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This paper discusses quantum adiabatic elimination, which is a model reduction technique for a composite
Lindblad system consisting of a fast decaying subsystem coupled to another subsystem with a much slower
timescale. Such a system features an invariant manifold that is close to the slow subsystem. This invariant
manifold is reached subsequent to the decay of the fast degrees of freedom, after which the slow dynamics follow
on it. By parametrizing the invariant manifold, the slow dynamics can be simulated via a reduced model. To find
the evolution of the reduced state, we perform an asymptotic expansion with respect to the timescale separation.
So far, the second-order expansion has mostly been considered. It has then been revealed that the second-order
expansion of the reduced dynamics is generally given by a Lindblad equation, which ensures complete positivity
of the time evolution. In this paper, we present two examples where complete positivity of the reduced dynamics
is violated with higher-order contributions. In the first example, the violation is detected for the evolution of the
partial trace without truncation of the asymptotic expansion. The partial trace is not the only way to parametrize
the slow dynamics. Concerning this nonuniqueness, it was conjectured in [Quantum Sci. Technol. 2, 044011
(2017)] that there exists a parameter choice ensuring complete positivity. With the second example, however, we
refute this conjecture by showing that complete positivity cannot be restored in any choice of parametrization.
We discuss these results in terms of the invariant slow manifold consisting of quantum correlated states.
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I. INTRODUCTION

Any quantum system should be treated as an open system.
One reason is that perfect isolation of a quantum system is
unrealistic experimentally and the influence of a surrounding
environment needs to be taken into account. Besides, perfectly
isolated systems cannot be used for the purpose of quantum
control. To control or read out a quantum state, coupling to
another system is unavoidable. A state of an open quantum
system is represented by a density matrix. To describe its evo-
lution, various approximation methods have been developed
so far. One of the most widely used methods is based on
the Markov assumption. Starting from a system-environment
Hamiltonian, the Born-Markov-secular approximations lead
to a Lindblad equation [1].

Lindblad equations can also be derived mathematically by
imposing axiomatic conditions on the time evolution map. It
is reasonable to assume that the time evolution preserves the
properties of density matrices, namely, they are Hermitian,
unit-trace, and positive semidefinite along the entire evolution.
The condition of positivity is usually replaced by complete
positivity [2]. The complete positivity requirement in physics
stems from the fact that a density matrix of an open quantum
system is a reduced one, and the total density matrix including
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an environment should also remain positive semidefinite un-
der the evolution. One can show that the evolution of a density
matrix is governed by a Lindblad equation if and only if the
time evolution map is a one-parameter semigroup ({�t }t�0

satisfying �t ◦ �s = �t+s for all t, s � 0), the elements of
which are trace preserving completely positive maps for all
t � 0 [3–5]. Note that the semigroup property is associated
with the Markov assumption [1].

In this paper, we consider a composite open quantum
system where the total evolution is governed by a Lindblad
equation. The composite system is assumed to consist of a fast
decaying subsystem being weakly coupled to another system
with a slower timescale. In this setting, the time evolution
typically starts with decay of fast degrees of freedom followed
by a slower evolution of the remaining slow degrees of free-
dom. In capturing the latter dynamics, thus, the fast degrees
of freedom can be discarded. This model reduction technique
is known in quantum physics as adiabatic elimination and
goes back to singular perturbation theory (see, e.g., Ref. [6]).
Owing to the linearity of Lindblad equations, there exists in
fact an invariant linear subspace, associated with the slow
eigenvalues of the overall system, on which this dynamics
rigorously takes place.

Adiabatic elimination offers two noteworthy aspects when
applied to quantum physics. First, it provides a model reduc-
tion technique for composite Lindblad systems. By discarding
the fast degrees of freedom, the slow dynamics can be
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described via a reduced model. This enables simulations of
large-dimensional systems that are otherwise infeasible. Sec-
ond, adiabatic elimination allows for reservoir engineering.
By crafting the coupling between the two subsystems, we can
design the dissipative dynamics of the slow evolution after
the decay. This aspect is important in recent developments
of quantum technologies because dissipation is not necessar-
ily the enemy of quantum technology, but can be leveraged
to control a quantum state. These two aspects of adiabatic
elimination can be seen in previous studies, see below for
references.

Various approaches have been developed to formulate adi-
abatic elimination for composite open quantum systems. One
of the earliest studies is Ref. [7], where the author applied the
Born-Markov approximation to a bipartite Lindblad system,
as commonly done for composite Hamiltonian systems [1]. A
large body of studies has adopted a similar approach [8–16].
Other studies have explored alternative formulations, includ-
ing the application of the Laplace transform to the projected
master equation [17,18] and the use of the Schrieffer-Wolff
transformation [19–21]. In contrast with Hamiltonian sys-
tems, relaxation behavior is built into the spectral properties
of the generator in open quantum systems. We can hence
consider an invariant subspace, or in geometric language, a
manifold to which trajectories are attracted in the long-time
regime. Formulations based on such a geometric picture were
presented in Refs. [22,23]. However, the applicability of these
approaches is limited either to systems for which the eigen-
vectors of the generator can be determined or to the evaluation
of contributions up to the second-order in the timescale sepa-
ration. In this paper, we focus on the formulation presented
in Ref. [24], which can overcome these limitations. It pro-
vides a geometric picture based on center manifold theory
[25]. The system according to this theory does exactly feature
an invariant manifold corresponding to slow dynamics, and
hence we view the model reduction to slow degrees of free-
dom as approximating both the manifold and the evolution
once the system is initialized on it. To formulate the model
reduction based on this picture, we parametrize the degrees of
freedom on the invariant manifold (see Fig. 1). We then seek
to find two maps; one describing the time evolution of the
parameters and the other assigning the parametrization to the
solution of the Lindblad equation; that is, the density matrix
of the total system. To calculate these maps approximately
for general problems, an asymptotic expansion with respect
to the timescale separation is performed. In this way, [24]
established a methodology to calculate higher-order contribu-
tions systematically. Recently, this approach was extended to
a periodically driven system where the driving frequency is
comparable to the fast timescale, while the amplitude is in
the order of the slow timescale [26]. In addition, numerical
simulations were conducted to evaluate the reduced dynamics
in a multisystem platform [27].

In the geometric approach, adiabatic elimination includes
a gauge degree of freedom associated with the nonuniqueness
of the parametrization. If the slow dynamics is parametrized
via a density matrix, then one expects as a physical require-
ment that the two maps introduced above should preserve the
quantum structure. This expectation is behind the conjecture
made in Ref. [24]; the authors conjectured the existence of a

FIG. 1. Schematic of the state evolution in a Lindblad system
with timescale separation to illustrate the mechanism of adiabatic
elimination. From an arbitrary initial state, the system rapidly con-
verges to the lower-dimensional invariant manifold (the gray plane),
as illustrated by the red trajectory. In adiabatic elimination, we
parametrize the degrees of freedom on this manifold (called slow
degrees of freedom) by ρs and describe the dynamics within the man-
ifold, illustrated by the black trajectory, via the reduced dynamics,
illustrated by the blue trajectory. Here the reduced system is assumed
to be a qubit. The primary objectives of adiabatic elimination formu-
lation are to calculate the map (Ls) describing the evolution of ρs and
the map (K) assigning the parametrization to the total state, which
follows the Lindblad equation, on the invariant manifold.

gauge choice such that the reduced dynamics is governed by
a Lindblad equation and the assignment is a trace preserving
completely positive map (also called a Kraus map [28]) up
to any order of the asymptotic expansion. So far, this has
been proved to be true for a general class of settings up to
the second-order expansion; it was shown in Ref. [24] that
the evolution equation admits a Lindblad equation and in
Ref. [29] that there always exists a gauge choice ensuring
the Kraus map assignment. Studies of the higher-order con-
tributions have been limited so far. For a two qubit system,
[30] reported an example supporting the conjecture at any
order. Similar but different issues were discussed in Ref. [20].
The authors extended the Schrieffer-Wolff transformation to
open quantum systems. They found that the effective adiabatic
generator, which has the same block matrix structure as the
unperturbed part and provides a first-order approximation of
the total dynamics for all the time, cannot in general be put in
the Lindblad form, even without truncation in the perturbation
series, due to an unavoidable negative coefficient in front
of one of the dissipators. We note that they investigated the
effective generator for the total system, while the conjecture
is about the generator for the reduced system. In our picture,
it is clear that the total dynamics follows a Lindblad equation.
The question is whether it can be split up into a Lindblad equa-
tion on a Hilbert space equivalent to the slow subsystem, and
a Kraus mapping of this parametrization to the total system.

In this paper, we challenge this conjecture by considering
higher-order contributions beyond second-order. We empha-
size that recent advances in quantum technologies warrant
accurate simulation of the slow dynamics. Thus, understand-
ing of higher-order contributions is increasingly in need. We
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specifically consider two examples to investigate the con-
jecture. In the first example, which is a three-level system
dispersively coupled to a strongly dissipative qubit, adiabatic
elimination can be performed without any truncation of the
expansion series. In such all-order analysis, we show that the
parametrization via the partial trace of the total density matrix
with respect to the fast subsystem yields a non-Lindblad equa-
tion violating even positivity, let alone complete positivity,
of the time evolution. This is a result for the partial trace
parametrization and, according to the conjecture, there might
exist a different gauge choice in which the Lindblad form
is restored. To explore the capacity of the gauge degree of
freedom, we consider a qubit resonantly coupled to a strongly
dissipative oscillator as the second example. In this example,
we can rigorously prove that, with fourth-order contributions,
complete positivity of the reduced dynamics cannot be at-
tained, whatever the gauge choice is. Thus, this system serves
as a counterexample to the conjecture. The proof utilizes a
result in Ref. [31] that reveals a constraint on the spectrum
of completely positive qubit maps. We discuss this complete
positivity violation in terms of quantum correlations in states
on the invariant manifold, which imposes a restriction on
the initial state of the reduced system. In contrast with our
previous report [32], which was limited to investigating an
oscillator-qubit system, this paper presents the example of
a three-level system (the first example), where the all-order
analysis is possible. Furthermore, we offer more detailed
discussions to elucidate the interpretation of the complete pos-
itivity violation, aiming to convince readers that such violation
is not an unphysical anomaly but an anticipated consequence
of quantum correlations, and we suggest the possibility of its
experimental verification.

The paper is organized as follows: In Sec. II, the machinery
of adiabatic elimination developed in Ref. [24] is reviewed.
To investigate the role of the gauge degree of freedom, we
derive how the time evolution and assignment maps are mod-
ified in different choices of gauge. In Sec. III, we consider a
dispersively coupled system. For the partial trace, we show
that complete positivity of the evolution is violated in the
all-order analysis. Next in Sec. IV, we consider an oscillator-
qubit system in which the dissipative oscillator system is
eliminated. With this example, we prove the impossibility of
restoring complete positivity by any gauge transformation. In-
terpretations of these findings are presented in Sec. V. Lastly,
concluding remarks are made in Sec. VI. More details about
all the claims can be found in the Appendix.

II. ADIABATIC ELIMINATION

In this section, we review the machinery of adiabatic
elimination developed in Ref. [24]. We consider a system
consisting of a fast decaying subsystem coupled to another
subsystem with a slower timescale. Let HA (HB) be the
Hilbert space of the fast (slow) subsystem. The density matrix
of the composite system, HA ⊗ HB, denoted by ρ follows a
Lindblad equation,

d

dt
ρ = LA ⊗ IB(ρ) + εIA ⊗ LB(ρ) + εLint (ρ) ≡ Ltot (ρ).

(1)

For ξ = A and B, Iξ are the identity superoperators acting
only on operators on Hξ . LA is a Lindbladian acting only on
HA and generally reads

LA• = −i[HA, •] +
∑

k

D[LA,k]•, (2)

with a Hamiltonian HA and jump operators {LA,k}, all of
which are operators on HA. We have also introduced the
commutator superoperator [H, •] = H • − • H and the dissi-
pator superoperator D[L]• = L • L† − (L†L • + • L†L)/2 for
any operator H and L. We assume that the evolution only
with LA exponentially converges to a unique steady state
ρ̄A. In other words, among the spectrum of LA, the eigen-
value zero is simple and the other eigenvalues have strictly
negative real part. LB and Lint are superoperators acting on
HB and HA ⊗ HB, respectively, and are assumed to contain
only Hamiltonian terms. Lastly, ε is a non-negative parameter
representing the timescale separation. Physically, LA and LB

describe the internal dynamics of HA and HB, respectively,
and Lint determines how the two subsystems interact. Note
that the internal dynamics LB of HB is assumed slow, i.e., the
model Eq. (1) must hold in a frame that follows its potential
fast motion.

As described in the introduction section, the goal of adia-
batic elimination is to find the slow dynamics on the invariant
manifold. For linear equations such as a Lindblad equation,
an invariant manifold is characterized by the (right) eigen-
operators of the generator Ltot in Eq. (1) whose eigenvalues
have real part close to zero. Such a subspace is preserved by
the operation of Ltot and thus is invariant with respect to the
time evolution map. We note that, when Lint is nonzero, an
invariant manifold does not exactly coincide with the slow
subsystem HB because of correlations building up on the
invariant manifold (see Sec. V for detailed discussions).

To describe the slow dynamics, we should parametrize
the degrees of freedom on the invariant manifold. Following
Ref. [24], we use a density matrix for the parametrization.
As a mathematical model reduction technique, there is no
preference in that choice. In applications to physics, on the
other hand, it is convenient to employ a parametrization that
facilitates interpretation of the slow dynamics. A suitable
representation in this regard is a density matrix, since most
studies of open quantum systems have been based on it. We
note that the partial trace trA(ρ), with trA the trace over HA,
has commonly been used to represent the reduced state [1,2].
This is a valid gauge choice, as far as the timescales are well
separated (equivalently, ε � 1). This choice plays a central
role in the following discussions. For clear distinction, we
denote the partial trace by ρB = trA(ρ) and general density
matrix parametrization by ρs.

Once the parametrization is fixed to ρs, we seek to find
the following two maps (see Fig. 1). One, denoted by Ls, de-
scribes the time evolution of ρs, namely, (d/dt )ρs = Ls(ρs).
The other, denoted by K, maps ρs to the solution ρ of the total
Lindblad equation Eq. (1), ρ = K(ρs). Throughout this paper,
we assume that K and Ls are linear and time-independent.
Since ρ satisfies Eq. (1), we obtain

K(Ls(ρs)) = Ltot (K(ρs)), (3)
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from which we can determine K and Ls in principle. We call
this relation the invariance condition in this paper.

Except special cases (see Sec. III), it is difficult to find
K and Ls satisfying the invariance condition Eq. (3) exactly.
To proceed, we assume ε � 1 and perform the asymptotic
expansions as

K =
∞∑

n=0

εnKn, Ls =
∞∑

n=0

εnLs,n. (4)

When ε = 0, the solution of Eq. (1) after the decay of the fast
subsystem reads ρ(t ) = ρ̄A ⊗ trA(ρ(t = 0)) with the initial
density matrix ρ(t = 0). Therefore, the ε0 order elements are
given by

K0(ρs) = ρ̄A ⊗ ρs, Ls,0(ρs) = 0. (5)

The higher-order contributions can be evaluated by in-
serting the expansions Eq. (4) into the invariance condition
Eq. (3). Detailed calculations are presented in Appendix A.
We recall that, as the parameter choice can involve differ-
ent options at any orders of ε, the solution is not unique.
This reflects into the fact that, due to the singularity of LA,
trA ◦ Kn�1 cannot be fully determined from the invariance
condition. In what follows, we denote G ≡ trA ◦∑∞

n=1 εnKn,
which can be any linear and time-independent superoperator
on HB. Together with Eq. (5), we find

ρB = trA(ρ) = trA(K(ρs)) = ρs + G(ρs). (6)

Throughout this paper, we assume that (IB + G) is invertible,
which is valid for ε � 1.

Let us see how K and Ls for an arbitrary gauge choice are
related to those for the partial trace. For the sake of clarity,
we write the gauge dependence explicitly as KG and LG

s .
We note in advance that the following relations are results of
general basis change and are not associated with the quantum
structure. For KG, note ρ = KG(ρs) = KG=0(ρB). Substitut-
ing Eq. (6) into the rightmost side gives

KG = KG=0 ◦ (IB + G). (7)

For LG
s , the time evolution of the partial trace reads

LG=0
s (ρB) = (d/dt )ρB = (d/dt )[ρs + G(ρs)] = LG

s (ρs) +
G(LG

s (ρs)). Comparing the leftmost and rightmost sides, we
find LG=0

s ◦ (IB + G) = (IB + G) ◦ LG
s . From the existence

of (IB + G)−1, we obtain

LG
s = (IB + G)−1 ◦ LG=0

s ◦ (IB + G). (8)

This indicates that the spectrum of Ls or the decay rate inside
an invariant manifold is independent of gauge choice. This is
expected since the decay rate must not change depending on
the way the slow dynamics is parametrized. Equations (7) and
(8) are useful in analyzing possible transformations that the
gauge degree of freedom can make (see Sec. IV).

As summarized in the introduction, the authors of Ref. [24]
conjectured the existence of a gauge choice leading to reduced
dynamics described by a Lindbladian,

∑n
j=0 ε jLs, j (ρs) =

−i[Hs, ρs] +∑k D[Ls,k](ρs) with a Hamiltonian Hs and jump
operators {Ls,k}, and assignment described by a Kraus map,∑n

j=0 ε jK j (ρs) =∑k MkρsM
†
k with operators Mk : HB →

HA ⊗ HB, up to εn for any positive integer n. For a general
class of settings, this conjecture has been proved up to n = 2

so far. In the following sections, we present examples where
complete positivity of the reduced dynamics is violated with
higher-order (n > 2) terms.

III. COMPLETE POSITIVITY VIOLATION IN ALL-ORDER
ADIABATIC ELIMINATION

A. Problem setting

In this section, we demonstrate complete positivity viola-
tion of the reduced dynamics. To stress that the violation is not
due to the truncation of the perturbation series, we consider
an exactly solvable system where K and Ls satisfying the
invariance condition (3) can be obtained without the asymp-
totic expansion. The total system consists of a target qudit
(d dimensional) system being coupled to another dissipative
system through a single-term Hamiltonian. To represent qu-
dit operators, we introduce Em,n ∈ Rd×d (m, n = 1, . . . , d ) as
[Em,n]i, j = 1 (i = m and j = n) and 0 (else), and Em = Em,m

in some canonical basis. With these, we assume the following
form of LB and Lint as in Ref. [30]:

εLB• = −i

[
d∑

m=1

ωmEm, •
]
,

and

εLint• = i

[
d∑

m=1

χm(VA ⊗ Em), •
]
, (9)

where {ωm} are the transition frequencies of the qudit, {χm}
are the coupling constants, and VA is an operator on HA.
Regarding LA, we only assume the existence of a unique
steady state and do not specify its form in computing analytic
expressions of K and Ls. When we discuss whether Ls is
a Lindbladian later, we consider a driven-dissipative qubit
system represented by

LA• = −i

[
�

2
σx + 


2
σz, •

]
+ κD[σ−]•, VA = σz, (10)

with the drive amplitude �, the drive detuning from the
qubit frequency 
, and the Pauli matrices {σi}i=x,y,z, and
σ± = (σx ± iσy)/2. Assuming the qudit to be a d-level ap-
proximation of an optical cavity, this Lindbladian describes
a quantum nondemolition measurement of the photon number
in the absence of dissipation [33].

Note that LB and Lint commute. In the rotating frame with
respect to the Hamiltonian

∑d
m=1 ωmEm, thus, the interaction

Hamiltonian does not change, while the qudit internal dynam-
ics becomes trivial as LB = 0. In the following, we consider
adiabatic elimination in this frame.

B. Adiabatic elimination at any order

We recall that our goal is to find maps K and Ls satisfying
the invariance condition Eq. (3). To this end, we note that

Ltot (A ⊗ Em,n) = L(m,n)
A (A) ⊗ Em,n, (11)

with A any operator on HA and

L(m,n)
A (A) = LA(A) + i(χmVAA − χnAVA).
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As detailed in Appendix B 1, we then find

KG=0(ρB) =
d∑

m,n=1

Qm,n ⊗ EmρBEn, (12)

and

LG=0
s (ρB) =

d∑
m,n=1

λm,n EmρBEn, (13)

where, for m, n = 1, . . . , d , λm,n is the eigenvalue of L(m,n)
A ,

which is in fact an eigenvalue of Ltot as seen from Eq. (11),
with the smallest absolute real part and Qm,n is the correspond-
ing (right) eigenoperator that is normalized as trA(Qm,n) = 1.
These are for the partial trace parametrization (G = 0) as
confirmed by the relation trA(KG=0(ρB)) = ρB [see Eq. (6)].
One can check the invariance condition (3) using Eq. (11).

In what follows, we investigate whether LG=0
s is a Lind-

bladian. According to the technical results in Appendix C 4,
this holds if and only if S	λS is positive semidefinite, which
we denote as S	λS � 0 in the following, with the matrix
transpose 	 and a matrix S defined in Eq. (C13).

As an example, let us see the case d = 2. We find S	λS =
Re(−λ1,2)/2. As mentioned underneath Eq. (13), λ1,2 is an
eigenvalue of Ltot. From the stability condition, S	λS � 0,
and thus LG=0

s always admits the Lindblad form. This was
shown in Ref. [30], where the authors further proved the
existence of gauge choices such that KG is completely positive
and surjective.

C. Qutrit (d = 3) case

When d = 3, we find

S	λS =
(

Re(−λ1,2 )
2

iIm(λ1,2 )−λ1,3+λ2,3

6
−iIm(λ1,2 )−λ∗

1,3+λ∗
2,3

6
Re(λ1,2−2(λ1,3+λ2,3 ))

18

)
, (14)

with Im denoting the imaginary part. LG=0
s is a Lindbladian if

and only if this matrix is positive semidefinite. After sorting
out, the condition reads D � 0 with D defined by

D = |λ1,2 + λ1,3 + λ2,3|2

− 2(|λ1,2|2 + |λ1,3|2 + |λ2,3|2) − 4Im(λ1,2)Im(λ2,3).
(15)

Unlike the case d = 2, it is not clear if this is satisfied gen-
erally. To proceed, we numerically evaluate the sign of D
when the qutrit is coupled to a fast decaying qubit described
by Eq. (10). In this evaluation, we assume (χ1, χ2, χ3) =
(0, χ, 2χ ) with χ/κ = 0.1. The results are shown in Fig. 2.
We can see the blue regions where D is negative. In these re-
gions, one of the dissipators constituting LG=0

s has a negative
coefficient. Therefore, unlike the case d = 2, LG=0

s is not a
Lindbladian in general. We note that the non-Lindblad form
of LG=0

s is obtained even with infinitesimal coupling constants
as discussed in Appendix B 2.

To be more precise, it is complete positivity of the time
evolution that is violated. As discussed in the introduction,
the generator is a Lindbladian if and only if the time evolution
map satisfies the semigroup relation and is a Kraus map at
any time. In the current problem, the time evolution map,
exp(LG=0

s t ) with t ∈ R�0, satisfies the semigroup relation

FIG. 2. Parameter regions ensuring the Lindblad form of the time
evolution generator LG=0

s determined by the sign of D [see Eq. (15)].
The Lindblad form is attained in the red region (D > 0), while
a dissipator comes with a negative coefficient in the blue region
(D < 0). The coupling strengths are set (χ1, χ2, χ3) = (0, χ, 2χ )
with χ/κ = 0.1.

and preserves the Hermitian property and trace. Thus, the
non-Lindblad form of LG=0

s detected by the negative sign
of D signifies the complete positivity violation of the time
evolution map exp(LG=0

s t ). In this qudit example, not only
complete positivity, even positivity is violated. To see this, we
note that the operation of the time evolution map exp(LG=0

s t )
reads

eL
G=0
s t (ρB) =

d∑
m,n=1

eλm,nt EmρBEn.

From Lemma C 3 in Appendix C 3, a superoperator of this
form is positive if and only if it is completely positive. Thus,
the violation of complete positivity is accompanied by that of
positivity. We present an interpretation of such a nonpositive
evolution in Sec. V.

This example demonstrates that complete positivity (and
positivity) of the partial trace evolution can be violated in
adiabatic elimination, even without truncation in the series
expansion. In this situation, the conjecture in Ref. [24] states
that the negative coefficient in front of a dissipator can be
eliminated by a gauge transformation Eq. (8), and complete
positivity of the reduced dynamics is restored in a different
parametrization. In the current example, it is difficult to ex-
amine this conjecture because a simple single criterion like
Eq. (15) holds for d = 3 only under the special conditions
where G = 0 yields a diagonal superoperator [Eq. (13)].

IV. JAYNES-CUMMINGS MODEL
WITH DAMPED OSCILLATOR

A. Problem setting

To investigate roles of the gauge degree of freedom more
closely, this section is dedicated to a slow qubit system
being coupled to a strongly dissipative oscillator system
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[32]. We assume that the Hamiltonian is given by the
Jaynes-Cummings Hamiltonian and that the oscillator is
coupled to a Markovian environment at finite temperature.
The qubit is assumed to be nondissipative for simplicity. In
the frame rotating with the qubit frequency, we have

LA• = −i[
Aa†a, •]

+ γ (1 + nth )D[a] • +γ nthD[a†]•, (16)

εLint• = −i[g(a† ⊗ σ− + a ⊗ σ+), •],

and LB = 0, with the oscillator detuning from the qubit
frequency 
A, the decay rate γ , the asymptotic oscillator
quantum number in the absence of coupling nth [see
Eq. (D4)], and the coupling constant g. Operators a and
a† are the annihilation and creation operators of the oscillator,
respectively. This form of Lindbladian is used as a benchmark
when analyzing oscillator-qubit interacting systems in cavity
or superconducting circuit architectures.

The full spectrum and eigenoperators of LA are provided
in Appendix D. The result confirms, as long as γ > 0, the
existence of a unique steady state ρ̄A given by Eq. (D3).

B. Fourth-order adiabatic elimination

To our knowledge, the invariance condition Eq. (3) for
this system cannot be solved exactly. Thus, we perform the
asymptotic expansion as discussed underneath Eq. (4). In this
example, the timescale of the oscillator system is character-
ized by γ −1, while that of the interaction is |g|−1. Thus, the
timescale separation parameter ε reads ε = |g|/γ . Assuming
ε � 1, we calculate contributions up to the fourth order.

As shown in Appendix D, Ls for the partial trace, LG=0
s ,

reads up to the fourth-order expansion

LG=0
s • = −i

[
ω

(4)
B

2
σz, •

]

+ γ
(4)
− D[σ−] • +γ

(4)
+ D[σ+] • +γ

(4)
φ D[σz] • . (17)

The coefficients ω
(4)
B , γ

(4)
± , and γ

(4)
φ are real numbers defined

by

ω
(4)
B = Im(b− + b+), γ

(4)
± = 2Re(b±),

and

γ
(4)
φ = −8g4n+n−[3 − 6(2
A/γ )2 − (2
A/γ )4]

γ 3[1 + (2
A/γ )2]3
,

where b± are

b± = 2g2n±
γ̄

+ 8g4n2
±

γ̄ 3
+ 8g4n+n−(1 + 8iγ
A/|γ̄ |2)

γ̄ ∗|γ̄ |2 ,

with n+ = nth, n− = 1 + nth, and γ̄ = γ + 2i
A.
The coefficient ω

(4)
B represents the qubit frequency shift

due to the coupling with the oscillator. Up to the second order,
ω

(2)
B , it reads ω

(2)
B = −4
Ag2(n− + n+)/|γ̄ |2. The γ

(4)
± and

γ
(4)
φ terms describe the effective qubit decay induced by the

coupling to the dissipative oscillator. On the one hand, when
|g|/γ � 1, γ

(4)
± are dominated by the second-order contribu-

tions given by γ
(2)
± = 4g2γ n±/|γ̄ |2 > 0, and thus γ

(4)
± > 0.

On the other hand, γ
(4)
φ involves only the fourth-order con-

tribution and

γ
(4)
φ < 0 when

nth > 0 and |
A|/γ <

√
2
√

3 − 3/2 � 0.34,

even if the condition for the asymptotic expansion, |g|/γ � 1,
holds.

Even when γ
(4)
φ < 0, the stability of the time evolution can

be confirmed as follows. As calculated in Appendix E 1, the
spectrum of LG=0

s reads{
0,−1/T2 + iω(4)

B ,−1/T2 − iω(4)
B ,−1/T1

}
,

with 1/T1 = γ
(4)
− + γ

(4)
+ and 1/T2 = 1/(2T1) + 2γ

(4)
φ . Since

γ
(4)
± > 0 and γ

(4)
±  |γ (4)

φ | when |g|/γ is small, we have
T1 > 0 and T2 > 0. Therefore, the time evolution is stable
even when γ

(4)
φ is negative.

For a similar reason, the time evolution map is positive
even when γ

(4)
φ < 0. We provide a proof in Appendix E 2.

However, as detailed in Sec. IV C, the evolution is not com-
pletely positive when γ

(4)
φ < 0. This mechanism appears to

be related to the well-known example of the transpose of a
matrix, which is positive but not complete positive. Indeed,
that standard example essentially says that an evolution which
contracts a single Bloch vector direction fast, but the two other
directions slowly, is not completely positive. We here have this
situation with γ

(4)
φ < 0, slowing down the contraction of the x

and y components of the Bloch vector.

C. Gauge transformation

When γ
(4)
φ < 0, LG=0

s is thus not a Lindbladian. To be more
precise, the time evolution map with LG=0

s is not completely
positive. On the other hand, the Lindblad form might be re-
covered in another gauge choice, as conjectured in Ref. [24].
Here, however, we prove that this is impossible.

As shown in Eq. (8), the gauge transformation induces a
similarity transformation. To our knowledge, similarity trans-
formations of the time evolution generator have not been
discussed extensively in the literature. To demonstrate its role,
therefore, we first consider the following toy example. Sup-
pose a time evolution equation (d/dt )ρ = L0(ρ) with

L0• = −i
[ω0

2
σz, •

]
+ γ0D[σx] • −γ0D[σy]•,

where ω0 and γ0 are real and positive parameters. To en-
sure the stability of the evolution, we assume ω0 > 2γ0. The
negative sign in front of D[σy] indicates that L0 is not a
Lindbladian. This negativity can be removed by the similarity
transformation

L′
0 = e−q0D[σx+σy] ◦ L0 ◦ eq0D[σx+σy],

with q0 defined by tanh(4q0) = 2γ0/ω0 because L′
0 reads

L′
0• = −i

[
ω′

0

2
σz, •

]
,

with ω′
0 = (ω2

0 − 4γ 2
0 )1/2. As a result, the above similarity

transformation restores the Lindblad form.
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Since L0 and L′
0 have the same spectrum, so do the time

evolution maps exp(L0t ) and exp(L′
0t ). At infinitesimal t ,

exp(L′
0t ) is a Kraus map, while exp(L0t ) is not. Thus, this

example shows that one cannot judge only from the spectrum
whether the map is a Kraus map or not. On the other hand, in
this example, one can anticipate the existence of a Kraus map
which has the same spectrum as exp(L0t ). Indeed, the spec-
trum of exp(L0t ) is given by {1, 1, exp(iω′

0t ), exp(−iω′
0t )}.

This implies that the time evolution merely induces a rotation
of the Bloch vector without damping, which then implies that
the evolution can be described by a unitary transformation in
a suitable basis. In fact, this argument can be generalized at
least for qubit maps. That is, for a given set of four numbers,
� ∈ C4, one can characterize the existence of a Kraus map
whose spectrum is given by �. This is guaranteed by Theorem
1 of Ref. [31] which states the following:

Theorem (Wolf and Perez-Garcia). Given � ∈ C4, the fol-
lowing statements are equivalent:

(1) There exists a Kraus map the spectrum of which is
given by �.

(2) � = 1 ∪ λ, where λ ∈ C3 is closed under complex
conjugation. Furthermore, if we define s ∈ R3 by si = λi if
λi ∈ R and si = |λi| otherwise, then

s ∈ T , (18)

where T ⊂ R3 is the tetrahedron whose corners are (1,1,1),
(1,−1,−1), (−1, 1,−1), and (−1,−1, 1).

The spectrum of the time-evolution map, exp(LG
s t ), is

gauge invariant and is given by{
1, e−t/T2+iω(4)

B t , e−t/T2−iω(4)
B t , e−t/T1

}
(19)

in any gauge choice G. Using the above theorem, we can show
that, when γ

(4)
φ < 0 and for an infinitesimal time t , there does

not exist a Kraus map whose spectrum reads as Eq. (19). The
proof is provided in Appendix E 3. As the time evolution with
a Lindblad generator is completely positive in the entire time
regime, this result indicates that LG

s is not a Lindbladian when
γ

(4)
φ < 0, in any gauge choice G.

In conclusion of this section, the oscillator-qubit system
discussed here serves as a counterexample to the conjecture
in Ref. [24].

V. DISCUSSION

In this section, we delve into the interpretation of the
complete positivity violation. This section is structured as
follows: Initially, a summary of the findings obtained so far is
presented, together with their connections to related previous
studies, in Sec. V A. To interpret the results for the partial trace
parametrization, we recall that adiabatic elimination describes
the evolution on the invariant manifold. For initial states out-
side the invariant manifold, the short-time transient regime
is neglected. The impact of this exclusion on the properties
of the generator is addressed in Sec. V B. In the presence of
the interaction term εLint, the invariant manifold is in general
characterized by correlated states. The evolution on the invari-
ant manifold thus starts with an initially correlated state and
the complete positivity violation can be understood from this
viewpoint. These are further elaborated in Sec. V C. At last,

several remarks on the role of the gauge degree of freedom
are presented in Sec. V D.

A. Summary of the results in the previous sections

We have seen that it is the violation of complete positivity
that causes a non-Lindblad form of the generator. The genera-
tor is given by a Lindbladian if and only if the time evolution
map satisfies the semigroup relation and is a Kraus map. The
semigroup relation is guaranteed because the slow dynamics
is restricted on an invariant manifold exactly. The Hermitian
and trace preservations are also satisfied generally. Complete
positivity, however, is a nontrivial condition and it can be
violated as we have seen in the previous sections. We recall
that not only complete positivity but even positivity of the time
evolution map can be violated as shown with the qubit-qutrit
example in Sec. III. In this case, the density matrix acquires
a negative eigenvalue depending on the initial state, and thus
the result cannot be interpreted physically on ρB alone.

In addition, we stress that the complete positivity violation
is not an artifact caused by truncating the series expansion
at a finite order. With the qubit-qutrit example presented in
Sec. III, we have seen that the negative coefficient in front
of a dissipator appears even in all-order analysis. For the
oscillator-qubit example in Sec. IV, contributions higher than
the fourth-order bring corrections to the spectrum of Ls.
However, those corrections cannot restore complete positivity.
This can be seen from the condition Eq. (E2) for complete
positivity given in Appendix E. These observations differ
from the argument in Ref. [34], where the authors derived a
non-Lindblad master equation in a fourth-order perturbation
calculation applied to a Hamiltonian system and speculated
that the deviation from the Lindblad form could be attributed
to the truncation in the perturbation series.

As a master equation violating positivity, let alone com-
plete positivity, the Redfield equation is widely known [1,35].
While it was originally derived for Hamiltonian systems, the
authors of Ref. [14] applied the same derivation procedure
for a Lindblad system and found similarly a non-Lindblad
master equation for the reduced dynamics. We note that the
Redfield equation is a second-order master equation. In our
settings, on the other hand, the Lindblad form is generally
guaranteed in the second-order approximation. The difference
attributes to the timescale of the internal dynamics of HB

[the term involving LB in Eq. (1)]. While we assume a slow
timescale and treat it perturbatively, the derivation of the
Redfield equation leading to positivity violations in Ref. [14]
assumes a fast timescale. It is noteworthy that, even with a
slow timescale, the complete positivity violation can arise in
the higher-order approximation. The positivity violation in the
Redfield equation has been explored in the literature and we
discuss connections to our findings in Sec. V B.

B. Transient regime

To understand the origin of a non-Lindblad form, let us
recall the reason why we expected a completely positive
evolution in the first place. To this end, we write the time
evolution of the partial trace via that of the total state. If we

062206-7



TOKIEDA, ELOUARD, SARLETTE, AND ROUCHON PHYSICAL REVIEW A 109, 062206 (2024)

FIG. 3. Schematic illustration of the total state evolution with
an initial product state. On the grayish planes showing invariant
manifolds with ε = 0 (top) and ε > 0 (bottom), the reddish areas
show a set of density matrices. As indicated by the green arrow,
the trajectory starting from a product state is first attracted to the
invariant manifold with ε > 0 (the darker grayish plane) and then
is restricted there for t � tinv (the slow dynamics). While complete
positivity is ensured for the partial trace evolution including the
attracting phase [ρB(t = 0) → ρB(t )], it is not always the case for
the slow dynamics [ρB(tinv ) → ρB(t )].

assume a product initial state with ρ̄A, we have

ρB(t ) = trA ◦ eLtott [ρ̄A ⊗ ρB(t = 0)]. (20)

Note that trA, exp(Ltott ), and the map that sends ρB(t = 0)
to ρ̄A ⊗ ρB(t = 0) are all completely positive. Therefore, the
time evolution map from an initial state ρB(t = 0) to ρB(t ) is
completely positive.

Here it should be recalled that, in adiabatic elimination, we
initialize a state on an invariant manifold. When ε = 0, a set
of density matrices on the invariant manifold is characterized
by product states as KG=0

0 (ρB) = ρ̄A ⊗ ρB [see Eq. (5)]. In
this case, Eq. (20) describes the slow dynamics on the in-
variant manifold, where ρ̄A is fixed. When ε > 0, however,
the invariant manifold is not anymore of the form {ρ̄A ⊗ ρB},
so the initial state of Eq. (20) does not lie on the invariant
manifold, and Eq. (20) includes the transient dynamics of the
fast degrees of freedom. Long after the decay time of the fast
subsystem, say t � tinv, the total state ρ(t ) is approximately
[36] on the invariant manifold. In this situation, the time
evolution map calculated in adiabatic elimination is the one
that sends ρB(tinv) = trA(ρ(tinv)) to ρB(t ) (t � tinv). There is
no guarantee that this map is completely positive, even though
the map that sends ρB(t = 0) to ρB(t ) is completely positive.
This situation is illustrated in Fig. 3.

In the transient regime, a master equation for the partial
trace depends explicitly on time owing to the evolution of the
fast degrees of freedom. After relaxation of them, we obtain a
time-independent master equation, and that is what we calcu-
late in adiabatic elimination. In this view, we note a similarity
to nonpositivity in the Redfield equation. The Redfield equa-
tion with the asymptotic time-independent coefficient violates
(complete) positivity. On the other hand, positivity is restored
by taking into account time dependence of the coefficient
as shown in Refs. [37–39]. The same should hold true in
the composite Lindblad systems discussed in this paper. In

Appendix F, this expectation is confirmed for the qudit system
in Sec. III by computing the exact master equation for the
partial trace with a product initial state. The non-Lindblad
generators found in this paper can thus be considered as
a signature of non-Markovianity [40,41], in the sense that
they must be associated with particular past evolution in the
transient regime. While the analytic structure of the complete
positivity violation is similar between higher-order adiabatic
elimination and the Redfield equation, the geometric picture is
not applicable to the latter. We discuss below that it provides
us with a clear interpretation of the nonpositive evolution.

C. Correlated initial states

To account for the initialization on the invariant manifold,
Eq. (20) should be rewritten as

ρB(t ) = trA ◦ eLtott ◦ KG=0(ρB(t = 0)). (21)

From this equation and complete positivity of trA and eLtott , the
complete positivity violation of the time evolution map stems
from that of KG=0. In what follows, we investigate properties
of KG=0. Here we concentrate on the oscillator-qubit system.
A similar analysis for a general class of settings is presented
in Appendix G 2.

For the oscillator-qubit system, let us assume 
A = 0 for
simplicity. Then, the expansion up to the second-order of g/γ
reads (see Appendix G 2)

KG=0(ρB) = W (ρ̄A ⊗ ρB)W †

−
[

4g2(1 + nth )

γ 2
(IA ⊗ σ−)(ρ̄A ⊗ ρB)(IA ⊗ σ−)†

+ 4g2nth

γ 2
(IA ⊗ σ+)(ρ̄A ⊗ ρB)(IA ⊗ σ+)†

]
, (22)

with IA the identity operator on HA and W = IA ⊗ IB −
(2ig/γ )(a† ⊗ σ− + a ⊗ σ+) − (2g2/γ 2)(a†a − nthIA) ⊗ IB.

Because of the minus signs in the last two lines, the second-
order expansion of KG=0 is not completely positive. It should
be noted that the time evolution map can be completely pos-
itive even if KG=0 is not. If nth = 0, for instance, γ

(4)
φ = 0

and the generator LG=0
s is in the Lindblad form up to the

fourth-order terms, despite that KG=0 still contains a negative
term.

Strikingly, KG=0 in Eq. (22) is not even positive. We prove
in Appendix G 2 that KG=0(ρB) is not positive semidefinite
for any pure reduced state ρB. This situation can be illustrated
as Fig. 4, where we introduce the following symbols; let
Minv be the set of density matrices on the invariant mani-
fold and D (H ) be the set of density matrices on a Hilbert
space H . The assignment map is KG=0 : D (HB) → Minv

and, conversely, the partial trace operation trA can be seen
as a map trA : Minv → D (HB). We first note that, for every
ρ∗ ∈ Minv, its partial trace is a density matrix, ρ∗

B ≡ trA(ρ∗) ∈
D (HB), and we have ρ∗ = KG=0(ρ∗

B) by the construction of
KG=0. In addition to this, we have seen for the oscillator-qubit
system that the second-order expansion of KG=0 is not pos-
itive. These imply Minv ⊂ KG=0(D (HB)). Similarly, while
the partial trace map is injective from trA ◦ KG=0 = IB and
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FIG. 4. Schematic illustration of the nonsurjective property of
the partial trace trA and the positivity violation of KG=0 for the
oscillator-qubit system. Density matrices on the invariant manifold
Minv shown by the reddish area include entangled states when ε >

0. As a result, the partial trace trA(Minv ), shown by the reddish
spheroid, yields a subset of the Bloch sphere D (HB). Conversely,
assignment of the whole Bloch sphere KG=0(D (HB)) results in a
larger set, enclosed by the dashed line on the invariant manifold, than
only the positive-semidefinite matrices of Minv.

the uniqueness of KG=0, it is not surjective because, for the
oscillator-qubit system, any pure density matrix on HB cannot
be obtained by taking the partial trace of states in Minv. In
other words, we have trA(Minv) ⊂ D (HB).

The positivity violation of KG=0 (the nonsurjective prop-
erty of the partial trace map) can be understood from the
entanglement between the two subsystems as discussed for
Hamiltonian systems in Ref. [42]. When ε = 0, states in
Minv are characterized by ρ̄A ⊗ ρB as mentioned above. For
these noncorrelated product states, any reduced state ρB can
be assigned to a valid total state. When ε > 0, on the other
hand, states in Minv are no longer in the product form due to
the interaction term. At the second-order of ε, they include
entangled states. Then, there exist pure reduced states that
cannot be assigned to a valid total state.

This perspective also provides an interpretation of why the
Lindblad form is attained including up to the second-order
contribution. This topic is further explored in Appendix G 3,
where we also speculate that LG=0

s might admit the Lindblad
form including the third-order contribution in general settings.
Paolo examined a similar problem under some assumptions
and found the Lindblad form of the generator including up to
the third-order contribution in a gauge choice [43].

Complete positivity of the reduced dynamics for correlated
initial states have been investigated in various Hamiltonian
systems [44–46]. A remarkable result was given in Ref. [47],
in which the authors proved that vanishing quantum discord is
sufficient for completely positive reduced dynamics. Quantum
discord is a measure of the quantumness of correlation in a
state, that quantifies the amount of information loss when sub-
jected to the least disturbing projective measurement [48–50].
In Ref. [51], it was claimed that vanishing quantum discord

is also necessary for completely positive reduced dynam-
ics. However, subsequent research revealed counterexamples
[52,53]. It turned out that vanishing quantum discord is equiv-
alent to completely positive reduced dynamics only for initial
states in the form

ρ =
∑
i, j

ci j φi j ⊗ |i〉〈 j|, (23)

with complex coefficients {ci j}, fixed environment operators
{φi j}, and an orthonormal basis in the target system {|i〉} [51].

Note that, for the dispersive coupling system in Sec. III,
states on the invariant manifold adhere to the configuration
Eq. (23) [see Eq. (12)]. Here we estimate quantum discord
of this system to examine its potential correlations with
the complete positivity violation. Detailed methodology for
estimating quantum discord through random sampling is pre-
sented in Appendix H, along with a thorough discussion on
the connections between the previous studies and the present
study. Figure 5 compares representative values of quantum
discord on the invariant manifold and the extent of complete
positivity violation across various parameter sets (�,
), with
the coupling strength fixed at χ/κ = 0.1. The latter is esti-
mated through the negativity of the coefficients in front of
dissipators as

η(Minv) =
∑2

i=1 (|μi| − μi )/2∑2
i=1 |μi|

, (24)

with μi (i = 1, 2) being the eigenvalues of the matrix S	λS
in Eq. (C14). It follows that 0 � η(Minv) � 1 and that
η(Minv) = 0 if and only if the reduced dynamics are com-
pletely positive. We see in Fig. 5 a qualitative agreement in
the parameter dependence; quantum discord on the invariant
manifold tends to be large in the parameter regime where there
is a significant violation of complete positivity. We observe
a similar trend with different coupling strengths χ/κ . These
observations are consistent with what one would expect from
our interpretation of the complete positivity violation.

D. Role of the gauge degree of freedom

So far we have concentrated on the parametrization via
the partial trace. Now let us consider how the gauge degree
of freedom plays its role in the above discussion. While the
second-order expansion of KG=0 is not completely positive,
there always exist gauge choices G such that KG has that
property. This was proved in Theorem 6 of Ref. [29] and the
calculation is repeated in Appendix G 1. The gauge choices
restoring complete positivity of the assignment are obtained in
Eq. (G5). For the oscillator-qubit system, one choice [setting
z = 1 in Eq. (G5)] reads

G(ρs) = 4g2(1 + nth )

γ 2
D[σ−](ρs) + 4g2nth

γ 2
D[σ+](ρs),

and KG up to the second-order expansion is given by

KG(ρs) = W (ρ̄A ⊗ ρs)W †,

where W was introduced in Eq. (22).
Even when KG is completely positive, however, the

Lindblad form of the generator LG
s is not guaranteed. As in
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FIG. 5. Correlation between (left) the strength of correlation on the invariant manifold measured by quantum discord, δB(Minv ) in Eq. (H2),
and (right) the degree of the complete positivity violation measured by the negativity of the coefficients in front of dissipators, η(Minv )
in Eq. (24). To obtain the left figure, we sample Nproj = 500 orthogonal projectors and Nstate = 500 states on the invariant manifold (see
Appendix H for details). These are the results with the coupling strength (χ1, χ2, χ3) = (0, χ, 2χ ) and χ/κ = 0.1, the same as Fig. 2.

Eq. (21), we have

ρB(t ) = trA ◦ eLtott ◦ KG(ρs(0)). (25)

Note that the map ϒG
t = trA ◦ eLtott ◦ KG is completely pos-

itive, but now its input is not ρB(0) anymore. To recover a
semigroup starting at identity of the form exp(LG

s t ), we must
either map ρs(0) to ρB(0), or map ρB(t ) to ρs(t ) in Eq. (25).
The conclusions will be similar, so let us consider the evolu-
tion of ρs by using ρs(t ) = (IB + G)−1(ρB(t ));

ρs(t ) = (IB + G)−1 ◦ ϒG
t (ρs(0)). (26)

When KG is completely positive, so is (IB + G). However,
(IB + G)−1 is not completely positive in general, neither is
the time evolution map for ρs, i.e., (IB + G)−1 ◦ ϒG

t . We
have seen above that the complete positivity violation of the
partial trace evolution is a natural consequence of quantum
correlations. On the other hand, we cannot judge from Eq. (26)
whether it is possible to restore complete positivity or not.
This underlines the importance of the analysis in Sec. IV.

These results add a new perspective to the debate be-
tween Pechukas and Alicki regarding complete positivity of
the reduced dynamics [42]. A representation akin to ρB(t ) =
ϒG

t (ρs(0)) was considered by Alicki as an example of com-
pletely positive evolution starting from a correlated initial
state. In Pechukas’ reply, it was emphasized that one should
discuss the property of the map sending ρB(0) to ρB(t ), which
might not be completely positive. This counterargument over-
looks the possibility of achieving complete positivity in the
map sending ρs(0) to ρs(t ). Such an alternative representation
of the reduced dynamics ρs, which is different from the con-
ventional partial trace ρB, naturally emerges in the geometric
formulation as a different parametrization of the invariant
manifold. The analysis in Sec. IV elucidates that achieving
complete positivity through this alternative representation is,
generally speaking, impossible.

In Appendix I, further discussions are presented on the
potential roles that the gauge degree of freedom plays in

the practical applications of this formulation, along with the
challenges encountered.

VI. CONCLUDING REMARKS

Higher-order adiabatic elimination (higher than the
second-order) can lead to the slow evolution of the partial
trace that is not completely positive. This is due to the fact that
states on an invariant manifold include correlation between
the two initial subsystems, which imposes a restriction on the
domain of proper reduced states. Although the existence of a
gauge choice restoring complete positivity was conjectured,
we have shown that it is not the case for the oscillator-qubit
system discussed in Sec. IV.

On experimental side, the fact that a higher-order reduced
model (for the partial trace) can potentially lead to unphysical
results can be understood as follows. A first nontrivial point is
to prepare an initial state within the slow invariant manifold.
Subsequently, the evolution of this state could be tracked to
deduce rates related to LG=0

s . A reduced model described by
a non-Lindblad generator then implies that, even if the invari-
ant manifold fits the dimensions of e.g., a qubit, we cannot
interpret it as a standalone decaying qubit. To test this, one
way is to measure rates at which the slow dynamics decays,
such as T1 and T2 relaxation times for a qubit reduced system.
While those values are positive from the stability condition,
we expect the violation of relations among them imposed by
the complete positivity condition, such as T1 � T2/2.

In closing, we discuss two further questions raised in this
paper. First, the oscillator-qubit system discussed in Sec. IV
is so far the only example where we can rigorously prove
the impossibility of restoring complete positivity by the gauge
transformation. It is not clear how general this conclusion is.
As discussed underneath Eq. (26), we have not yet developed
an intuitive understanding of such impossibility. Our proof
utilizes the theorem in Ref. [31], which is applicable only
to qubit maps. Future work in this direction would provide
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us with a new insight into a constraint on the spectrum of
quantum maps in general. A second question is whether it
is possible to find a gauge choice leading to a positive and
surjective assignment map KG, which is relevant to practical
applications as detailed in Appendix I. The existence of a
such a gauge choice has so far been confirmed only for a
dispersively coupled two qubit system [30]. To prove such
surjectivity, we need to characterize density matrices in the
total system. This problem is already complicated for three-
dimensional systems [54] and a new approach is warranted.
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APPENDIX A: PERTURBATION SOLUTION
TO THE INVARIANCE CONDITION

In this Appendix, we present a way to evaluate the higher-
order contributions in the asymptotic expansions Eq. (4).
Inserting the expansions into the invariance condition Eq. (3),
the nth order of ε reads

ρ̄A ⊗ Ls,n(ρs) = LA ⊗ IB(Kn(ρs)) + Ln(ρs), (A1)

where we have introduced

Ln(ρs) = (IA ⊗ LB + Lint )[Kn−1(ρs)]

−
n−1∑
k=1

Kk (Ls,n−k (ρs)).

Since trA(LA•) = 0, the partial trace over HA leads to Ls,n in
the form

Ls,n(ρs) = trA(Ln(ρs)). (A2)

Equation (A1) can then be rearranged with known terms on
the right-hand side:

LA ⊗ IB(Kn(ρs)) = ρ̄A ⊗ Ls,n(ρs) − Ln(ρs). (A3)

To solve this linear equation for Kn(ρs), one needs to invert
LA. Note that LA is singular since one of the eigenvalues
is zero. Thus, this linear equation is underdetermined. By
identifying the Kernel of LA ⊗ IB, Kn(ρs) is determined only
up to ρ̄A ⊗ trA(Kn(ρs)) by solving (A3). We introduce the
undetermined part, Gn = trA ◦ Kn, which can be any super-
operator on HB. This gauge degree of freedom is associated
with the nonuniqueness of the parametrization. With Gn(ρs),
Kn(ρs) reads

Kn(ρs) = L+
A ⊗ IB(ρ̄A ⊗ Ls,n(ρs) − Ln(ρs)) + ρ̄A ⊗ Gn(ρs),

(A4)

where L+
A is the Moore-Penrose inverse of LA. One way to

calculate L+
A by making use of the fact that the evolution

only with LA exponentially converges to a unique steady state

was discussed in Ref. [24]. We revisit their results using the
vectorization method in Appendix C. Notice that the definition
of the gauge superoperator is different from that in Ref. [24].
In this paper, the choice Gn = 0 (n = 1, 2, . . . ) corresponds
to the parametrization via the partial trace ρs = ρB.

From Eqs. (A2) and (A4), we can obtain Kn and Ls,n up
to a desired order. From these equations, we see that Kn

and Ls,n+1 depend on G1, . . . , Gn. Therefore, Kn and Ls,n+1

become, for instance, nonlinear functions of ρs if so is even
one of G1, . . . , Gn. To meet the conditions that K and Ls are
linear and time-independent, we assume that {Gn} have those
properties.

APPENDIX B: ADIABATIC ELIMINATION FOR
A DISPERSIVELY COUPLED QUDIT SYSTEM

1. All-order adiabatic elimination

In this Appendix, we present the details of the adiabatic
elimination calculations for the dispersively coupled qudit
system introduced in Sec. III. As discussed in Ref. [30], the
invariance condition can be solved without resorting to the
asymptotic expansion. To see this, we recall Eq. (11), that is,

Ltot (A ⊗ Em,n) = L(m,n)
A (A) ⊗ Em,n.

This indicates that the eigenvalue problem of Ltot can be
formally solved as

Ltot
(
Q(k)

m,n ⊗ Em,n
) = λ(k)

m,n

(
Q(k)

m,n ⊗ Em,n
)

(B1)

for m, n = 1, . . . , d and k = 1, . . . , d2
A, where {Q(k)

m,n} satisfy

L(m,n)
A

(
Q(k)

m,n

) = λ(k)
m,nQ(k)

m,n. (B2)

Note that (λ(k)
m,n)∗ = λ(k)

n,m and (Q(k)
m,n)† = Q(k)

n,m. The stability
condition reads Re(λ(k)

m,n) � 0 with Re denoting real part.
Given (m, n), the eigenoperator contributing to the slow dy-
namics is the one with the smallest value of Re(−λ(k)

m,n).
For each set (m, n), we rearrange {k} so that k = 1 has
this property and denote λm,n = λ(1)

m,n and Qm,n = Q(1)
m,n in the

following. In addition, we normalize Qm,n as trA(Qm,n) =
1. From Eq. (B2), Qm,m is an eigenoperator of a Lindbla-
dian. Since the eigenvalues of Lindbladians include 0 due
to the trace preserving property, we have λm,m = 0 for m =
1, . . . , d . To summarize, we have the following properties of
the eigenvalues:

λ∗
m,n = λn,m, λm,m = 0, Re(−λm,n) � 0, (B3)

and of the eigenoperators,

Q†
m,n = Qn,m, trA(Qm,n) = 1.

When the inequality

max
m,n

Re(−λm,n) < min
k>1,m,n

Re
(−λ(k)

m,n

)
(B4)

is satisfied, the modes with k > 1 decay faster than those with
k = 0. In this case, the total density matrix after the decay of
the modes with k > 1 can be expressed as

ρ =
d∑

m,n=1

[ρB]m,n Qm,n ⊗ Em,n,
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where [ρB]m,n is the mn-element of ρB the evolution of which
is given by

d

dt
[ρB]m,n = λm,n [ρB]m,n.

Therefore, the maps K and Ls associated with the partial trace
parametrization (G = 0) read

KG=0(ρB) =
d∑

m,n=1

Qm,n ⊗ EmρBEn,

and

LG=0
s (ρB) =

d∑
m,n=1

λm,n EmρBEn.

2. Fourth-order adiabatic elimination

Using the result in Appendix B 1, we found in Fig. 2 the
presence of a parameter region where the generator LG=0

s
is not in the Lindblad form. The above all-order analysis,
however, requires numerical computation of the eigenvalues
{λm,n}. It is then unclear whether the non-Lindblad form is
obtained even with infinitesimal coupling constants. To make
clear the coupling constant dependence, we here present the
results of fourth-order adiabatic elimination.

The setting considered here is presented in Sec. III. The
interaction is assumed to be given by Eq. (9). To make the
coupling constant dependence explicit, we rewrite it as

εLint• = i[χ (VA ⊗ B), •],

with B =∑d
m=1(χm/χ )Em and χ ∈ R>0 the characteristic

coupling strength such that χm/χ (m = 1, . . . , d ) are in the
order of unity. We consider adiabatic elimination in a frame
where the qudit internal dynamics becomes trivial as LB = 0.
The subsystem HA is assumed to be a qubit system described
by Eq. (10). The timescale separation parameter ε then reads
ε = χ/κ .

We assume that the eigenvalue problem for the generator
LA is solvable. Although it might require numerical computa-
tion, we note that the results are independent of χ the coupling
constant. In the vectorized form, we introduce the following

notations [see Eq. (C3)]

L̂A|Xα〉〉 = κνα|Xα〉〉, 〈〈X̄α|L̂A = κνα〈〈X̄α|,
for α = 0, 1, 2, 3. Since there exists a unique steady state,
we set {να} such that ν0 = 0 and Re(να ) < 0 (α = 1, 2, 3).
Assuming the linear independence of {Xα}, we can obtain the
Moore-Penrose inverse of L̂A as [see Eq. (C6)]

L̂+
A =

3∑
α=1

1

κνα

|Xα〉〉〈〈X̄α|.

With the Moore-Penrose inverse, we can now calculate the
higher-order contributions. For the partial trace parametriza-
tion, LG=0

s up to the fourth-order expansion reads

LG=0
s (ρB) = − iεx1BρB + ε2x2[BρB, B]

+ iε3[x3BρBB + y3ρBB2, B]

+ ε4[x4B2ρBB − y4B3ρB, B] + (H.c.), (B5)

where H.c. means the Hermitian conjugate of all the terms
prior. The coefficients xk (k = 1, 2, 3, 4) and yk (k = 3, 4),
which are independent of χ the coupling constant, are defined
by

x1/κ = (VA)0,

x2/κ = −
3∑

α=1

(VA)∗0,ᾱ (VA)α
1

ν∗
α

,

x3/κ = −(VA)0

3∑
α=1

(VA)∗0,ᾱ (VA)α
1(

ν2
α

)∗
+

3∑
α,β=1

(VA)0,ᾱ (VA)∗
α,β̄

(VA)β
1

ναν∗
β

,

y3/κ = −(VA)0

3∑
α=1

(VA)∗ᾱ,0(VA)α
1(

ν2
α

)∗
+

3∑
α,β=1

(VA)0,ᾱ (VA)∗̄
β,α

(VA)β
1

ναν∗
β

,

x4/κ =
3∑

α=1

[
2Re

(
(VA)0,ᾱ (VA)∗α

x2

ν2
α

)
+ (VA)ᾱ,0(VA)∗α

x2

ν2
α

]
− (VA)2

0

3∑
α=1

[
2(VA)∗0,ᾱ (VA)α

1

(ν∗
α )3

+ (VA)0,ᾱ (VA)∗α
1

ν3
α

]

+
3∑

α,β=1

{
2Re

(
(VA)0(VA)∗0,ᾱ (VA)α,β̄ (VA)∗β

ν∗
α + νβ

(ν∗
ανβ )2

)
+ (VA)0(VA)∗0,ᾱ (VA)β̄,α (VA)∗β

ν∗
α + νβ

(ν∗
ανβ )2

}

−
3∑

α,β,γ=1

{
(VA)∗0,ᾱ (VA)γ [(VA)α,β̄ (VA)∗β,γ̄ + (VA)β̄,α (VA)∗γ̄ ,β ]

1

ν∗
ανβν∗

γ

+
[

(VA)∗0,ᾱ (VA)α,β̄ (VA)∗γ̄ ,β (VA)γ
1

ν∗
ανβν∗

γ

]∗}
,

y4/κ =
3∑

α=1

(VA)ᾱ,0(VA)∗α
x2

ν2
α

− (VA)2
0

3∑
α=1

(VA)∗0,ᾱ (VA)α
1

(ν∗
α )3

+
3∑

α,β=1

(VA)0(VA)∗0,ᾱ (VA)β̄,α (VA)∗β
ν∗

α + νβ

(ν∗
ανβ )2

−
3∑

α,β,γ=1

(VA)∗0,ᾱ (VA)β̄,α (VA)∗β,γ̄ (VA)γ
1

ν∗
ανβν∗

γ

,
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where we have introduced the notation

(VA)α,β̄,γ ,σ̄ = 〈〈XαX̄βXγ X̄σ |VA〉〉,
for the matrix elements.

To investigate the structure of LG=0
s given by Eq. (B5), we

rewrite it as follows, which is valid up to order ε4;

LG=0
s • = −i[hB, •] + [ε2D[lB] • +ε4cBD

[
l2
B

]•]. (B6)

The first term includes the Hermitian operator hB defined by

hB = εx1B + ε2Im(x2)B2 − ε3Re(y3)B3 − ε4Im(y4)B4.

In the terms inside the square bracket, the operator lB is de-
fined by

lB = c1B + εc2B2 + ε2c3B3,

with |c1|2 = 2Re(x2), c2 = −i[y3
∗ + 2Re(x3)]/c∗

1, and c3 =
−(x4 + y4)/c∗

1. The assumption Re(x2) > 0 has been made,
which is justified since the second-order expansion always
admits the Lindblad form as shown in Ref. [24]. With these
{ck}, we have introduced cB = |c1|−4[2Re(x4) − |c2|2] ∈ R.
Now, we denote lB as lB =∑d

m=1 lmEm with lm = c1(χm/χ ) +
εc2(χm/χ )2 + ε2c3(χm/χ )3. The terms inside the square
bracket in Eq. (B6) then reads

ε2D[lB](ρB) + ε4cBD
[
l2
B

]
(ρB)

=
d∑

m,n=1

βm,n

[
EmρBEn − 1

2
(EnEmρB + ρBEnEm)

]
,

with βm,n = ε2lml∗
n (1 + ε2cBlml∗

n ). Since this has a similar
form to Eq. (C12), as discussed underneath Eq. (C14), LG=0

s
is a Lindbladian if and only if the condition S	βS � 0 is
satisfied, where the matrix β is defined by [β]m,n = βm,n and
the matrix S is defined in Eq. (C13).

As in Sec. III, we consider the case d = 3 as an example.
When ε � 1, the trace of the matrix S	βS is dominated by the
terms at order ε2, which are positive. The condition S	βS � 0
then reads

ε4cB|(l1 − l2)(l1 − l3)(l2 − l3)|2 � 0,

which is equivalent to cB � 0. Since cB is independent of χ the
coupling constant, we can now discuss the Lindblad structure
of LG=0

s with infinitesimal coupling constants. By numerically
computing cB with the same settings as in Fig. 2, where the
linear independence of the eigenvectors {Xα} was numerically
confirmed, we examined its sign in various parameter sets.
As a result, we found that the results closely resembled those
depicted in Fig. 2. Therefore, in a parameter region near the
blue region of Fig. 2, LG=0

s is not a Lindbladian, even with
infinitesimal coupling constants.

APPENDIX C: VECTORIZATION

1. Introduction to vectorization

In this Appendix, we introduce a vectorization of opera-
tors, which is a convenient representation in studies of open
quantum systems. Let A be an operator acting on a Hilbert
space H with dimension d and have a matrix representation

as

A =
d∑

i, j=1

(A)i j |i〉〈 j|,

with an orthonormal basis set {|i〉}i=1,...,d in H . Following
Ref. [5], we map this operator to a vector as

|A〉〉 ≡
d∑

i, j=1

(A)i j | j〉 ⊗ |i〉.

We also introduce the dual state as the Hermitian conjugation
of |A〉〉,

〈〈A| ≡ [|A〉〉]† =
d∑

i, j=1

(A)∗i j〈 j| ⊗ 〈i|.

With B and C being operators acting on H , we can show the
Hilbert-Schmidt inner product as

〈〈A|B〉〉 = tr(A†B),

with tr the trace operation over H , and

|ABC〉〉 = C	 ⊗ A |B〉〉, (C1)

where 	 denotes the matrix transpose.

2. Moore-Penrose inverse of a Lindbladian
with a unique steady state

Next we consider superoperators in the vectorized form.
As a vectorized operator is a d2-dimensional vector, a su-
peroperator is represented by a d2-dimensional matrix. We
denote such supermatrix (the name is taken from Ref. [5]) by
attaching the hat symbol (̂ ), that is, if L is a superoperator
acting on H , we denote

L(A) → |L(A)〉〉 = L̂|A〉〉. (C2)

For instance, if L(B) = ABC, then L̂ = C	 ⊗ A as shown in
Eq. (C1). Suppose now that the eigenvalue problem of L̂ is
solved as

L̂|Xα〉〉 = λα|Xα〉〉, 〈〈X̄α|L̂ = λα〈〈X̄α|, (C3)

for α = 0, 1, . . . , d2 − 1. If {|Xα〉〉}α=0,1,...,d2−1 are linearly
independent and are normalized so that the orthonormality
relations 〈〈X̄α|Xβ〉〉 = δα,β (α, β = 0, 1, . . . , d2 − 1) hold, we
have the completeness relation

d2−1∑
α=0

|Xα〉〉〈〈X̄α| = Id ⊗ Id , (C4)

with the d-dimensional identity matrix Id . The spectral de-
composition of L̂ then reads

L̂ =
d2−1∑
α=0

λα|Xα〉〉〈〈X̄α|. (C5)

Let us assume λ0 = 0 and Re(λα ) < 0 (α = 1, . . . , d2 −
1), as we have assumed for LA in Sec. II. In this case, the
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Moore-Penrose inverse of L̂, L̂+ can be written as

L̂+ =
d2−1∑
α=1

1

λα

|Xα〉〉〈〈X̄α|. (C6)

To derive another expression, let us use 1/λα =
− ∫∞

0 ds exp(λαs) for α = 1, . . . , d2 − 1,

L̂+ = −
d2−1∑
α=1

∫ ∞

0
ds eλαs|Xα〉〉〈〈X̄α|

= −
∫ ∞

0
ds eL̂s

d2−1∑
α=1

|Xα〉〉〈〈X̄α|.

Using the completeness relation Eq. (C4), we obtain

L̂+ = −
∫ ∞

0
ds eL̂s(Id ⊗ Id − |X0〉〉〈〈X̄0|),

or its operation given by

L+(A) = −
∫ ∞

0
ds eLs[A − tr(X̄ †

0 A)X0]. (C7)

This expression was derived in Ref. [24].

3. Choi matrix

Given a superoperator T , we introduce the Choi matrix as
[5,28]

Choi(T̂ ) = I ⊗ T (|α〉〈α|),
with I being the identity superoperator on H and |α〉 ∈ H ⊗
H is the (non-normalized) maximally entangled state defined
by |α〉 =∑d

i=1 |i〉 ⊗ |i〉.
The Choi matrix provides a useful way to judge complete

positivity of superoperators. To see this, suppose the operation
of T is given by

T (A) =
d2∑

p,q=1

τp,qTpAT †
q , (C8)

with an orthonormal operator basis {Tp} satisfying (Tp|Tq) =
δp,q (p, q = 1, 2, . . . , d2) and a d2-dimensional Hermitian
matrix τ . One then finds

Choi(T̂ ) =
d∑

i, j=1

|i〉〈 j| ⊗ T (|i〉〈 j|)

=
d∑

i, j,k,l=1

d2∑
p,q=1

τp,q(Tp)ki(Tq)∗l j |i〉〈 j| ⊗ |k〉〈l|

=
d2∑

p,q=1

τp,q|Tp〉〉〈〈Tq|. (C9)

From Eq. (C8) and the linear independence of {Tp}, T is
a completely positive map if and only if τ � 0. On the
other hand, τ � 0 is equivalent to Choi(T̂ ) � 0. Combining
these results, T is a completely positive map if and only if
Choi(T̂ ) � 0. Similarly, T preserves the Hermitian property
if and only if Choi(T̂ )† = Choi(T̂ ).

While the complete positivity condition is stronger than the
positivity one in general, we can prove the following:

Lemma 1. Suppose that T takes the form

T (A) =
d∑

m,n=1

pm,nEmAEn, (C10)

with a d-dimensional Hermitian matrix p and {Em} the projec-
tors introduced in Sec. III. Then, T is positive if and only if it
is completely positive.

Proof. From the linear independence of {Em}, p � 0 is
equivalent to T being completely positive. We prove that
p � 0 is also an equivalent condition to the positivity of T .
Since the sufficiency is evident, we need to prove only the
necessity. Let U ∈ Cd×d be a unitary matrix diagonalizing p

as pm,n =∑d
l=1 plUm,lU ∗

n,l with {pl} the eigenvalues p. With
those, the above equation reads

T (A) =
d∑

l=1

plPlAP†
l ,

with Pl =∑d
m=1 Um,l Em. Suppose that p is not positive

semidefinite. Then, at least one of the elements {pl} is
negative. When pn < 0, for instance, we introduce |ψn〉 =
[U ∗

1,n U ∗
2,n · · · U ∗

d,n]	 and |ϕ〉 = [1 1 · · · 1]	. We then find

〈ϕ|Pl |ψn〉 = (U †U )n,l = δn,l ,

from the definition of {Em} and the unitarity of U . This yields

〈ϕ|T (|ψn〉〈ψn|)|ϕ〉 =
d∑

l=1

pl |〈ϕ|Pl |ψn〉|2 = pn < 0,

which implies that T is not positive. By contraposition, there-
fore, p � 0 is necessary for T being positive. �

4. Lindbladian

To judge if a given superoperator is a Lindbladian or not,
the following lemma is convenient:

Lemma 2. Suppose that L preserves the Hermitian prop-
erty, [L(A)]† = L(A†), and have trace zero, tr ◦ L = 0.
Then, L is a Lindbladian if and only if the supermatrix
P̂ I Choi(L̂)P̂ I , with P̂ I = Id ⊗ Id − |Id〉〉〈〈Id |/d , is positive
semidefinite.

Proof. The proof presented here is taken from Ref. [5].
To start, note that P̂ I is a Hermitian supermatrix, [P̂ I ]2 =
P̂ I , and its operation reads P I (A) = A − (tr(A)/d )Id . Thus,
P I is the orthogonal projector onto traceless operators,
and the kernel of P̂ I is ker(P̂ I ) = {|Id〉〉}. We use these
properties.

If L is a Lindbladian, it is generally given by

L(A) = −i[H, A] +
∑

μ

D[Lμ]A,

with arbitrary matrices Lμ ∈ Cd×d and a Hermitian matrix
H ∈ Cd×d . From the definition of the Choi matrix Eq. (C9),
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we find

Choi(L̂)

= −i[|H〉〉〈〈Id | − |Id〉〉〈〈H |]

+
∑

μ

[
|Lμ〉〉〈〈Lμ| − 1

2
[|L†

μLμ〉〉〈〈Id | + |Id〉〉〈〈L†
μLμ|]

]
.

By applying P̂ I from the left and right sides, we can extract
the dissipation part

P̂ I Choi(L̂)P̂ I =
∑

μ

|P I (Lμ)〉〉〈〈P I (Lμ)|.

Thus, P̂ I Choi(L̂)P̂ I � 0.
If P̂ I Choi(L̂)P̂ I is positive semidefinite, on the other hand,

there exist traceless operators {Lμ}μ=1,...,D (D < d2) such that

P̂ I Choi(L̂)P̂ I =
D∑

μ=1

|Lμ〉〉〈〈Lμ|.

Since ker(P̂ I ) = {|Id〉〉}, Choi(L̂) generally reads

Choi(L̂) = |K〉〉〈〈Id | + |Id〉〉〈〈K| +
D∑

μ=1

|Lμ〉〉〈〈Lμ|,

where K is a d-dimensional complex matrix and we have used
Choi(L̂)† = Choi(L̂) which is derived from the Hermitian
preservation. Note that we have not imposed tr(L•) = 0 yet.
The operation of L reads

L(A) = KA + AK† +
D∑

μ=1

LμAL
†
μ.

From the condition trL = 0 or, equivalently,

tr(L(A)) = tr

⎛
⎝[K + K† +

D∑
μ=1

L
†
μL]A

⎞
⎠ = 0,

for any A, we obtain K + K† = −∑D
μ=1 L

†
μL. Thus,

L(A) = −i

[
i(K − K†)

2
, A

]
+

D∑
μ=1

D[Lμ](A),

and L is a Lindbladian. �
As an example, suppose that L is given by

L(A) = −i[H, A] +
D∑

α,β=1

γα,β

[
VαAV †

β − 1

2
{V †

β Vα, A}
]
,

(C11)

with arbitrary matrices Vα ∈ Cd×d and Hermitian matrices
H ∈ Cd×d and γ ∈ CD×D. In view of Lemma C 4, γ � 0
is a sufficient condition for L to be a Lindbladian, but not

necessary in general. Note that

P̂ I Choi(L̂)P̂ I =
D∑

α,β=1

γα,β |P I (Vα )〉〉〈〈P I (Vβ )|.

When {P I (Vα )} are linearly dependent, the right-hand side
can be positive semidefinite even if γ is not. A trivial ex-
ample is D = 2, P I (V1) = P I (V2), γ1,2 = 0, γ1,1 > 0, and
γ2,2 = −γ1,1/2 < 0. In this case, even though γ is not positive
semidefinite, P̂ I Choi(L̂)P̂ I = (γ1,1/2)|P I (V1)〉〉〈〈P I (V1)| �
0. In fact, the operation of L is given by the following
Lindblad form:

L(A) = − i

[
H − γ1,1

2id
(tr(V1)∗V1−tr(V1)V †

1 ) + γ1,1

4id
(tr(V2)∗V2

− tr(V2)V †
2 ), A

]
+ γ1,1

2
D[P I (V1)](A).

When {P I (Vα )} are linearly independent, L is a Lindbla-
dian if and only if γ � 0. Note that {P I (Vα )} might not be
linearly independent even if {Vα} are. For instance, let us
consider the projectors in Sec. III, {Em}. Although it is a
linearly independent set, from

∑d
m=1 Em = Id and P I (Em) =

Em − Id/d , we obtain
∑d

m=1 P I (Em) = 0. Thus, {P I (Em)} are
not independent. If {Vα} are traceless, then P I (Vα ) = Vα . This
leads to the following corollary:

Corollary 1. In Eq. (C11), suppose that {Vα} are traceless
and linearly independent. Then, L is a Lindbladian if and only
if γ � 0.

As a concrete example, we consider LG=0
s in Sec. III, see

Eq. (13). Note first that

LG=0
s (ρB) =

d∑
m,n=1

λm,n

[
EmρBEn − 1

2
(EnEmρB + ρBEnEm)

]
,

(C12)

where we have used λm,m = 0 (m = 1, . . . , d ) [see Eq. (B3)].
As discussed above, {P I (Em)} are not independent. Hence,
λ � 0 is only a sufficient condition for LG=0

s to be a Lind-
bladian, but not necessary.

To judge whether LG=0
s is a Lindbladian or not, we repre-

sent it with linearly independent operators that are traceless.
A possible set is {τk}k=1,...,d−1 defined by

τk =
k∑

l=1

El − kEk+1,

which are, with normalization, commonly used as basis matri-
ces of the su(d ) Lie algebras together with nondiagonal ones.
With the d-dimensional identity matrix Id , the transformation
between {Em} and Id ∪ {τk} bases read⎛

⎜⎜⎜⎜⎜⎜⎝

E1

E2

...

Ed−1

Ed

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

S

1

1
...

1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

τ1

τ2

...

τd−1

Id/d

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where S ∈ Rd×(d−1) is defined by

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(2) q(3) . . . q(d − 1) q(d )

−1/2 q(3) . . . q(d − 1) q(d )

0 −1/3 . . . q(d − 1) q(d )
...

0 0 . . . q(d − 1) q(d )

0 0 . . . −1/(d − 1) q(d )

0 0 . . . 0 −1/d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C13)

with q(k) = [k(k − 1)]−1. Using {τk}, we can express LG=0
s as

LG=0
s (ρB) = −

⎡
⎢⎣ d∑

m,n=1
(m<n)

d−1∑
k=1

λm,n − λ∗
m,n

2d
(Sm,k − Sn,k )τk, ρB

⎤
⎥⎦

+
d−1∑

k,l=1

(S	λS)k,l

[
τkρBτl−1

2
(τlτkρB + ρBτlτk )

]
.

(C14)

From Corollary 1, thus, S	λS � 0 is necessary and sufficient
conditions for LG=0

s to be a Lindbladian.

APPENDIX D: ADIABATIC ELIMINATION
FOR A DAMPED OSCILLATOR SYSTEM

Let HA be a damped oscillator system with Eq. (16) being
coupled to a slow subsystem HB via

εLint• = −i[g(a† ⊗ B + a ⊗ B†), •],

with B an operator on HB. We do not specify the form of
LB. In this Appendix, we present an efficient way to perform
adiabatic elimination in this setting.

We first solve the eigenvalue problem of LA. The eigenop-
erators of LA can be represented in a compact form with the
normal ordering and the generalized Laguerre polynomials
[55]. Here we present an alternative way to diagonalize LA,
which can be derived from the ladder superoperator technique
[56,57]. To this end, we introduce a Hermitian preserving map

WA(OA) =
∞∑

p,q=0

(−nth )p

p! q!
(a†)paq OA (a†)qap,

with OA an arbitrary operator on HA. In the superma-
trix form [see Eq. (C2)], it reads ŴA = exp(−ntha	 ⊗
a†) exp(a∗ ⊗ a), from which the inverse reads Ŵ−1

A =
exp(−a∗ ⊗ a) exp(ntha	 ⊗ a†). The similarity transformation
with WA gives

WA
(
aW−1

A (OA)
) = a OA + nthOAa,

WA
(
W−1

A (OA)a†
) = OA a† + ntha†OA,

WA
(
a†W−1

A (OA)
) = (1 + nth )a†OA + OA a†,

WA
(
W−1

A (OA)a
) = (1 + nth ) OAa + a OA.

(D1)

Using these relations, we find

MA(OA) ≡ WA ◦ LA ◦ W−1
A (OA)

= − 1
2 (γ̄ a†a OA + γ̄ ∗OA a†a), (D2)

with γ̄ = γ + 2i
A. This is diagonal in the Fock basis of
the oscillator which we denote by {|n〉}n=0,1,2,.... Thus, the
eigenvalue problem of LA is solved in the vectorization repre-
sentation [see Eq. (C3)] as

L̂A|Xm,n〉〉 = λm,n|Xm,n〉〉, 〈〈X̄m,n|L̂A = λm,n〈〈X̄m,n|,
for m, n = 0, 1, 2, . . . , with λm,n = −(γ̄ m + γ̄ ∗n)/2,
|Xm,n〉〉 = Ŵ−1

A ||m〉〈n|〉〉, and 〈〈X̄m,n| = 〈〈|m〉〈n||ŴA. The
eigenvalues satisfy λ0,0 = 0 and Re(λm,n) < 0 (m + n > 0).
Therefore, the evolution only with LA exponentially
converges to a unique steady state ρ̄A given by

ρ̄A = X0,0 =
(

nth

1 + nth

)a†a
/

trA

[(
nth

1 + nth

)a†a
]
. (D3)

Note that nth is the average oscillator quantum number
with ρ̄A

trA(a†a ρ̄A) = nth. (D4)

Adiabatic elimination is greatly simplified in the eigenbasis
of LA. To implement this, we introduce ξ = WA ⊗ IB(ρ),
which is Hermitian ξ † = ξ , and consider the master equa-
tion for ξ ,

d

dt
ξ = MA ⊗ IB(ξ ) + εMad(ξ ) ≡ Mtot (ξ ), (D5)

where MA is defined in Eq. (D2) and Mad = (WA ⊗ IB) ◦
(IA ⊗ LB + Lint ) ◦ (W−1

A ⊗ IB). From Eqs. (D1), the opera-
tion of Mad reads

Mad(ξ ) = IA ⊗ LB(ξ ) + (a ⊗ IB)IA ⊗ BL(ξ )

+ IA ⊗ BD(ξ )(a† ⊗ IB) + (a† ⊗ IB)IA ⊗ BR(ξ )

+ IA ⊗ BU (ξ )(a ⊗ IB),

where IB the identity operator on HB and {BX }X=L,D,R,U are
superoperators on HB defined by

BL(OB) = i[OB, B†], BD(OB) = i[OB, B],

BR(OB) = i[nthOBB − (1 + nth )BOB],

BU (OB) = −i[nthB†OB − (1 + nth )OBB†],

with OB an arbitrary operator on HB. We can easily show
BL(OB)† = BD(O†

B) and BR(OB)† = BU (O†
B) as expected

from the Hermitian preserving property of Mad.
Instead of Eq. (1), we perform adiabatic elimination for

Eq. (D5). We introduce ξ = J (ρs), which is related to K
in Sec. II as K = W−1

A ⊗ IB ◦ J . The invariance condi-
tion Eq. (3) now reads J (Ls(ρs)) = Mtot(J (ρs)). Since this
equation cannot be solved exactly to our knowledge, as in
Eq. (4), we expand J with respect to ε, J =∑∞

n=0 εnJn.
Then, similarly to the derivation of Eq. (5), we find the ze-
roth order J0(ρs) = |0〉〈0| ⊗ ρs. Substituting the asymptotic
expansions into the invariance condition, the nth order of ε

reads

|0〉〈0| ⊗ Ls,n(ρs) = MA ⊗ IB(Jn(ρs)) + Mn(ρs), (D6)
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with

Mn(ρs) = Mad(Jn−1(ρs)) −
n∑

k=1

Jk (Ls,n−k (ρs)).

Note 〈0|MA|0〉 = 0, which can be shown directly from the
definition Eq. (D2). Thus, sandwiching both sides of Eq. (D6)
with |0〉, we find Ls,n

Ls,n(ρs) = 〈0|Mn(ρs)|0〉.
Furthermore, we obtain

Jn(ρs) =M+
A ⊗ IB[|0〉〈0| ⊗ Ls,n(ρs) − Mn(ρs)]

+ |0〉〈0| ⊗ Gn(ρs),

as in the derivation of Eq. (A4). In this equation, Gn =
〈0|Jn|0〉 is the gauge superoperator associated with the singu-
larity of MA. This definition of Gn is consistent with the one
in Sec. II because of 〈0|Jn|0〉 = trA ◦ Kn, which can be shown
from the identity 〈0|WA(OA)|0〉 = trA(OA). In what follows,
we consider the partial trace parametrization or, equivalently,
we set Gn = 0 (n = 1, 2, . . . ).

Before proceeding with the calculation, we list several
convenient formulas. We introduce Om,n = |m〉〈n| ⊗ OB +
(H.c.). To calculate Ls,n, we use

〈0|Mad(|0〉〈0| ⊗ OB)|0〉 = LB(OB),

and

〈0|Mad(Om,n)|0〉 = δm,0δn,0LB(OB) + δm,1δn,0BL(OB)

+ δm,0δn,1BD(OB) + (H.c.).

To evaluate Jn, we need to calculate M+
A (•) and |0〉〈0| ⊗

〈0|Mad(•)|0〉 − Mad(•). From Eq. (C6), the operation of
M+

A reads

M+
A [|m〉〈n| + (H.c.)]

= −ym,n|m〉〈n| + (H.c.), (m + n > 0),

with ym,n = −1/λm,n = 2/(γ̄ m + γ̄ ∗n). To calculate the lat-
ter, |0〉〈0| ⊗ 〈0|Mad(•)|0〉 − Mad(•), we use

|0〉〈0| ⊗ 〈0|Mad(|0〉〈0| ⊗ ρB)|0〉 − Mad(|0〉〈0| ⊗ ρB)

= −|1〉〈0| ⊗ BR(ρB) + (H.c.)

for ρB any Hermitian operator on HB and

|0〉〈0| ⊗ 〈0|Mad(Om,n)|0〉 − Mad(Om,n)

= −√
m + 1|m + 1〉〈n| ⊗ BR(OB)

− √
n + 1|m〉〈n + 1| ⊗ BU (OB)

− (1 − δm,1δn,0)
√

m|m − 1〉〈n| ⊗ BL(OB)

− (1 − δm,0δn,1)
√

n|m〉〈n − 1| ⊗ BD(OB)

− |m〉〈n| ⊗ LB(OB) + (H.c.).

With the aid of these formulas, we can calculate the
higher-order contributions. For the partial trace parametriza-
tion, {Ls,n}n=1,2,3,4 and {Jn}n=1,2,3 read

Ls,1(ρB) = LB(ρB),

J1(ρB) = y1,0|1〉〈0| ⊗ BR(ρB) + (H.c.),

Ls,2(ρB) = y1,0BR ◦ BL(ρB) + (H.c.),

J2(ρB) = y2
1,0|1〉〈0| ⊗ [LB,BR](ρB)

+
√

2 y1,0y2,0|2〉〈0| ⊗ BR ◦ BR(ρB)

+ y1,0y1,1|1〉〈1| ⊗ BU ◦ BR(ρB) + (H.c.),

Ls,3(ρB) = y2
1,0BL ◦ [LB,BR](ρB) + (H.c.),

J3(ρB) = y3
1,0|1〉〈0| ⊗ [LB, [LB,BR]](ρB)

+ 2 y2
1,0y2,0|1〉〈0| ⊗ BL ◦ BR ◦ BR(ρB)

+ |y1,0|2y1,1|0〉〈1| ⊗ BL ◦ BU ◦ BR(ρB)

+ y2
1,0y1,1|1〉〈0| ⊗ BD ◦ BU ◦ BR(ρB)

− y2
1,0|1〉〈0| ⊗ BR ◦ Ls,2(ρB)

+ · · · + (H.c.),

Ls,4(ρB) = y3
1,0BL ◦ [LB, [LB,BR]](ρB)

+ 2 y2
1,0y2,0BL ◦ BL ◦ BR ◦ BR(ρB)

+ |y1,0|2y1,1BD ◦ BL ◦ BU ◦ BR(ρB)

+ y2
1,0y1,1BL ◦ BD ◦ BU ◦ BR(ρB)

− y2
1,0BL ◦ BR ◦ Ls,2(ρB) + (H.c.),

where · · · in J3 are the terms with |m〉〈n| (m + n > 1),
which do not contribute to Ls,4. With B = σ− and LB = 0, we
obtain Eq. (17).

APPENDIX E: PROPERTIES OF EQ. (17)

In this Appendix, we discuss several properties of LG=0
s

defined by Eq. (17).

1. Spectrum

Let us first calculate the spectrum of LG=0
s . With IB the

identity matrix on HB (two-dimensional identity matrix), the
set {IB/

√
2, σx/

√
2, σy/

√
2, σz/

√
2} is an orthonormal basis

with the Hilbert-Schmidt inner product. Let [LG=0
s ] be the 4 ×

4 matrix representation of LG=0
s in this basis. It reads

[
LG=0

s

] =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 −1/T2 −ω
(4)
B 0

0 ω
(4)
B −1/T2 0

Rz/T1 0 0 −1/T1

⎞
⎟⎟⎟⎟⎠, (E1)

with 1/T1 = γ
(4)
− + γ

(4)
+ , 1/T2 = 1/(2T1) + 2γ

(4)
φ , and Rz =

−(γ (4)
− − γ

(4)
+ )T1. From this, the spectrum of LG=0

s is given
by {0,−1/T2 + iω(4)

B ,−1/T2 − iω(4)
B ,−1/T1}.

2. Positivity

We next show that the time evolution map is positive
even when γ

(4)
φ < 0. To see this, we introduce the Bloch

vector r(t ) = (rx(t ), ry(t ), rz(t ))	 ∈ R3, which is related
to the partial trace as ρB(t ) = [IB +∑i=x,y,z ri(t )σi]/2.
From Eq. (17), the evolution of the Bloch vector
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reads

d

dt
rx(t ) = − rx(t )

T2
− ω

(4)
B ry(t ),

d

dt
ry(t ) = − ry(t )

T2
+ ω

(4)
B rx(t ),

d

dt
rz(t ) = − 1

T1
(rz(t ) − Rz ).

These equations mean that that Rz is the asymptotic value of
rz(t ), limt→∞ r(t ) = (0, 0, Rz )	. They also lead to

d

dt
r2(t ) = −2

(
r2(t ) − r2

z (t )

T2
+ rz(t )(rz(t ) − Rz )

T1

)
.

The partial trace ρB(t ) is positive semidefinite if and only if
r2(t ) � 1. If we have (d/dt )r2(t ) < 0 under the constraint
r2(t ) = 1 for any t , then r2(t ) does not exceed unity along the
time evolution and thus positivity is preserved. Substituting
r2(t ) = 1 into the above equation, we obtain

d

dt
r2(t ) = − 2


T

[(
rz(t ) − 
T

2T1
Rz

)2

+ (
T )2
(
γ

(4)
− γ

(4)
+ − 4(γ (4)

φ )2
)]

,

with 1/
T = 1/T1 − 1/T2 = (γ (4)
− + γ

(4)
+ )/2 − 2γ

(4)
φ . When

|g|/γ � 1, we have γ
(4)
±  |γ (4)

φ |. This leads to 
T > 0

and γ
(4)
− γ

(4)
+ > 4(γ (4)

φ )2. Therefore, (d/dt )r2(t ) < 0 when-
ever r2(t ) = 1. This proves that the time evolution map is
positive even with a negative value of γ

(4)
φ .

3. Incompatibility with a Kraus map

From the result in Appendix E 1, the spectrum of the
time evolution map exp(LG=0

s t ) is given by {1, exp(−t/T2 +
iω(4)

B t ), exp(−t/T2 − iω(4)
B t ), exp(−t/T1)}. Here we prove

that a Kraus map whose spectrum is given by this set does
not exist when γ

(4)
φ < 0 and for an infinitesimal time t . To this

end, we use the theorem in Ref. [31], which was explicitly
presented in Sec. IV. Let � be the spectrum of the time
evolution map exp(LG=0

s t ), that is,

� = {1, e−t/T2+iω(4)
B t , e−t/T2−iω(4)

B t , e−t/T1
}
.

We recall that T1 and T2 are defined underneath Eq. (E1). It
is easy to check that � is closed under complex conjugation.
To see the condition Eq. (18), we note that {si} are now all
positive from their definitions. In such cases, assuming s1 �
s2 � s3, the condition Eq. (18) reads s1 � 1 and s1 + s2 � 1 +
s3 (see Ref. [31]). When γ

(4)
φ < 0, we always have 1/T1 >

1/T2, and exp(−t/T2) > exp(−t/T1) for t > 0. Thus, we set
s1 = s2 = exp(−t/T2) and s3 = exp(−t/T1). Then, while the
first condition s1 � 1 is always satisfied, the second condition
that reads

2e−t/T2 � 1 + e−t/T1 , (E2)

is nontrivial. For an infinitesimal time t such that
exp(−t/Ti ) � 1 − t/Ti (i = 1, 2), this condition reads γ

(4)
φ �

0 and is violated if γ
(4)
φ < 0. Therefore, the condition Eq. (18)

is not satisfied when γ
(4)
φ < 0 and for an infinitesimal time t

and this concludes the proof.

APPENDIX F: EXACT MASTER EQUATION
WITH A PRODUCT INITIAL STATE

AND COMPLETE POSITIVITY

When the initial state is a product state,the time evolution
of the partial trace is in general completely positive as dis-
cussed following Eq. (20). The complete positivity violation
found in this paper stems from the transient dynamics that is
discarded in adiabatic elimination. We expect complete posi-
tivity to be restored by accounting for the short-time regime.
In this Appendix, we confirm this expectation. To this end,
we consider the qudit system discussed in Sec. III and derive
the exact master equation for the partial trace with an initially
product state.

To derive the master equation, we first calculate the time
evolution of the partial trace. Using Eq. (11), the evolution
of the total density matrix with a product initial state ρ(0) =
ρA ⊗ ρB(0), with ρA a fixed initial state on HA, reads

ρ(t ) = eLtott [ρA ⊗ ρB(0)] =
d∑

m,n=1

eL
(m,n)
A t (ρA) ⊗ EmρB(0)En.

By taking trA of this equation, we obtain the evolution of the
partial trace

ρB(t ) =
d∑

m,n=1

[TB,t ]m,nEmρB(0)En, (F1)

with [TB,t ]m,n = trA ◦ exp(L(m,n)
A t )(ρA). From [L(m,n)

A (A)]† =
L(n,m)

A (A†), which can be directly shown from the definition
of L(m,n)

A , the coefficients satisfy [TB,t ]∗m,n = [TB,t ]n,m. This
relation ensures the Hermitian property of ρB(t ). Furthermore,
since L(m,m)

A is a Lindbladian, the trace preservation leads to
[TB,t ]m,m = trA(ρA) = 1. This ensures the trace preservation
of the partial trace trB(ρB(t )) = 1 with trB the trace over HB.

In what follows, we assume [TB,t ]m,n �= 0 for any m, n =
1, . . . , d and t ∈ R�0. Under this assumption, the master
equation for the partial trace can be put into a compact
form as

d

dt
ρB(t ) =

d∑
m,n=1

λm,n(t )EmρB(t )En, (F2)

with λm,n(t ) = (d/dt ) ln([TB,t ]m,n). Long after decay time of
the fast subsystem, the time dependence of [TB,t ]m,n is gov-
erned by the eigenmode of L(m,n)

A whose real part is the closest
to zero. In Appendix B 1, we have defined the mode k = 1 to
have this property. Therefore, the time dependence of [TB,t ]m,n

asymptotically reads [TB,t ]m,n ∝ exp(λm,nt ), from which we
obtain

lim
t→∞ λm,n(t ) = λm,n. (F3)

In other words, while the master equation (F2) explicitly
depends on time before the relaxation is completed, it asymp-
totically agrees with the evolution equation in adiabatic
elimination, Eq. (13).
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From the properties of [TB,t ]m,n derived above, we have
λm,n(t )∗ = λn,m(t ) and λm,m(t ) = 0. As in Eq. (C14), thus,
Eq. (F2) can be rewritten as

d

dt
ρB(t )

= −

⎡
⎢⎢⎣

d∑
m,n=1
(m<n)

d−1∑
k=1

λm,n(t ) − λ∗
m,n(t )

2d
(Sm,k − Sn,k )τk, ρB(t )

⎤
⎥⎥⎦

+
d−1∑

k,l=1

(S	λ(t )S)k,l

×
[
τkρB(t )τl − 1

2
(τlτkρB(t ) + ρB(t )τlτk )

]
, (F4)

where the matrix λ(t ) is defined by [λ(t )]m,n = λm,n(t ). Note
that the eigenvalues of S	λ(t )S, which correspond to the
decay rate, are now dependent on time.

As a concrete example, we consider a qutrit (d = 3) cou-
pled to a dissipative qubit governed by Eq. (10). We are
interested in a parameter set where (complete) positivity is
violated in the slow dynamics. According to Fig. 2, the vi-
olation occurs, for instance, when (χ1, χ2, χ3) = (0, χ, 2χ ),
χ/κ = 0.1, �/κ = 0.5, and 
/κ = 0.5, and we use these
values in our simulation. We assume that ρA is the unique
steady state of LA, that is, the initial states are on the in-
variant manifold without the coupling. In our simulation, we
computed ρA from the right eigenvector of LA the eigen-
value of which is the closest to zero. With the steady state
ρA, we computed [TB,t ]m,n in the vectorized representation
[TB,t ]m,n = 〈〈I2| exp(L̂(m,n)

A t )|ρA〉〉, where the matrix exponen-
tiation exp(L̂(m,n)

A t ) was directly evaluated using a SciPy
function. We confirmed that [TB,t ]m,n �= 0 is satisfied for
m, n = 1, 2, 3 within the time range under study (0 � κt �
20). Lastly, we computed the coefficients {λm,n(t )} in the dis-
cretized form λm,n(t ) = {ln([TB,t+δt ]m,n) − ln([TB,t ]m,n)}/δt
with κδt = 10−2.

Figure 6(a) shows the two eigenvalues of the coefficient
matrix S	λ(t )S as a function of time. As expected, the
eigenvalues become constant after κt � 10. We numerically
checked the relation Eq. (F3) in this long-time regime. One of
the eigenvalues shown by the blue curve is always negative.
This negativity asymptotically results in the (complete) posi-
tivity violation found in Sec. III. On the other hand, the time
evolution map including the transient regime (0 � κt � 10 in
the current setting) is completely positive. To see this numeri-
cally, we consider the Choi matrix of the time evolution map.
From Eq. (F1), it reads

∑d
m,n=1[TB,t ]m,n |Em〉〉〈〈En|. As shown

in Appendix C, the time evolution map is completely posi-
tive if and only if this matrix is positive semidefinite. Since
{|Em〉〉}m=1,2,3 is an orthonormal set, we only need to consider
the property of the matrix TB,t ∈ C3×3 the mn-elements of
which are [TB,t ]m,n (m, n = 1, 2, 3). In Fig. 6(b), we show
the smallest eigenvalue of TB,t along the time evolution. It is
non-negative as expected. Therefore, the time evolution map
is completely positive including the transient regime in this
example.
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FIG. 6. Coefficients in the exact master equation and confir-
mation of complete positivity for the qubit-qutrit system with
(χ1, χ2, χ3) = (0, χ, 2χ ), χ/κ = 0.1, �/κ = 0.5, and 
/κ = 0.5.
(a) Time-dependent coefficients in front of the dissipators in the
exact master equation. From Eq. (F4), we evaluated them from
the eigenvalues of the two-dimensional matrix S	λ(t )S. The larger
eigenvalue (the red curve) is positive all the time, whereas the smaller
eigenvalue (the blue curve) is negative. (b) Smallest eigenvalue of the
matrix TB,t . The fact that this is non-negative indicates that the time
evolution map is completely positive (see the main text).

APPENDIX G: K AND Ls FOR A GENERAL
CLASS OF SETTINGS

In this Appendix, we consider a general class of settings
introduced in Sec. II (LB and Lint are assumed to contain only
Hamiltonian terms) and calculate the second-order expansion
of K and the third-order expansion of Ls. These are for clari-
fication and extension of results in Ref. [29]. As in Ref. [29],
we denote the interaction by Lint (ρ) = −i[Hint, ρ] with Hint =∑

k A†
k ⊗ Bk =∑k Ak ⊗ B†

k . Occasionally, we consider the
oscillator-qubit system in Sec. IV as a concrete example.

1. Second-order expansion of K
In Theorem 6 of Ref. [29], the second-order expansion of

K was calculated for a general class of settings. The theorem
states that, there always exist gauge choices such that K is
completely positive within the expansion order. Although not
proved explicitly, the result also implies that K for the partial
trace is always noncompletely positive. Here we repeat the
calculation to clarify this point and to find a specific form of
gauge superoperators leading to completely positive K.

We first outline how we proceed the calculation. The right-
hand side of Eq. (A3) is traceless and thus generally takes the
form

ρ̄A ⊗ Ls,n(ρs) − Ln(ρs) = S (X1ρ̄A) ⊗ B1(ρs)

+ S (ρ̄AX2) ⊗ B2(ρs) + S (X3ρ̄AX4) ⊗ B3(ρs),

where the superoperator S is defined by S (X ) = X −
trA(X )ρ̄A, {Xi}i=1,2,3,4 are operators on HA, and {B j} j=1,2,3 are
superoperators on HB. Then, Eq. (A4) reads

KG
n (ρs) =L+

A (S (X1ρ̄A)) ⊗ B1(ρs) + L+
A (S (ρ̄AX2)) ⊗ B2(ρs)

+ L+
A (S (X3ρ̄AX4)) ⊗ B3(ρs) + ρ̄A ⊗ Gn(ρs).

Regarding the first and second terms on the right-hand side, it
was shown in Lemma 4 of Ref. [24] that there exist {Yi}i=1,2

such that L+
A (S (X1ρ̄A)) = Y1ρ̄A and L+

A (S (ρ̄AX2)) = ρ̄AY2,
even when ρ̄A is not full rank. These relations are essential in
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proving the Kraus map form as shown below. The fourth term
on the right-hand side represents the gauge degree of freedom.
Here we restrict our gauge choice to the following form which
only modifies the other terms without generating independent
ones:

Gn(ρs) = g1B1(ρs) + g2B2(ρs) + g3B3(ρs),

with gi ∈ C (i = 1, 2, 3). Redefining Yi so that the gi term is
absorbed for i = 1, 2, we obtain

KG
n (ρs) = Y1ρ̄A ⊗ B1(ρs) + ρ̄AY2 ⊗ B2(ρs) + Z ⊗ B3(ρs),

with

Y1ρ̄A = L+
A (S (X1ρ̄A)) + g1ρ̄A,

ρ̄AY2 = L+
A (S (ρ̄AX2)) + g2ρ̄A,

and

Z = L+
A (S (X3ρ̄AX4)) + g3ρ̄A.

Using these formulas, we can calculate the first- and
second-order contributions as follows:

KG
1 (ρs) = −i

∑
k

(Fk ⊗ B†
k )(ρ̄A ⊗ ρs) + (H.c.), (G1)

and

KG
2 (ρs) = i

∑
k

Vk ρ̄A ⊗ [Ck
B(ρs) − LB(B†

k )ρs
]

+ i
∑

k

[Vk ⊗ LB(B†
k )](ρ̄A ⊗ ρs)

−
∑
k, j

〈A†
k〉(Vj ⊗ B†

j Bk )(ρ̄A ⊗ ρs)

+
∑
k, j

(Uk, j ⊗ BkB†
j )(ρ̄A ⊗ ρs)

−
∑
k, j

Zk, j ⊗ B†
kρsB j + (H.c.), (G2)

with Ck
B(ρs) = LB(B†

kρs) − B†
kLB(ρs). In these equations, we

have introduced 〈Ak〉 = trA(Ak ρ̄A). The inverse of LA has
led to

Fk ρ̄A = −L+
A (S (Ak ρ̄A)) + fk ρ̄A,

Vk ρ̄A = L+
A (S (Fk ρ̄A)) + vk ρ̄A,

Uk, j ρ̄A = L+
A (S (A†

kFj ρ̄A)) + uk, j ρ̄A,

and

Zk, j = L+
A (S (Fk ρ̄AĀ†

j )) − zk, j ρ̄A,

where Ā j = Aj − 〈Aj〉IA. The gauge superoperators have been
set as

G1(ρs) = −i
∑

k

fkB†
kρs + (H.c.),

and

G2(ρs) = i
∑

k

vkCk
B(ρs) −

∑
k, j

〈A†
k〉v jB

†
j Bkρs

+
∑
k, j

uk, jBkB†
jρs +

∑
k, j

zk, jB
†
kρsB j + (H.c.).

When LB contains only Hamiltonian terms, Ck
B(ρs) =

LB(B†
k )ρs and the first line on the right side of Eq. (G2)

vanishes. Thus, we neglect this term in the following.
Note that∑
k, j

Zk, j ⊗ B†
kρsB j + (H.c.) =

∑
k, j

(Zk, j + Z†
j,k ) ⊗ B†

kρsB j,

where

Zk, j + Z†
j,k = L+

A (S (Fk ρ̄AĀ†
j + Āk ρ̄AF †

j )) − (zk, j + z∗
j,k )ρ̄A.

When LA is given by Eq. (2), it was shown in Ref. [29] that
the L+

A part on the right-hand side reads

L+
A (S (Fk ρ̄AĀ†

j + Āk ρ̄AF †
j ))

= S (Fk ρ̄AF †
j ) − L+

A

⎛
⎝∑

μ

[LA,μ, Fk]ρ̄A[LA,μ, Fj]
†

⎞
⎠.

Combining all the terms together, we eventually obtain, up
to the second order of ε,

KG(ρs) =W (ρ̄A ⊗ ρs)W † − ε2L+
A

⎛
⎝∑

μ

Pμ(ρ̄A ⊗ ρs)P†
μ

⎞
⎠

+ ε2
∑
k, j

μk, j (IA ⊗ B†
k )(ρ̄A ⊗ ρs)(IA ⊗ Bj ), (G3)

with W = IA ⊗ IB − iεM + ε2N , M =∑k Fk ⊗ B†
k , N =∑

k, j (Uk, j ⊗ BkB†
j − 〈A†

k〉Vj ⊗ B†
j Bk ) + i

∑
k Vk ⊗ LB(B†

k ),

Pμ =∑k[LA,μ, Fk] ⊗ B†
k , and μk, j = zk, j + z∗

j,k −
trA(Fk ρ̄AF †

j ). The second line is completely positive because
−L+

A is a completely positive map from Lemma 1 of Ref. [24].
Therefore, KG is completely positive if and only if the matrix
μ, the elements of which are defined by [μ]k, j = μk, j , is
positive semidefinite.

The partial trace parametrization corresponds to G1 =
G2 = 0, and thus zk, j = 0. In this case, μk, j = −trA(F †

k ρ̄AFj )
and it is negative semidefinite. This consideration concludes
that KG=0 is always a noncompletely positive map. On the
other hand, if one sets

zk, j = z

2
trA(Fk ρ̄AF †

j ), (G4)

with z ∈ R�1, the matrix μ is positive semidefinite. Therefore,
there always exist gauge choices ensuring complete positivity
of KG.

Complete positivity of KG is attained irrespective of the
values of fk , vk , and uk, j . If we set fk = vk = uk, j = 0, how-
ever, G(ρs) = ρs +∑k, j (zk, j + z∗

j,k )B†
kρsB j and K does not

preserve the trace. The simplest gauge choice recovering
the trace preservation is fk = vk = 0 and uk, j = −z j,k . With
Eq. (G4), the gauge superoperator reads

G(ρs) = ε2z
∑
k, j

trA(Fk ρ̄AF †
j )

(
B†

kρsB j − 1

2
{BjB

†
k, ρs}

)
.

(G5)
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2. Entanglement and nonpositivity of KG=0

While KG=0 is not completely positive, it is not certain
whether it can be positive or not. To address this issue, let
us first consider the oscillator-qubit system in Sec. IV as
an example. Using the formula Eq. (G3), KG=0 up to the
second-order expansion is given by Eq. (22) in this case. To
see that it is not positive, let |0〉 ∈ HA be the vacuum state of
the oscillator and |ψ〉 ∈ HB be a state. The matrix element of
KG=0 with respect to |0, ψ〉 = |0〉 ⊗ |ψ〉 reads

〈0, ψ |KG=0(ρB)|0, ψ〉

= 〈0|ρ̄A|0〉
[(

1 + 4g2nth

γ 2

)
〈ψ |ρB|ψ〉 − 4g2(1 + nth )

γ 2

× 〈ψ+|ρB|ψ+〉 − 4g2n2
th

γ 2(1 + nth )
〈ψ−|ρB|ψ−〉

]
,

with |ψ±〉 = σ±|ψ〉. If ρB is a pure state, its kernel is not
empty. Suppose |ψ〉 is in the kernel of ρB, that is, ρB|ψ〉 = 0.
Since either 〈ψ+|ρB|ψ+〉 or 〈ψ−|ρB|ψ−〉 is nonzero, we ob-
tain 〈0, ψ |KG=0(ρB)|0, ψ〉 < 0. Consequently, KG=0 is not
positive.

To extend the analysis to a general class of settings, we note
a theorem regarding assignment maps, which was first proved
for qubit reduced systems in Ref. [42] and later generalized
in Ref. [45]. With the notations in Sec. V, let � : D (HB) →
D (HA ⊗ HB) be a map assigning a reduced state in HB a
total state in D (HA ⊗ HB). Then, the following statements
are equivalent:

(1) � is linear, consistent (trA ◦ � = IB), and positive
[�(ρB) ∈ D (HA ⊗ HB) for every ρB ∈ D (HB)].

(2) For every ρB ∈ D (HB), �(ρB) = ρA ⊗ ρB, where
ρA ∈ D (HA) is independent of ρB.

We now apply this theorem to KG=0. Since it is linear and
consistent, KG=0 is positive if and only if Minv is charac-
terized by product states with a fixed state on D (HA). Due
to the interaction term, Minv at the second-order expansion
includes entangled states in general. Therefore, the corre-
sponding KG=0 is nonpositive.

One might argue that nonproduct states should also be ob-
tained in the first-order expansion of ε. On this point, we note
that the first-order expansion of KG=0 reads [see Eq. (G3)]

KG=0(ρB) = ρ̄A ⊗ ρB − iε[M(ρ̄A ⊗ ρB) − (ρ̄A ⊗ ρB)M†],

(G6)

where M satisfies trA(Mρ̄A) = 0. In agreement with the above
theorem, this is not positive. We here note that this can be
rewritten as

KG=0(ρB) = (IA ⊗ IB − iεM )(ρ̄A ⊗ ρB)(IA ⊗ IB − iεM )†

− ε2M(ρ̄A ⊗ ρB)M†. (G7)

Within the accuracy of the first-order expansion, we can ne-
glect the third line and obtain a Kraus map form of KG=0.
Since the neglect of the third line violates the consistency
at order ε2, this result does not contradict with the above
theorem either. In the second-order expansion, on the other
hand, there is a negative term that cannot be eliminated within
that accuracy. This results in the positivity violation of KG=0.

3. Third-order expansion of Ls

While the map KG=0 resulting from the first-order expan-
sion, i.e., Eq. (G6), is not completely positive, its rewriting
with Eq. (G7) shows that the nonpositivity only yields a term
of order ε2. This explains the reason why the Lindblad form
must always be obtained including the second-order contribu-
tion, as shown in Ref. [24].

The nonpositivity of KG=0 at second-order indicates
danger for the third-order expansion and higher. For the
oscillator-qubit system, the third-order contribution LG=0

s,3
vanishes and the non-Lindblad form is obtained from the
fourth-order expansion. Even when LG=0

s,3 does not vanish, it
was shown in Theorem 9 of Ref. [29] that, if the interaction
Hamiltonian includes one tensor-product term and the second-
order contribution does not vanish, LG=0

s admits the Lindblad
form up to the third-order expansion. Here we consider the
third-order expansion with a general interaction Hamiltonian
Hint =∑k A†

k ⊗ Bk =∑k Ak ⊗ B†
k .

Since trA ◦ KG=0
n = 0 (n = 1, 2, . . . ) from Eq. (A2),

LG=0
s,n (ρB) = trA((IA ⊗ LB +Lint )[KG=0

n−1 (ρB)]). With Eqs. (5),
(G1), and (G2), we obtain {LG=0

s,n }n=1,2,3 as

LG=0
s,1 (ρB) = −i

∑
k

〈Ak〉B†
k ρB + (H.c.),

LG=0
s,2 (ρB) =

∑
j,k

〈A†
jFk〉[B†

kρB, Bj] + (H.c.),

LG=0
s,3 (ρB) = −

∑
j,k

〈A†
jVk〉[LB(B†

k )ρB, Bj]

−
∑
i, j,k

i〈A†
i Vj〉〈A†

k〉[B†
j BkρB, Bi]

+
∑
i, j,k

i〈A†
i Uk, j〉[BkB†

jρB, Bi]

−
∑
i, j,k

itrA(A†
i Zk, j )[B

†
kρBBj, Bi] + (H.c.).

Since LG=0
s preserves the Hermitian property and have

trace zero, we only need to focus on the dissipation part
to see if LG=0

s is a Lindbladian. The dissipation part of
LG=0

s,2 reads
∑

j,k ηk, jB
†
kρBBj with ηk, j = 〈A†

jFk〉 + 〈A†
kFj〉∗.

As proved in Ref. [24], the matrix η defined by
[η]k, j = ηk, j is positive semidefinite in general. The
dissipation part of LG=0

s,3 reads
∑

k (Q†
kρBBk + B†

kρBQk )
with Q†

k = −∑i 〈A†
kVi〉[LB(B†

i ) + i
∑

j 〈A†
j〉B†

i B j] +
i
∑

i, j[〈A†
kUi, j〉 + trA(A†

i (Zj,k + Z†
k, j ))]BiB

†
j . If we assume

that η is invertible (or, equivalently, η is positive definite),
then the dissipation part of LG=0

s reads, up to the third
order of ε, ∑

j,k

ηk, jR
†
kρBRj,

with R†
k = εB†

k + ε2∑
j[η

−1] j,kQ†
j . Therefore, LG=0

s admits
the Lindblad form.

When η is not invertible, the third-order contribution can
generate a new dissipator that is independent of the second-
order contribution. Studies on such cases are in progress.
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Note that, when LB and Lint contain only Hamiltonian terms,
Ltot is a Lindbladian irrespective of the sign of ε. Thus, the
structure of LG=0

s is not affected by flipping the sign of ε

as ε → −ε. This implies that the new dissipator generated
at the third-order should either always include a negative
coefficient or vanish. To elaborate on it, let us consider an
extreme case with η = 0. In general, we can write Qk as Qk =
qkBk + Q̄k with qk a complex number and Q̄k an operator on
HB that is linearly independent of Bk . The dissipation part
of LG=0

s then reads ε3∑
k{(D[Q̄k + Bk] − D[Q̄k − Bk])/2 +

2Re(qk )D[Bk]} up to the third-order expansion. On the one
hand, the first part with Q̄k always includes a negative coef-
ficient, and the structure of LG=0

s is independent of the sign
of ε. On the other hand, the second part with Re(qk ) flips its
sign by the transformation ε → −ε. According to the above
discussion, we expect to have Re(qk ) = 0 under the condition
of η = 0. However, we have not been able to prove it yet.

APPENDIX H: QUANTUM DISCORD AND COMPLETE
POSITIVITY VIOLATION

In Sec. V C, we interpret the complete positivity violation
in terms of correlations present in states on an invariant man-
ifold. To support this interpretation, we examine the relation
between the strength of correlations on an invariant manifold
and the degree of complete positivity violation. We take the
qubit-qutrit system in Sec. III for this analysis. States on
the invariant manifold are characterized by Eq. (12) in this
case. For this class of bipartite states, there is a strong con-
nection between complete positivity of the reduced dynamics
and quantum discord, as we elaborate in the next paragraph.
Hence, we take quantum discord as a measure of correlations.

Prior to discussing a methodology for estimating quantum
discord, we make several remarks on connections between
complete positive reduced dynamics and quantum discord.
These remarks are intended to complement the historical
overview given in Sec. V C. It was shown in Ref. [47] that,
for Hamiltonian systems, vanishing quantum discord implies
completely positive reduced dynamics. In connection with the
present study, their proof can be straightforwardly extended to
any completely positive processes in the total system, includ-
ing the time evolution with a Lindblad generator. Hence, we
must have completely positive reduced dynamics if all states
on the invariant manifold have vanishing quantum discord. In
Ref. [51], it was shown that, for initial states in the form of
Eq. (12), the converse is also true; that is, completely positive
reduced dynamics imply vanishing quantum discord. Here
we should emphasize that the condition is complete positive
reduced dynamics for all possible unitary transformations. In
fact, the proof in Ref. [51] relies on this fact as it employs
a special form of unitary transformation to elucidate restric-
tions on the environment operators imposed by the complete
positivity. Therefore, the criterion is only sufficient and we
should not necessarily have vanishing quantum discord even
if we observe complete positive reduced dynamics in the
present analysis. As an example, let us consider the disper-
sively coupled qubit-qubit system in Sec. III. As mentioned
in the last paragraph in Sec. III B, the generator LG=0

s is in the
Lindblad form, ensuring complete positive reduced dynamics.
However, this merely confirms the complete positivity for the

total system evolution in that case and does not guarantee it
for all unitary transformations. In fact, we estimated quantum
discord in this case following the procedure described below
and observed nonzero quantum discord.

Now we delve into the estimation of quantum discord.
When considering local projective measurements on HB,
quantum discord of a quantum state ρ ∈ D (HA ⊗ HB), de-
noted as δB(ρ), is defined by [48–50]

δB(ρ) = S(ρB) − S(ρ) + min{�B
j }

S
(
A|{�B

j

})
, (H1)

with S(ρ) = −tr(ρ ln ρ) the von Neumann entropy. The last
term on the right-hand side, min{�B

j } S(A|{�B
j }), encapsulates

the conditional entropy of subsystem HA subsequent to the
measurement on HB associated with rank-1 orthogonal pro-
jectors {�B

j } [ j = 1, . . . , dim(HB)]. The conditional entropy
is calculated using the formula

S
(
A|{�B

j

}) =
dim(HB )∑

j=1

p jS(ρA|�B
j

)
,

with p j = tr(�B
j ρ) the probability of the outcome labeled by

j and ρA|�B
j
= �B

j ρ�B
j /p j the associated postmeasurement

state. The minimization is performed over all possible pro-
jective measurements {�B

j }.
Currently, no efficient method exists to compute

min{�B
j } S(A|{�B

j }) to our knowledge. Consequently, we
estimate this minimum by employing a brute-force approach,
which involves random sampling of projectors {�B

j }. By
diagonalizing randomly generated observables in HB, we
obtain a set of orthogonal projectors. Let Nproj be the number
of generated observables. Given a state, we compute the
minimum value of the conditional entropy in this set, from
which we estimate the quantum discord of the state using
Eq. (H1). Since sampling all orthogonal projectors {�B

j } is
infeasible in practice, the estimated quantum discord should
be considered an upper bound.

Our current objective is to estimate a representative value
of quantum discord of the invariant manifold Minv, which we
denote as δB(Minv). To achieve this, we adopt a straightfor-
ward approach, in which we randomly sample Nstate states
on the invariant manifold ρa ∈ Minv (a = 1, 2, . . . , Nstate ) and
then estimate δB(Minv) through the average value of quantum
discord among those states:

δB(Minv) = 1

Nstate

Nstate∑
a=1

δB(ρa). (H2)

A set {ρa} can be prepared by randomly generating ρB ∈
D (HB) and then inserting them into Eq. (12). Given that
the map KG=0 is not positive, we check the eigenvalues of
KG=0(ρB) to ensure that {ρa} are all positive semidefinite.

The resulting quantum discord is shown in the left figure in
Fig. 5. For the numbers of random sampling, we take Nproj =
Nstate = 500. We confirmed that the results do not change
significantly by employing larger values of Nproj and Nstate.
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APPENDIX I: GAUGE CHOICE
FOR PRACTICAL APPLICATIONS

The geometric formulation introduced in Sec. II involves
the gauge degree of freedom. It was previously anticipated in
Ref. [24] that the gauge degree of freedom can be leveraged
to restore the Lindblad form of the generator Ls. In Sec. IV,
however, we found an example where such a restoration is
unattainable. Given this background, this Appendix explores
the potential roles that the gauge degree of freedom plays in
the practical applications.

In practical applications, care should be taken when the
initial state is determined in the reduced system. For the partial
trace parametrization, the domain of initial reduced states
must be restricted [45] to trA(Minv) (see Sec. V for the nota-
tion), which is a subset of D (HB) in general. By linearity, ex-
tending the domain of KG=0 to D (HB) (all density matrices)
is possible. However, such extension leads to an initial total
state that is not positive semidefinite and thus is unphysical.
Recall that KG=0 is not positive at the second-order expansion
in general. Therefore, strictly speaking, the domain restriction
is necessary once we consider contributions higher than the
second-order, even when LG=0

s admits the Lindblad form.
To cover all the states in Minv, the map KG : D (HB) →

Minv needs to be positive and surjective. If G = Gps has
those properties, then the time evolution map with this gauge
choice exp(LGps

s t ) at least preserves positivity. Indeed, since
KGps maps D (HB) onto all the positive states in the subspace
spanned by Minv, by injectivity a nonpositive ρs obtained with
exp(LGps

s t ) can also be mapped only onto a nonpositive ρ in
the space spanned by Minv.

A question then arises whether such a Gps exists in general.
To our knowledge, the existence of Gps has been confirmed
only for a dispersively coupled two qubit system in Ref. [30].
The rest of this Appendix examines this question for the qubit-
qutrit system introduced in Sec. III. In fact, we see that the
approach employed for the two qubit system is not applicable.

As employed in Ref. [30], we consider the following gauge
choice:

(IB + G)(ρs) =
d∑

m,n=1

cm,nEmρsEn, (I1)

where the complex coefficients cm,n satisfy c∗
m,n = cn,m and

cm,m = 1 for the Hermitian and trace preservation of KG,
respectively. This is one of the simplest gauge choices because
the corresponding supermatrix (see Appendix C) is diagonal
as ÎB + Ĝ =∑d

m,n=1 cm,nEn ⊗ Em. From this representation,
it is clear that (IB + G)−1 exists if and only if all the co-
efficients {cm,n} are nonzero. In that case, one can calculate
Ls with different gauge choices using Eq. (8). In fact, within
the form of Eq. (I1), the generator LG

s is independent of
gauge choice because LG=0

s is diagonal [see Eq. (13)] and thus
commutes with (IB + G).
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FIG. 7. Maximal multiplying factor u such that, with cm,n =
uc̃m,n, positivity is ensured for the composite qubit-qutrit state in the
case of any three-state superposition, as a function of the coupling
strength [(χ1, χ2, χ3) = (0, χ, 2χ )] in units of the qubit damping
rate. The figure is obtained by varying the value of χ , while fixing
�/κ = 0.5 and 
/κ = −0.5.

From Eqs. (7) and (12), KG with Eq. (I1) reads

KG(ρs) =
d∑

m,n=1

cm,nQm,n ⊗ EmρsEn.

The absolute values of {cm,n} are bounded above by the ne-
cessity of KG to be positive. On the other hand, taking too
small values results in nonsurjective KG. The problem is thus
to find their optimal values ensuring both the surjectivity and
positivity. We can use any qudit state ρs to obtain constraints
on these coefficients and explore the space of the total state
they allow us to span. In particular, if we consider a qudit in a
superposition of two levels between m and n, we can use the
results of Ref. [30] to show that there exists an optimal value
c̃m,n that ensures both the surjectivity and positivity. As this is
valid for any pair (m, n), one might be tempted to choose the
set {c̃m,n} as the optimal one. However, strikingly, this set is
not admissible for d > 2 as it does not ensure the positivity
of KG. In other words, one needs to take smaller values of the
coefficients than {c̃m,n} as cm,n = uc̃m,n with u � 1 to obtain
positive KG. For instance, for the qubit-qutrit system (d = 3)
with Eq. (10), we plot the maximum value of u that ensures
the positivity of KG in Fig. 7. The necessity to take u < 1
implies that not all the qutrit states can be captured in this
gauge choice. In particular, some superpositions of only two
levels require u = 1. Thus, this counterexample allows us to
conclude that, within the diagonal gauge given by Eq. (I1),
there exists no set {cm,n} leading to positive and surjective KG

when d > 2. This result motivates us to consider nondiagonal
gauge superoperators. Such an extension is currently under
investigation.
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[12] A. Karabanov, D. Wiśniewski, I. Lesanovsky, and W.
Köckenberger, Dynamic nuclear polarization as kinetically con-
strained diffusion, Phys. Rev. Lett. 115, 020404 (2015).

[13] T. Tomita, S. Nakajima, I. Danshita, Y. Takasu, and Y.
Takahashi, Observation of the Mott insulator to superfluid
crossover of a driven-dissipative Bose-Hubbard system, Sci.
Adv. 3, e1701513 (2017).

[14] F. Damanet, A. J. Daley, and J. Keeling, Atom-only descriptions
of the driven-dissipative Dicke model, Phys. Rev. A 99, 033845
(2019).

[15] A. Vivas-Viaña, A. González-Tudela, and C. Sánchez Muñoz,
Unconventional mechanism of virtual-state population through
dissipation, Phys. Rev. A 106, 012217 (2022).

[16] B. Yang, B. Xiong, Z. Liu, and B. Zhang, Effective fourth-order
Lindblad equation for a weakly-coupled dissipative quantum
system, Phys. Lett. A 425, 127881 (2022).

[17] D. Finkelstein-Shapiro, D. Viennot, I. Saideh, T. Hansen, T.
Pullerits, and A. Keller, Adiabatic elimination and subspace
evolution of open quantum systems, Phys. Rev. A 101, 042102
(2020).

[18] I. Saideh, D. Finkelstein-Shapiro, T. Pullerits, and A. Keller,
Projection-based adiabatic elimination of bipartite open quan-
tum systems, Phys. Rev. A 102, 032212 (2020).

[19] E. M. Kessler, Generalized Schrieffer-Wolff formalism for dis-
sipative systems, Phys. Rev. A 86, 012126 (2012).

[20] D. Burgarth, P. Facchi, H. Nakazato, S. Pascazio, and K. Yuasa,
Eternal adiabaticity in quantum evolution, Phys. Rev. A 103,
032214 (2021).

[21] S. B. Jäger, T. Schmit, G. Morigi, M. J. Holland, and R.
Betzholz, Lindblad master equations for quantum systems cou-
pled to dissipative bosonic modes, Phys. Rev. Lett. 129, 063601
(2022).

[22] K. Macieszczak, M. Guţă, I. Lesanovsky, and J. P. Garrahan,
Towards a theory of metastability in open quantum dynamics,
Phys. Rev. Lett. 116, 240404 (2016).

[23] P. Zanardi, J. Marshall, and L. Campos Venuti, Dissipative uni-
versal Lindbladian simulation, Phys. Rev. A 93, 022312 (2016).

[24] R. Azouit, F. Chittaro, A. Sarlette, and P. Rouchon, Towards
generic adiabatic elimination for bipartite open quantum sys-
tems, Quantum Sci. Technol. 2, 044011 (2017).

[25] N. Fenichel, Geometric singular perturbation theory for ordi-
nary differential equations, J. Differ. Equations 31, 53 (1979).

[26] M. Burgelman, P. Forni, and A. Sarlette, Quantum dynamical
decoupling by shaking the close environment, J. Franklin Inst.
360, 14022 (2023).

[27] F.-M. Le Régent and P. Rouchon, Adiabatic elimination for
composite open quantum systems: Reduced-model formulation
and numerical simulations, Phys. Rev. A 109, 032603 (2024).

[28] M. D. Choi, Completely positive linear maps on complex ma-
trices, Lin. Alg. Appl. 10, 285 (1975).

[29] R. Azouit, Adiabatic Elimination for Open Quantum Systems,
Ph.D. thesis, Université Paris sciences et lettres, 2017.

[30] A. Sarlette, P. Rouchon, A. Essig, Q. Ficheux and B. Huard,
Quantum adiabatic elimination at arbitrary order for photon
number measurement, IFAC-PapersOnLine 53, 250 (2020).

[31] M. M. Wolf and D. Perez-Garcia, The inverse eigenvalue prob-
lem for quantum channels, arXiv:1005.4545.

[32] M. Tokieda, C. Elouard, A. Sarlette, and P. Rouchon, Complete
positivity violation in higher-order quantum adiabatic elimina-
tion, IFAC-PapersOnLine 56, 1333 (2023).

[33] A. Essig, Q. Ficheux, T. Peronnin, N. Cottet, R. Lescanne, A.
Sarlette, P. Rouchon, Z. Leghtas, and B. Huard, Multiplexed
photon number measurement, Phys. Rev. X 11, 031045 (2021).

[34] C. Müller and T. M. Stace, Deriving Lindblad master equations
with Keldysh diagrams: Correlated gain and loss in higher order
perturbation theory, Phys. Rev. A 95, 013847 (2017).

[35] A. G. Redfield, On the theory of relaxation processes, IBM J.
Res. Dev. 1, 19 (1957).

[36] For the oscillator-qubit system in Sec. IV, for instance, the fast
relaxing modes typically decay at the slowest rate as exp(−γ t )
for small enough g. This implies that the trajectory is δ-close to
the invariant manifold when t = γ −1 ln δ−1.

[37] S. Maniscalco, F. Intravaia, J. Piilo, and A. Messina, Misbeliefs
and misunderstandings about the non-Markovian dynamics of a
damped harmonic oscillator, J. Opt. B: Quantum Semiclassical
Opt. 6, S98 (2004).

[38] R. S. Whitney, Staying positive: Going beyond Lindblad with
perturbative master equations, J. Phys. A: Math. Theor. 41,
175304 (2008).

[39] R. Hartmann and W. T. Strunz, Accuracy assessment of pertur-
bative master equations: Embracing nonpositivity, Phys. Rev. A
101, 012103 (2020).

[40] Á. Rivas, S. F. Huelga, and M. B. Plenio, Quantum non-
Markovianity: Characterization, quantification and detection,
Rep. Prog. Phys. 77, 094001 (2014).

[41] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Collo-
quium: Non-Markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[42] P. Pechukas, Reduced dynamics need not be completely pos-
itive, Phys. Rev. Lett. 73, 1060 (1994); R. Alicki, Comment
on “Reduced dynamics need not be completely positive”, ibid.
75, 3020 (1995); P. Pechukas, Pechukas Replies:, ibid. 75, 3021
(1995).

[43] P. Forni (private communication).
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