared in a quantum superposition of being present and
absent in the interferometer path, as represented in Fig. 1(a).
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FIG. 1. Schematic representation of the delayed-choice experiments. (a) In the quantum delayed-choice experiment (QDCE), proposed
in Ref. [64], the system enters an interferometer with an unbiased beam splitter (BS) and a phase shifter that implements a relative phase
between the two paths. A second BS is considered in a coherent spatial superposition of being in and out of the interferometer. (b) In the
quantum-controlled reality experiment (QCRE), introduced in Ref. [50], the experimental arrangement is based on swapping the BSs of the
QDCE. The first BS is now taken to be in a quantum coherent superposition of being in and out of the interferometer. It is noteworthy that,
besides this difference, both experimental arrangements lead to the same interferometric visibility.

Observe that the BS at the beginning of the interferometer is
standard. This interferometer attracted attention because its
output presents statistics that seem to be a wave-and-particle
hybrid [65–69]. However, its precise consequence to the un-
derstanding of the complementarity principle is still up for
debate (see, e.g., Refs. [17,70,71]).

QCRE, on the other hand, modifies the QDCE to ensure
that systems traveling inside the interferometer have a hy-
brid wave-and-particle behavior from the perspective of an
entropic measure dubbed realism [72,73]. To achieve this,
the positions of the standard BS and the one prepared in
a superposition were exchanged, as illustrated in Fig. 1(b).
While this interferometer has the same visibility as the
QDCE, it establishes a monotonic relation between the out-
put visibility with the wave- and particlelike behavior of the
system [50].

It is worth highlighting that, upon introducing a new quan-
tum system that can, in principle, be measured even after the
interferometer is encircled (like the superposed BS), problems
related to the measurement problem can arise. However, so-
lutions (and even formulations) of the measurement problem
often rely on a chosen interpretation of the theory. Since
these choices are indistinguishable at the operational level,
our analysis focuses on how gravity influences the tradeoff
between operationally significant quantities.

We study the CCR for the QDCE and QCRE in a non-
relativistic scenario in Sec. II. This serves as a basis for
comparison with our first results in Sec. III A, which deal with
these interferometers embedded in a general spacetime. Next,
we make our analysis more concrete with an investigation
of the Newtonian limit of our results in Sec. III B. To con-
clude, we present our final discussion and outlook in Sec. IV.
In the Appendices, we briefly present the relevant technical
background to this work, mathematical derivations, and other
conceptual discussions.

II. PRELIMINARIES

Before studying the relativistic treatment of QDCE and
QCRE, we first present a nonrelativistic analysis of these
experiments, since they had not yet been investigated with the
CCR in Eq. (1) in the literature.

We start with the so-called quantum version of Wheeler’s
delayed-choice experiment (QDCE) proposed in Ref. [64]
and depicted in Fig. 1(a). Denoting {0, 1} as the paths to be
traveled in the interferometer and |ψi〉 = |0〉 ⊗ |BS〉 as the
initial state, with |BS〉 ≡ cos α|in〉 + sin α|out〉 representing a
beam splitter (BS) in a coherent superposition of being present
(in) and absent (out) of the interferometer with 0 � α � π/2.
The joint system can be described right after the phase shifter
introduced in path 1 as

|ψQDCE〉 = 1√
2

(|0〉 + eiφ |1〉)|BS〉. (2)

At this stage, this is a separable state that does not yet contain
any correlation between the particle and the BS in superpo-
sition. In fact, the state is unchanged until right before the
system passes through the BS.

With this, we can readily construct the CCR in Eq. (1)
for a system in this region of the interferometer. Indeed, it
is straightforward that predictability and entanglement vanish
for the state in Eq. (2), while coherence between the paths
is maximum. Hence, there is no tradeoff between the different
quantities of the CCR, a characteristic similar to that observed
in Ref. [50] from the realism perspective.

We can also compute the visibility associated with this
configuration. Indeed, observe that the output state right after
the BS in superposition is

|ψf〉 = 1√
2

cos α(|x+〉 + eiφ |x−〉)|in〉

+ 1√
2

sin α(|0〉 + eiφ |1〉)|out〉, (3)

where |x±〉 = (|0〉 ± |1〉)/
√

2 is written in the standard Pauli
notation. The probability distribution for the detector D0 at the
output of the interferometer reads

p0 = 1
2 (1 + V cos φ), (4)

where

V := pmax
0 − pmin

0

pmax
0 + pmin

0

= cos2 α (5)

is the final interferometric visibility.
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FIG. 2. CCR for the nonrelativistic QCRE as a function of α.
The plot shows how coherence and predictability follow a monotonic
relation with the angle α, while the entanglement is maximum when
the quantum controller has maximal initial coherence.

Now, let us consider the quantum-controlled reality exper-
iment (QCRE) proposed in Ref. [50], which is schematically
represented in Fig. 1(b). Again, we assume the initial state of
the joint system to be the same |ψi〉 as before. However, |BS〉
refers to the state of the first BS this time around. Then, after
the BS in superposition and the phase shifter on path 1, the
joint system can be described as

|φQCRE〉 = 1√
2

cos α(|0〉 + eiφ|1〉)|in〉 + sin α|0〉|out〉. (6)

Again, this state is kept unmodified until right before the
second (standard) BS.

We can then compute the CCR associated with |φQCRE〉.
First, we trace out the BS to obtain the reduced den-
sity matrix of the system traveling the interferometer, ρS =
TrBS|φQCRE〉〈φQCRE|, which gives

ρS = 1

2

(
2 − cos2 α e−iφ cos2 α

eiφ cos2 α cos2 α

)
. (7)

Hence, the path coherence is

Cre(ρS ) = h

(
cos2 α

2

)
− h

(
1 + λα

2

)
, (8)

where h(u) := −u log2 u − (1 − u) log2 (1 − u) is the binary
entropy and

λα :=
√

2 cos4 α − 2 cos2 α + 1. (9)

The predictability is

Pvn(ρS ) = 1 − h

(
cos2 α

2

)
. (10)

Finally, the reduced entropy, in this case, amounts to the
entanglement between the system and the BS. Its value is

S(ρS ) = h

(
1 + λα

2

)
. (11)

Therefore, differently from the QDCE, we see a complemen-
tary tradeoff between the components of the CCR, as shown
in Fig. 2. However, as we discuss next, this observation about
the QDCE is modified when considering general relativistic

effects. Indeed, as will be seen, a tradeoff relation exists in
both QDCE and QDCE in this case.

Before concluding, we can also obtain the visibility asso-
ciated with this setup. Observe that the output state reads

|φf〉 = 1√
2

cos α(|x+〉 + eiφ |x−〉)|in〉 + sin α|x+〉|out〉.
(12)

With this, it can be shown that this state is associated with
precisely the same probability distribution in the ports D0 and
D1 as the QDCE [50]. Consequently, both QDCE and QCRE
have the same visibility.

III. RESULTS

A. General relativistic treatment

Now, we present our main results and discuss the CCR in
the QDCE and QCRE in curved spacetime with a spin-1/2
particle. While we focus on these configurations, the general
results that we present now are valid regardless of the shape of
the interferometers. The geometry of the interferometer will
play a more important role in Sec. III B, when we make our
analysis more concrete by considering systems in the vicinity
of Earth.

The study of spin-1/2 particles in a generic spacetime re-
quires the use of local reference frames (LRFs) [28,74], which
are briefly reviewed in Appendix A. In this scenario, it turns
out that translations in spacetime have an interesting property:
besides affecting the description of the particle’s momentum,
as in a standard relativistic boost, they also introduce a rota-
tion to the system’s spin [46–48], known as Wigner rotation.
An introduction to the subject is presented in Appendix B.

This rotation is a function of the spacetime and the mo-
mentum of the wave function. In the case of our analysis, we
will consider wave packets traveling the paths |0〉 and |1〉 in
a coherent superposition. As discussed in Appendix D, each
of these packets is assumed to be effectively associated with
(possibly distinct) momenta p̄0 and p̄1. Each path η is gen-
erally associated with distinct Wigner rotations D(W (xη, τη )),
where xη is the location of the center of mass of the wave
packet on path η and τη is its proper time.

To start our analysis, consider the QDCE setup depicted in
Fig. 1(a) in a relativistic scenario, including the presence of
curved spacetime. As usual, we assume the system starts in
the state

|�i〉 = |0〉 ⊗ |τ 〉 ⊗ |BS〉, (13)

where |τ 〉 refers to the initial state of the particle’s spin and
|BS〉 ≡ (|in〉 + |out〉)/

√
2 refers to the second BS, which is in

a superposition of being present (|in〉) or absent (|out〉) of the
interferometer path.

Following this, the phase shifter is applied to the system.
Then, right after this and before the second BS, the state of
the joint system is

|�QDCE〉 = 1√
2

(|0〉|τ0〉 + eiφ |1〉|τ1〉) ⊗ |BS〉, (14)

where |τη〉 := D(W (xη, τη ))|τ 〉, with η ∈ {0, 1}. Observe that
the state in Eq. (14) is not constant in this region of the
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FIG. 3. CCR for a particle undergoing the QDCE as a function
of the relative Wigner rotations |〈τ0|τ1〉|. The graph shows how
relativistic effects generally create a tradeoff between coherence
and entanglement. This differs from the standard (nonrelativistic)
scenario, which is equivalent to the case |〈τ0|τ1〉| = 1, where entan-
glement vanishes. The predictability is not affected by the rotations.

interferometer. Indeed, the states |τ0〉 and |τ1〉 are generally
rotated along the path.

From Eq. (14), one can see that we have a separable
state between the degrees of freedom of the particle and
the BS in superposition. However, the spacetime geometry
entangles the paths with the spin states. As a result, the
reduced density matrix of the paths in superposition, ρS =
Trspin,BS|�QDCE〉〈�QDCE|, is given by

ρS = 1

2

(
1 e−iφ〈τ1|τ0〉

eiφ〈τ0|τ1〉 1

)
. (15)

From this, we see that the CCR should be affected by time
dilation since the coherence of ρS is affected by the entangle-
ment between the paths and the spin.

To be more precise, we can then compute the elements of
the CCR of a system in this region of the interferometer. By
direct calculation, it follows that S(ρS ) = h(w), where w =
1
2 (1 + |〈τ0|τ1〉|), and S(�Z (ρS )) = 1. These, in turn, imply
that the coherence associated with the paths is

Cre(ρS ) = 1 − h
(

1
2 (1 + |〈τ0|τ1〉|)

)
, (16)

while the predictability is

Pvn(ρS ) = 0, (17)

and the reduced entropy, which in this case can be associated
with the amount of entanglement between the paths and the
spin, is

S(ρS ) = h
(

1
2 (1 + |〈τ0|τ1〉|)

)
. (18)

In Fig. 3, we can see how these quantities change as a function
of the relative Wigner rotation between the arms in this setup.
Since predictability vanishes, coherence and entanglement are
free to oscillate in their full range, in a complementary man-
ner. Depending on the spacetime curvature and the dimensions
of the interferometer, multiple periods of these oscillations
may take place while the particle traverses the interferometer.
As will be seen, this does not happen to be the case in the
Newtonian limit for reasonable interferometric sizes.

Finally, we can analyze the visibility of the relativistic
QDCE. Right after the second BS (which is in a superposi-
tion), the state of the joint system is

|�f〉 = 1√
2

cos α(|x+〉|τ0〉 + eiφ|x−〉|τ1〉)|in〉

+ 1√
2

sin α(|0〉|τ0〉 + eiφ|1〉|τ1〉)|out〉. (19)

Therefore, the probability of detection in Dη, η ∈ {0, 1}, is
given by

pη = 1
2 [1 + (−1)η|〈τ0|τ1〉| cos φ cos2 α], (20)

which implies that the visibility is

V = |〈τ0|τ1〉| cos2 α =
∣∣∣∣cos

(
�(1) − �(0)

2

)∣∣∣∣ cos2 α, (21)

where �(η) denotes the net Wigner rotation along path η,
which can be completely characterized by the spacetime met-
ric, the path η, and the initial state of the particle’s spin.
Observe that now we have a combination of the cosine due
to the quantum-controlled beam splitter and the cosine due to
the relative Wigner rotation along the paths.

It is noteworthy that Eq. (21) extends the conclusions that
general relativity induces a universal decoherence effect on
quantum superposition [30,31,33,35] to spin particles in two
major ways. The first is that we do not restrict ourselves to any
specific spacetime. The second is related to the fact that local
Wigner rotations, which encode the effect of the spacetime,
are purely kinematical and preclude any dynamics of the spin
(in particular, we do not impose any special dynamics for
the spin).

Now, let us consider the QCRE in a relativistic scenario.
The initial state |�i〉 of the system is again given by Eq. (13)
but this time |BS〉 refers to the first BS.

Then, after the interaction with the BS in superposition and
passing through the phase shifter, the joint system evolves to

|�QCRE〉 = 1√
2

cos α(|0〉|τ0〉 + eiφ |1〉|τ1〉)|in〉

+ sin α|0〉|τ0〉|out〉. (22)

Here, again, the wave packet traveling on each path is effec-
tively associated with a momentum p̄η, where η indicates the
path. The momenta of distinct paths may have distinct values.
Also, like in the QDCE, observe that the states |τ0〉 and |τ1〉
are generally rotated along the path. Thus the above state is
not constant in this region of the interferometer. In any case,
this expression shows that coherence between the paths is gen-
erally affected by time dilation. Indeed, the reduced density
matrix of the main system ρS = Trspin,BS|�QCRE〉〈�QCRE| is

ρS = 1

2

(
2 − cos2 α e−iφ cos2 α〈τ1|τ0〉

eiφ cos2 α〈τ0|τ1〉 cos2 α

)
. (23)

Now, we calculate the components of the CCR of a system
in this region of the relativistic QCRE. Observe that the path
coherence can be written as

Cre(ρS ) = h

(
2 − cos2 α

2

)
− h

(
1 + λα′

2

)
, (24)
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FIG. 4. Coherence and entanglement associated with the particle inside the QCRE as a function of the relative state of the particle’s
spin. When entering the interferometer, |〈τ0|τ1〉| = 1. However, this value is generally modified while the particle traverses paths of the
interferometer in superposition, introducing a dynamical tradeoff between coherence and entanglement. While predictability is not affected by
Wigner rotations, it depends on the parameter α, imposing constraints on the range that the values of coherence and entanglement may have.
(a) It can be observed that, with an increase in α, the amplitude of values of coherence decreases. Indeed, this quantity becomes close to a null
constant. (b) The same decrease in the amplitude of values is seen for entanglement. However, it becomes close to a constant that depends on
α, and is associated with the complement of predictability.

where

λα′ :=
√

|〈τ0|τ1〉|2 cos2 α + (1 − cos2 α)2. (25)

Moreover, the predictability is

Pvn(ρS ) = 1 − h

(
2 − cos2 α

2

)
. (26)

Finally, the reduced entropy, in this case, can be understood
as the amount of entanglement between the paths and the
bipartition given by the spin + BS. Its value is

S(ρS ) = h

(
1 + λα′

2

)
. (27)

In Fig. 4, we can see the tradeoff between these quan-
tities in this setup. Similarly to the QDCE, predictability is
insensitive to Wigner rotations. However, it does not vanish in
general. Indeed, its value grows with α. This imposes a con-
straint on the interplay between coherence and entanglement,
which can no longer oscillate in their full range. For coher-
ence, this means that it decreases its amplitude, becoming
closer to a vanishing constant while α grows. The entangle-
ment, however, decreases its oscillation range, approaching
constant values that depend on α. This constant value also
vanishes with α as the predictability value rises to 1. As
is the case in the QDCE, the spacetime curvature and the
dimensions of the interferometer may allow for little change
or for multiple periods of these oscillations before the particle
leaves the interferometer. Independently of this, we see that
the maximum effect (in magnitude) of Wigner rotations in the
CCR takes place when α = 0.

It is noteworthy that the independence of the predictability
Pvn on the spacetime structure is expected. Indeed, from its
definition, it can be verified that Pvn would only change if the
probability for the system to be found on a given arm of the
interferometer changed as well. This cannot be the case since
it would, e.g., violate the local probability current, a pillar of
quantum theory.

To conclude, we can discuss the visibility associated with
this setup. The state of the joint system after the second

(standard) BS is

|�f〉 = 1√
2

cos α(|x+〉|τ0〉 + eiφ|x−〉|τ1〉)|in〉

+ sin α|x+〉|τ0〉|out〉. (28)

Then, just like in the QDCE, the probability pη is given by
Eq. (20) for η ∈ {0, 1} and, moreover, the visibility of the
QCRE amounts to the quantity in Eq. (21).

B. Newtonian limit

To make the results just discussed more concrete, we now
consider their Newtonian limit. This limit corresponds to the
case of a weak and static gravitational field, such as that in
the vicinity of Earth, where the gravitational field can be
considered uniform. The spacetime metric in this scenario can
be expressed as

ds2 = −(1 + 2gx)dt2 + dx2 + dy2 + dz2, (29)

where g = GM/R2 is Earth’s gravitational acceleration in the
origin of the laboratory frame (x = 0), which is at a distance R
from the Earth’s center. Moreover, the coordinate x measures
the different heights (vertical axis) with respect to the origin
of the laboratory frame. Moreover, we associate z with the
horizontal axis coordinate. Observe that x is used here with a
different meaning than it had in previous parts of this article.

We can then define a tetrad field that represents a static LRF
by taking, at each point, the axes 0, 1, 2, and 3 to be parallel
to the directions t , x, y, and z, respectively. Then, e0

t = (1 +
2gx)1/2 and e1

x = e2
y = e3

z = 1, while every other component
vanishes. The velocity components uμ of the particle are taken
such that the spatial components are constants. In addition,
we assume that the speed u of both wave packets is the same
and it is constant throughout the entire experiment. Hence, in
the LRF, we have u0 = −u0 = √

1 + u2, u1 = u1 = ux, and
u3 = u3 = uz, where u2 = u2

x + u2
z . Observe that uy = 0 since

the particle’s dynamics is restricted to the xz plane. Moreover,
each wave packet is assumed to never move in a combination
of the x and z directions simultaneously since we consider the
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FIG. 5. Distinguishability of relative Wigner rotations in the
Newtonian limit while a particle encircles squared interferometers.
While this quantity, computed from Eqs. (30) and (32), is small
at every location within the interferometer, its value at the instant
the particle passes through the second BS is much lower than its
maximum value inside. This implies a bigger influence of Wigner
rotations in the CCR quantities than may be suggested by the interfer-
ometric visibility. It was assumed that u = 10−1c, c = 3 × 108 m/s,
g = 10 m/s2, and x0 = 0.

interferometers with height h and horizontal length L in Fig. 1.
Also, as discussed in Appendix C, to maximize the relativistic
effects, we assume that |τ 〉 is any vector that belongs to the
intersection between the Bloch sphere and the xz plane.

With this set, it follows that

|〈τ0|τ1〉| =
∣∣∣∣cos

(
(�(1) − �(0)

2

)∣∣∣∣, (30)

where �(η) denotes the total Wigner rotation along the path
η ∈ {0, 1} up to the instant location of each wave packet in the
laboratory frame, which is given by

�(η) = −γ
�η(t )/u√

1 + 2g(x0 + ηh)
, (31)

where γ = gu
√

1 + u2, x0 is the location of the lower hori-
zontal path in the x axis, and �η(t ) represents the horizontal
length traveled by the wave packet until the instant t in the
laboratory’s clock. Details can be seen in Appendix E.

We are then ready to compute the elements of the CCR for
both the QDCE and QCRE. From Eq. (31), we obtain

�(1) − �(0) = γ

(
�0(t )/u√
1 + 2gx0

− �1(t )/u√
1 + 2g(x0 + h)

)
. (32)

This expression can be used in Eq. (30) to compute the dis-
tinguishability of the effects of Wigner rotations on each path.
In Fig. 5, the complement of |〈τ0|τ1〉| is shown as a function
of time while a particle traverses squared interferometers with
different sizes. We see that, for “reasonable lengths,” the dis-
tinguishability associated with the action of Wigner rotations
on each path is extremely small. This means that these effects
cannot be easily measured. In particular, as will be further
discussed soon, the visibility, which is related to the values
at the moment the particle leaves the interferometer, does not
decrease much due to these gravitational effects. However,
we observe that, relative to the final values, the spin states
associated with the distinct paths are more differentiable in
locations inside the interferometer.

We can also show that, in the Newtonian limit, the lengths
considered in Fig. 5 can be largely increased while keeping the
effects of Wigner rotations small. For this end, observe that the
maximum change generated by Wigner rotations takes place
at an instant t ′ such that �0(t ′) = L and �1(t ′) = 0. In this case,
Eq. (30) becomes |〈τ0|τ1〉| = | cos(γ L/u)|, where we have
assumed that x0 = 0. Using the second-order approximation
cos(x) ≈ 1 − x2/2, it holds that

1 − |〈τ0|τ1〉| = g2(1 + u2)L2. (33)

In the international system of units, u → u/c and gL →
gL/c2. Then, even if L were of the order of Earth’s diameter,
i.e., 107 m, the quantity in Eq. (33) would be of order 10−14.

With Eq. (30), we have the needed ingredient to calculate
the relevant quantities in the CCR for the QDCE in Eqs. (16),
(17), and (18). Similarly, Eqs. (24), (26), and (27) can be
computed, giving the CCR for the QCRE.

Before concluding, we can also discuss the visibility in the
Newtonian limit. Since we are interested in the state of the
system that leaves the interferometer, we have �η(t ) = L for
both paths η. Then,

�(1) − �(0) = γ

(
1√

1 + 2gx0
− 1√

1 + 2g(x0 + h)

)
�T,

(34)

where �T = L/u represents the time interval measured in the
laboratory for each packet to travel in the horizontal direction.
Using the approximation (1 + x)−1/2 ≈ 1 − x/2, we write

|〈τ0|τ1〉| =
∣∣∣∣cos

(
γ�V �T

2

)∣∣∣∣, (35)

where �V = gh is the difference in the gravitational poten-
tials between the paths. This result can be replaced in Eq. (21)
in order to compute the visibility of the QDCE and QCRE.

It is noteworthy that Eq. (35) is the same expression ob-
tained for the visibility of the Mach-Zehnder interferometer
in a relativistic treatment with the use of local Wigner ro-
tations in the Newtonian limit [41]. Then, the visibility of
the QDCE and QCRE can be seen as the associated visi-
bility of the Mach-Zehnder interferometer modulated by a
function of α.

In Fig. 6, we display the dependency of the visibility in the
Newtonian limit [with the approximation used in Eq. (35)] as
a function of α and �T . Observe that both the BS controller
and the particle’s spin can store at least partial which-way
information. As a result, they both contribute to a decrease
in the final interferometric visibility. Observe that, in the
graphic, �T covers the entire domain needed for the quantity
in Eq. (35) to change from 1 to 0. However, in current devices
with appropriate scaling such that γ�V/2 = 1 s−1, �T takes
values close to 0. This means that the reduction in visibility
is minimal. To give a more concrete notion of the order of
magnitude of this effect, we can compare our expressions
with the one obtained by Zych et al. [30], which derives an
expression with a form similar to Eq. (35), albeit different
in physical content. Indeed, the authors relied on the internal
degree of freedom of the system to not be a spin and to act as
a clock. As a result, the analog of the phase in Eq. (35) for this
scenario is a vanishing phase.
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FIG. 6. Visibility V as a function of α and �T . The visibility in
Eq. (21) is calculated in the Newtonian limit with |〈τ0|τ1〉| given by
Eq. (35). For simplicity, it was assumed that γ�V/2 = 1 s−1. Both
the controller and the particle’s spin store which-path information,
contributing to the suppression of the interferometric visibility.

The reported expression in Ref. [30] for |〈τ0|τ1〉| for a spin-
less particle with an internal clock was | cos(ω�V �T/2)|,
where ω is the frequency of the clock. We see that the differ-
ence between this expression and our expression for a particle
with a spin with no dynamics consists of the exchange ω →
γ . If we use the international system of units, this becomes
ω → γ /c2. Then, even if we consider speeds of the order
u = 10−1c, we conclude that γ /c2 is of order 1/c. Meanwhile,
as discussed in Ref. [30], the frequency of accurate clocks
can be of order as high as 1015 Hz. As a consequence, the
effect of Wigner rotations in Eq. (35) is much smaller than the
effect associated with very precise internal clocks. Therefore,
an important conclusion of our analysis is that, in the vicinity
of Earth, the results of Ref. [30] still hold in leading order of
magnitude even for spin particles. In this sense, our results
extend the analysis of Ref. [30].

It is worth emphasizing once more that, despite the extra
difficulty of measuring the result in Eq. (35), it does not rely
on the spin of the internal degree of freedom of the system to
behave as a clock. This could be an advantage for the experi-
mental verification in some platforms once enough resolution
is reached.

Another noteworthy aspect of our results is regarding the
discussions in Appendix C. At least in a first analysis, Wigner
rotations present a challenge to approaches that consider
clocks as spin degrees of freedom of quantum systems. How-
ever, as just seen, in the vicinity of Earth, Wigner rotations do
not affect the higher-order dynamics of the free Hamiltonian
of the clock, although they may become more relevant in
regions of spacetime with more curvature.

IV. DISCUSSION

In this work, we have unveiled tradeoffs between quantities
in a CCR for spin particles traversing generalized delayed-
choice experiments (QDCE and QCRE). We have presented
a nonrelativistic and relativistic analysis of these setups, in-
cluding a more concrete study in the Newtonian limit. In
the nonrelativistic treatment, we have observed that, among

the relevant quantities for the CCR, coherence is the only
one present inside the QDCE. Meanwhile, there is a tradeoff
among coherence, entanglement, and predictability inside the
QCRE that depends directly on the parameter α that controls
the superposition of the BS.

In the relativistic treatment, which involved an arbitrary
(potentially curved) spacetime, it was assumed that the par-
ticle had an internal degree of freedom, chosen to be a spin
for simplicity. Through Wigner rotations, the spin generally
becomes correlated with the external degrees of freedom of
the particle. This modifies the conclusions drawn in the non-
relativistic scenario, and we have examined these changes in
detail.

On the one hand, we have shown that there is now a trade-
off between coherence and entanglement inside the QDCE.
The path predictability remains insensitive to Wigner rotations
and vanishes. On the other hand, inside the QCRE, there also
exists a similar tradeoff between coherence and entanglement.
The difference is that, while predictability is not affected by
Wigner rotations, it is a function of α, as in the nonrelativistic
scenario. This adds a constraint in the range of values that
coherence and entanglement can take.

Moreover, we have proved that the two interferometers
have equal visibility in both nonrelativistic and relativis-
tic treatments. In the relativistic case, the interferometric
visibility generally decreases because it is modulated by a
quantity associated with the overall effective Wigner rotation
during the particle’s travel. However, an increase in current
measurement precision is needed for the observation of our
predictions.

It is worth repeating that, while our results lead to smaller
changes to predictions in the vicinity of Earth than previous
works in the area, they do not rely on the particle trav-
eling through the interferometer having an internal clock.
This means that the free Hamiltonian of the internal degree
of freedom of the particle considered here may even van-
ish (as we have assumed for simplicity). In this sense, our
study also generalizes (for spin particles) the conclusion from
Refs. [30,31,33,35] that general relativity has a universal de-
coherence effect on quantum superpositions, once the local
Wigner rotation, which encodes the effect of the spacetime,
is purely kinematical and precludes any dynamics of the spin.
As already mentioned, this is in contrast with the other works,
where the coupling between the internal and external degrees
of freedom is dynamical, resulting from a global Hamiltonian
that couples both degrees of freedom.1

Finally, an interesting research avenue is the study of mul-
tipath interferometry in relativistic scenarios. In this context,
one could look for special configurations that enhance the
effects of Wigner rotations, facilitating their practical obser-
vations in the vicinity of Earth. Moreover, establishing how
complementarity behaves operationally in a curved space-
time allows further investigations of the performance of tasks

1Other types of gravitationally induced decoherence have also been
considered in the literature. For instance, Ref. [45] has shown that a
superposed massive system will eventually decohere if it is in the
vicinity of a Killing horizon (as the event horizon of any stationary
black hole).
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based on complementarity and their subsequent adaptation
to optimize their use of this quantum resource according to
the spacetime structure. This includes, for instance, security
protocols, guaranteed by tight entropic-uncertainty relations
and entanglement distillation.
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APPENDIX A: LOCAL REFERENCE
FRAMES AND BOOSTS

The central object of analysis in this work is particles with
an internal structure, which, for simplicity, are taken to be of
spin 1/2. Since their study in general spacetime requires the
use of LRFs, we review them here.

LRFs are defined at each point x of a spacetime M using
a tetrad field (or vielbein), which is composed of four-vectors
eμ

a (x), a = 0, 1, 2, 3, orthonormal to each other with respect
to the pseudo-Riemannian manifold (or spacetime) [75], i.e.,
ea
μ(x)eμ

b (x) = δa
b and ea

μ(x)eν
a(x) = δν

μ, where we have used
the convention that latin indices refer to coordinates in the
LRF, greek indices refer to the general coordinate system
defined in the spacetime M, and repeated indices are summed
over. Thus, at each point x ∈ M, the Minkowski metric in
the LRF, ηab = diag(−1, 1, 1, 1), and the spacetime metric,
gμν (x), are related to the tetrad field according to [76]

gμν (x)eμ
a (x)eν

b(x) = ηab,

ηabea
μ(x)eb

ν (x) = gμν (x). (A1)

For the general coordinate system, the lowering and raising
of indices are done with the metric gμν and its inverse gμν ,
respectively, while the indices in the LRF are lowered by ηab

and raised by its inverse ηab. Furthermore, the components
of the tetrad field and its inverse transform a tensor in the
general coordinate system into one in the local frame and vice
versa. Therefore, from Eq. (A1), one can see that the tetrad
field incorporates the spacetime curvature information hidden
in the metric. In addition, the vielbein {eμ

a (x), a = 0, 1, 2, 3}
is a set of four four-vector fields and transforms under local
Lorentz transformations (LLTs) in the local system. Observe
that, since eμ

0 (x) is a timelike vector field defined at each point
of the spacetime and produces a global time coordinate, it
makes the spacetime time orientable [75]. Moreover, the LRF
is not unique since it continues to be a LRF under LLTs. Thus,
a vielbein representation of a given metric is not defined in a
unique manner, and different vielbein connected by LLTs are
associated with the same metric tensor [74].

Now, we follow the particle’s path from one point to an-
other in the curved spacetime M to construct a representation
for LLTs. For this, consider a system with four-momentum
pμ(x) = muμ(x) at a certain location x, where m is the mass
of the particle and uμ(x) is its four-velocity. Using units such
that c = 1, the momentum satisfies pμ(x)pμ(x) = −m2. In
the LRF at the point x whose coordinates are xa = ea

μ(x)xμ,
the momentum of the particle can be written as pa(x) =
ea
μ(x)pμ(x). After an infinitesimal interval of proper time dτ

has passed, the particle is found at a new location x′μ = xμ +
uμdτ with momentum pa(x′) = pa(x) + δpa(x). The variation
in momentum can be decomposed into two parts:

δpa(x) = ea
μ(x)δpμ(x) + δea

μ(x)pμ(x), (A2)

where the change due to the geometry of spacetime is encoded
in δea

μ, while the change δpμ(x) is associated with external
nongravitational forces. The variation δpμ(x) can be written
as

δpμ(x) = uν (x)∇ν pμ(x)dτ

= − 1

m
[aμ(x)pν (x) − pμ(x)aν (x)]pν (x)dτ, (A3)

where aμ := uν∇νuμ is the particle’s four-acceleration. More-
over, the variation due to the geometry of spacetime can be
written as

δea
μ(x) = uν (x)∇νea

μ(x)dτ = −uν (x)ωa
νb(x)eb

μ(x)dτ, (A4)

where ωa
νb := ea

λ∇νeλ
b = −eλ

b∇νea
λ is the spin connection [77].

Substituting these expressions in Eq. (A2), one obtains
δpa(x) = λa

b(x)pb(x)dτ , where

λa
b(x) := ua(x)ab(x) − aa(x)ub(x) − uν (x)ωa

νb(x). (A5)

The tensor λa
b(x) is interpreted as the infinitesimal LLT since

it holds that pa(x′) = [δa
b + λa

b(x)dτ ]pb(x) [74].

APPENDIX B: WIGNER ROTATIONS

With LRFs and LLTs defined, we follow Refs. [28,74] and
introduce local Silberstein-Thomas-Wigner rotations [46–48],
which will be simply referred to as Wigner rotations, as they
are more commonly known in the physics community.

The joint state of a particle in an eigenstate of
momentum with an internal spin can be denoted by
|pa(x), σ ; xa, ea

μ(x), gμν (x)〉 to evidence its dependency on the
vielbein ea

μ(x) and gμν (x) as described from the position xa =
ea
μ(x)xμ of the LRF. In this expression, |σ 〉 is associated with

the particle’s internal degree of freedom, i.e., the particle’s
spin. However, for simplicity, we identify

|pa(x), σ 〉 ≡ ∣∣pa(x), σ ; xa, ea
μ(x), gμν (x)

〉
. (B1)

Generally, the particle will be in a linear combination of
different momentum eigenstates, i.e. [74],

|�〉 =
∫

dμ(p)ψ (p)|p(x), σ 〉. (B2)

However, as will become clear, in order to construct the
Wigner rotations, it is convenient to take the state of the
system to be the one in Eq. (B1) for a given pa(x). In this case,
it is possible to show that the particle and its internal degree
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of freedom transform under a spinorial unitary representation
of the LLT [28,74], i.e.,

U (�(x))|pa(x), σ 〉 = |�pa(x)〉 ⊗ D(W (x))|σ 〉, (B3)

where W (x) := W (�(x), p(x)) is a local Wigner rotation and
D(W (x)) is a unitary representation of the local Wigner rota-
tion. Therefore, the state |pa(x), σ 〉 at point x is now described
as U (�(x))|pa(x), σ 〉 at point x′, and Eq. (B3) expresses how
the spin rotates locally as the quantum particle moves along
its world line.

For an infinitesimal LLT, the corresponding infinitesimal
local Wigner rotation can be written as W a

b (x) = δa
b + ϑa

b dτ

[78], where

ϑ i
j (x) = λi

j (x) + λi
0(x)p j (x) − λ j0(x)pi(x)

p0(x) + m
, (B4)

with all other terms vanishing. Therefore, the spin-1/2 rep-
resentation of the infinitesimal local Wigner rotation can be
written as

D(W (x)) = I2×2 + i

4

3∑
i, j,k=1

εi jkϑi j (x)σkdτ

= I2×2 + i

2
ϑ · σdτ, (B5)

where I2×2 is the identity matrix and σk, k = 1, 2, 3 are the
well-known Pauli matrices. Finally, the spin-1/2 representa-
tion of the local Wigner rotation for a finite interval of proper
time is obtained by iterating the expression above, which
leads to [28]

D(W (x, τ )) = T e
i
2

∫ τ

0 ϑ·σdτ ′
, (B6)

where T is the time-ordering operator.

APPENDIX C: SPINS AND CLOCKS

As previously explained, the spin rotates locally as the
associate quantum particle moves along its world line ac-
cording to the expression given by Eq. (B6). This rotation
depends on the momentum of the particle and the spacetime
curvature. However, observe that the rotation magnitude is
not always proportional to the proper time of a given wave
packet. Hence, the spin does act as a clock as a result of
these rotations. Nevertheless, it captures the existence of time
dilation in some circumstances, as can be concretely seen in
Appendix E, which explains why we use τ to denote the state
of the particle’s spin.

The reason the time-ordering operator T is needed in
Eq. (B6) is that, generally, the rotations at different points
along the particle’s trajectory do not commute with each other.
This means that, indeed, the spin is generally affected by
Wigner rotations regardless of its initial state. However, in
some instances, rotations at distinct instants of proper time
might commute, i.e., they might be about a single axis. In
these cases, particular initial states would not be affected by
it. For example, as is the cases in Secs. III A and III B, the
Wigner rotation might be a rotation about the y axis, once the
motion of the particle inside the interferometer is restricted
to a two-dimensional spatial plane. Then, eigenstates of σy

would not be modified and become correlated to the external

degree of freedom of the particle. Moreover, while any other
initial state could register the rotation in this scenario, a spin’s
dynamics on the xz plane, i.e., the equator of the y axis, would
be optimal, in the sense of allowing for the best distinguisha-
bility between states rotated in different manners. Therefore,
in this work, we take the initial state of the spin to be any state
in the aforementioned equator.

It turns out that this choice is consistent with the prescrip-
tion to build time states in the Page and Wootters framework
[79], which has also been studied in relativistic and/or gravi-
tational scenarios [80–87]. This is a framework for relational
dynamics in which time is not an a priori parameter. Instead, it
is given by a set of states, dubbed time states, from a physical
system used as a clock. To construct the set of time states,
one first chooses a reference state |t ′〉 in the clock system. The
other time states are defined as |t〉 := e−iHC (t−t ′ )|t ′〉, where HC

is the Hamiltonian of the clock. However, the set of states |t〉
should be such that

∫
dt |t〉〈t | = IC , where IC is the identity

operator, which shows that the reference state |t ′〉 should be
appropriately chosen. In general, the resulting time operator
T = ∫

dt t |t〉〈t | is a positive operator-valued measure, but not
necessarily a Hermitian operator [80,88,89]. In the case of
a clock given by a spin with a Hamiltonian proportional to
σy, we see that time states should live in the xz plane, which
indeed corresponds to the optimal choice discussed above for
the state of the spin in the study in Sec. III B.

A question that deserves further investigation is whether
Wigner rotations should be considered operational features of
time for spin particles revealed by quantum theory or a chal-
lenge to the relativistic treatment of clocks as internal degrees
of freedom since they introduce modifications to the clock’s
state in addition to the relativistic time dilation, albeit related
to it. In Ref. [90], even though this question is approached
from a different perspective, the authors seem to agree with
the latter in the case of spinless particles.

APPENDIX D: APPROXIMATION FOR LOCALIZED
WAVE PACKETS

Our brief introduction to Wigner rotations reveals that they
depend on the momentum of the particle. Then, consider a
particle in a state other than a plane wave, i.e., a generic state
as given by Eq. (B2) with ψ (p) �= δ(p − p̄) for a constant
momentum p̄. In this case, even if the spatial distribution of
the particle and its spin start in a separable state, they generally
evolve into an entangled state while the particle translates in
space.

These exact calculations, however, do not typically lead
to simple analytic solutions. Then, it is common to assume a
wave packet with a mean centroid p̄ around which the particle
momentum is properly distributed, e.g., ψσ (p) ∝ e−(p−p̄)2ξ 2

for some positive real constant ξ . As a result, in the semi-
classical approach, the motion of the particle can be regarded
by the motion of its center of mass with momentum p̄. These
ideas can be formalized with a Wentzel-Kramers-Brillouin
expansion of the exact solution [74]. Indeed, the analysis just
described here corresponds to the zeroth-order expansion of
the solution in h̄. The centroid p̄ need not be constant through-
out the dynamics. Indeed, the result is valid as long as the
shape of the wave function is kept approximately unchanged
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during the experiment [75,91]. These ideas can be extended
to the case of packets traveling in a coherent superposition
of wave packets such that there is no distortion of the wave
packet along the path, where each packet can be associated
with different centroid values p̄. A more detailed discussion
can be found in Refs. [42,91,92].

These remarks play an important role in Sec. III, where
we consider a particle traveling through an interferometer in a
coherent superposition of paths. We assume that the motion of
the wave packet traveling on each path can be characterized by
its mean centroid momentum, as just discussed. Consequently,
each path will be associated with a well-defined time dilation.

APPENDIX E: DERIVATIONS
FOR THE NEWTONIAN LIMIT

Given the construction of the tetrads and the conditions
described in Sec. III B, we now derive the main results pre-
sented there. Since the interferometer paths are not geodesic,
an external force is necessary to maintain the particle in such a
world line. The nonvanishing components of the acceleration
due to the external force are

a0(x) = gux

√
1 + u2

1 + 2gx
, a1(x) = g(1 + u2)

1 + 2gx
. (E1)

To obtain the infinitesimal LLT, Eq. (A5) shows that we
first need to compute the spin connection ωa

νb. Observe that

ωa
νb = −eλ

b∂νea
λ + �σ

νλea
σ eλ

b = �σ
νλea

σ eλ
b, (E2)

where �σ
νλ is the Christoffel symbol. It can be verified that the

only nonzero Christoffel symbols are given by �x
tt = g and

�t
tx = �t

xt = g/(1 + 2gx). Then, by symmetry, we conclude
that the nonvanishing components of the spin connection are

ω0
t1 = g√

1 + 2gx
,

ω0
x1 = g

√
1 + 2gx. (E3)

As a result, the non-zero infinitesimal LLTs are given by

λ0
1(x) = g

√
m2 + p2

m3(1 + 2gx)

(
p2 − p2

x

) −
√

1 + 2gx

m
px,

λ0
3(x) = −gpx pz

√
m2 + p2

m3(1 + 2gx)
, λ1

3(x) = −gpz(m2 + p2)

m3(1 + 2gx)
,

(E4)

where p = √
p2

x + p2
z . Therefore, the only non-null element of

the Wigner rotation in parts of the path is ϑ1
3 . On the horizontal

portions of the paths, pz = 0 and hence Eq. (B4) implies that
ϑ1

3 = 0. On the vertical portions of the paths, px = 0 and

ϑ1
3 (x) = −gpz

√
p2

z + m2

(1 + 2gx)m2
. (E5)

From the above expression, we see that the Wigner rotation,
when non-null, depends on g and on the height x.

The relevant quantity we want to calculate is |〈τ0|τ1〉|,
which is the same for both QDCE and QCRE. As a matter
of fact, given a spacetime metric, this quantity only depends
on the spatial geometry of the interferometer. Using the quan-
tities introduced here, we have

|〈τ0|τ1〉| =
∣∣∣〈τ |e− i

2 σy (�(1)−�(0))|τ 〉
∣∣∣, (E6)

where

�(η) :=
∫ τ

0
dτ ′ ϑ1

3 (x(τ ′; η)) (E7)

for η ∈ {0, 1}. This leads to Eq. (30) if |τ 〉 is a pure state in the
intersection between the Bloch sphere and the xz plane, as it
has been assumed. Clearly, only the horizontal regions of each
path contribute to �(η).

Now, we would like to parametrize the paths in terms of
the time t measured by the laboratory frame. Since −dτ 2 =
gμνdxμdxν , we have

dτ

dt
=

√
−gtt − gi j

dxi

dt

dx j

dt
. (E8)

The first term in the square root corresponds to the gravita-
tional time dilation, while the second term corresponds to the
special relativistic time dilation. However, if the trajectories
are such that the speed of both wave packets is the same and it
is constant throughout the entire experiment, as we assume
here, there will be no time dilation stemming from special
relativity [30]. As a result, from Eq. (E8), we are only left
with the first term in the square root. Then, since

�(η) =
∫ t

0
dt ′ dτ ′

dt ′ ϑ1
3 (x(t ′; η)), (E9)

we are led to Eq. (31).

[1] N. Bohr, The quantum postulate and the recent development of
atomic theory, Nature (London) 121, 580 (1928).

[2] N. Bohr, Can quantum-mechanical description of physi-
cal reality be considered complete? Phys. Rev. 48, 696
(1935).

[3] V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A.
Aspect, and J.-F. Roch, Experimental realization of Wheeler’s
delayed-choice gedanken experiment, Science 315, 966 (2007).

[4] A. G. Manning, R. I. Khakimov, R. G. Dall, and A. G. Truscott,
Wheeler’s delayed-choice gedanken experiment with a single
atom, Nat. Phys. 11, 539 (2015).

[5] R. E. Kastner, Beyond complementarity, Quantam Structural
Studies: Classical Emergence from the Quantum Level (World
Scientific, Singapore, 2017), pp. 77–104.

[6] F. Vedovato, C. Agnesi, M. Schiavon, D. Dequal, L.
Calderaro, M. Tomasin, D. G. Marangon, A. Stanco,
V. Luceri, G. Bianco et al., Extending Wheeler’s
delayed-choice experiment to space, Sci. Adv. 3, e1701180
(2017).

[7] L. Catani, M. Leifer, D. Schmid, and R. W. Spekkens, Why
interference phenomena do not capture the essence of quantum
theory, Quantum 7, 1119 (2023).

062207-10

https://doi.org/10.1038/121580a0
https://doi.org/10.1103/PhysRev.48.696
https://doi.org/10.1126/science.1136303
https://doi.org/10.1038/nphys3343
https://doi.org/10.1126/sciadv.1701180
https://doi.org/10.22331/q-2023-09-25-1119


UNVEILING QUANTUM COMPLEMENTARITY TRADEOFFS … PHYSICAL REVIEW A 109, 062207 (2024)

[8] L. Catani, M. Leifer, G. Scala, D. Schmid, and R. W. Spekkens,
Aspects of the phenomenology of interference that are gen-
uinely nonclassical, Phys. Rev. A 108, 022207 (2023).

[9] W. K. Wootters and W. H. Zurek, Complementarity in the
double-slit experiment: Quantum nonseparability and a quan-
titative statement of Bohr’s principle, Phys. Rev. D 19, 473
(1979).

[10] D. M. Greenberger and A. Yasin, Simultaneous wave and par-
ticle knowledge in a neutron interferometer, Phys. Lett. A 128,
391 (1988).

[11] B.-G. Englert, Fringe visibility and which-way information: An
inequality, Phys. Rev. Lett. 77, 2154 (1996).

[12] S. Dürr, Quantitative wave-particle duality in multibeam inter-
ferometers, Phys. Rev. A 64, 042113 (2001).

[13] S. Saunders, Complementarity and scientific rationality, Found.
Phys. 35, 417 (2005).

[14] B.-G. Englert, D. Kaszlikowski, L. C. Kwek, and W. H. Chee,
Wave-particle duality in multi-path interferometers: General
concepts and three-path interferometers, Int. J. Quantum Inf.
06, 129 (2008).

[15] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying co-
herence, Phys. Rev. Lett. 113, 140401 (2014).

[16] M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, Duality
of quantum coherence and path distinguishability, Phys. Rev. A
92, 012118 (2015).

[17] R. M. Angelo and A. D. Ribeiro, Wave-particle duality: An
information-based approach, Found. Phys. 45, 1407 (2015).

[18] P. J. Coles, Entropic framework for wave-particle duality in
multipath interferometers, Phys. Rev. A 93, 062111 (2016).

[19] E. Bagan, J. A. Bergou, S. S. Cottrell, and M. Hillery, Relations
between coherence and path information, Phys. Rev. Lett. 116,
160406 (2016).

[20] E. Bagan, J. Calsamiglia, J. A. Bergou, and M. Hillery, Duality
games and operational duality relations, Phys. Rev. Lett. 120,
050402 (2018).

[21] S. Mishra, A. Venugopalan, and T. Qureshi, Decoherence and
visibility enhancement in multipath interference, Phys. Rev. A
100, 042122 (2019).

[22] M. L. W. Basso, D. S. S. Chrysosthemos, and J. Maziero, Quan-
titative wave-particle duality relations from the density matrix
properties, Quantum Inf. Process. 19, 254 (2020).

[23] M. L. W. Basso and J. Maziero, Complete complementarity
relations for multipartite pure states, J. Phys. A 53, 465301
(2020).

[24] M. L. W. Basso and J. Maziero, An uncertainty view on comple-
mentarity and a complementarity view on uncertainty, Quantum
Inf. Process. 20, 201 (2021).

[25] T. Qureshi, Predictability, distinguishability, and entanglement,
Opt. Lett. 46, 492 (2021).

[26] M. L. W. Basso and J. Maziero, Entanglement monotones from
complementarity relations, J. Phys. A 55, 355304 (2022).

[27] C.-Y. Hsieh, R. Uola, and P. Skrzypczyk, Quantum comple-
mentarity: A novel resource for unambiguous exclusion and
encryption, arXiv:2309.11968.

[28] H. Terashima and M. Ueda, Einstein-Podolsky-Rosen cor-
relation in a gravitational field, Phys. Rev. A 69, 032113
(2004).

[29] I. Fuentes-Schuller and R. B. Mann, Alice falls into a black
hole: Entanglement in noninertial frames, Phys. Rev. Lett. 95,
120404 (2005).

[30] M. Zych, F. Costa, I. Pikovski, and Č. Brukner, Quantum inter-
ferometric visibility as a witness of general relativistic proper
time, Nat. Commun. 2, 505 (2011).

[31] M. Zych, F. Costa, I. Pikovski, T. C. Ralph, and Č. Brukner,
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