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Probing quantum chaos with the entropy of decoherent histories
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Quantum chaos, a phenomenon that began to be studied in the last century, still does not have a rigorous
understanding. By virtue of the correspondence principle, the properties of the system that lead to chaotic
dynamics at the classical level must also be present in the underlying quantum system. In the classical case,
the exponential divergence of nearby trajectories in time is described in terms of the Lyapunov exponent.
However, in the quantum case, a similar description of chaos is, strictly speaking, impossible due to the absence
of trajectories. There are different approaches to remedy this situation, but the universal criterion of quantum
chaos is absent. We propose a quantum chaos definition in a manner similar to the classical one using decoherent
histories as a quantum analog of trajectories. For this purpose, we consider the model of an open quantum kicked
top interacting with the environment, which is a bosonic bath, and illustrate this idea. Here, the environment
plays the role of a trajectory-recording device. For the kicked-top model at the classical level, depending on the
kick strength, crossover occurs between the integrable and chaotic regimes. We show that for such a model, the
production of entropy of decoherent histories is radically different in integrable and chaotic regimes. Thus, the

entropy of an ensemble of quantum trajectories can be used as a signature of quantum chaos.
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I. INTRODUCTION

Chaotic behavior plays a significant role in various fields
of science (for example, it underlies classical thermodynamics
[1-3] and hydrodynamics [4]). In classical systems, chaos is
characterized by the exponential sensitivity of the evolution
of the system in time to initial conditions, but in quantum
mechanics, it is not possible to characterize chaos in the same
way since the concept of phase-space trajectories loses its
meaning due to the Heisenberg uncertainty principle. There
are different approaches to the definition of quantum chaos,
including through the statistics of energy levels [5-8], spec-
tral form factors [7], the Loschmidt echo [9,10], out-of-time
ordered correlators (OTOCs) [11-13], and the rate of increase
of entropy [14,15] and in the context of quantum modeling
through fidelity decay [16]. However, the true understand-
ing of the nature of quantum chaos and the limits of using
its various diagnostics, as well as the possible connection
between them, is the subject of ongoing research, both theo-
retical and experimental. Currently, it is impossible to present
a universal criterion for determining quantum chaos and to
rigorously understand this phenomenon. The methods of di-
agnosing quantum chaos have their drawbacks. For example,
level statistics are poorly defined for small systems, and there
are specific examples for which it does not work [17]; OTOCs
do not work for billiard systems, and in this case, it is not
possible to distinguish integrable behavior from chaotic [13].
Thus, the interest in finding universal criteria for quantum
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chaos for classically chaotic systems, as well as understanding
the nature of the appearance of this phenomenon, is warranted.

Interest in quantum chaos is motivated by its wide ap-
plication in explaining fundamental problems, such as the
thermalization mechanism in isolated systems, for which the
eigenstates of quantum chaotic systems play a significant role
[18-20]; quantum information scrambling [12]; and the influ-
ence of chaos on the processes of decoherence and dissipation
in relation to open quantum systems [21-25]. Currently, there
are various experimental realizations of chaotic behavior, such
as spin chains [26,27] implemented with cold atoms [28,29].

In this work, we rely on the idea of Berry [30], who
stated the importance of the environment for the emergence
of quantum chaos. Quantum decoherence that occurs in non-
isolated systems inhibits the quantum suppression of chaos
(due to the fact that quantum systems have discrete, quantized
energy levels that control the evolution of dynamic quantities;
therefore, this evolution cannot be truly chaotic). Due to the
environment, it is possible to introduce the concept of quan-
tum trajectories of a system as a record that is stored in certain
degrees of freedom of the environment [31].

We consider a model in which a quantum environment
is connected to an open quantum system (OQS), which in
some degrees of freedom records how the system behaves as
it evolves over time. This is similar in spirit to the decoher-
ent histories approach, also known as the consistent histories
approach [32-34]. Therefore, we call the recorded informa-
tion about the OQS the decoherent history. The approach
of decoherent histories in relation to quantum chaos can be
found in Refs. [35-37], in which quantum dissipative chaotic
systems were studied in Markov approximation, providing a
connection to the classical limit. In this paper we propose a

©2024 American Physical Society
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FIG. 1. (a) Classical Lyapunov exponent through classical trajectories. (b) The incident field is scattered by particles. A quantum analog
of the trajectory is encoded in the scattered field, which can be modeled by coupling the target particle to the quantum environment through

the environment’s operator a(z).

general treatment of quantum chaotic systems in the decoher-
ent histories approach beyond Markov approximation.

To correctly determine the decoherent histories, it is neces-
sary to identify the degrees of freedom that carry information
about how the OQS moved in the past. The formalism de-
veloped in this paper consists of several stages. First, the
environmental degrees of freedom (later, we call them modes)
that can carry information about the OQS are determined.
There are infinitely many degrees of freedom in the en-
vironment, but only those degrees of freedom that have
significantly interacted with the OQS can carry useful in-
formation. To achieve this, it is convenient to introduce the
Lieb-Robinson light-cone formalism [38], which describes
the propagation of perturbation. The effectively interacting
degrees of freedom will be inside the light cone. Second, from
these degrees of freedom, the irreversibly decoupled ones are
determined since the trajectory record should not change at
future times and should not depend on future OQS evolution.
In other words, they must carry away information about the
0QS and stop interacting. Knowing these degrees of freedom,
we can measure them one after another, and the sequence of
the measurement results is a quantum trajectory (decoherent
history).

The analog of the trajectory appears due to the fact that the
system interacts with the environment (Fig. 1). The formation
of quantum trajectories corresponds to the emergence of de-
coherent histories in the environment [31,39].

The approach used in this work is based on the method
[40] that allows modeling of OQS dynamics beyond the limits
of the Markov approximation applicability [41,42]. In this
work, this approach is adapted, and the environment modes,
which contain information about the OQS motion, are micro-
scopically derived. Consequently, the concept of decoherent
histories is constructed, and the entropy of the ensemble of
quantum trajectories [31,43,44] is calculated. It is reasonable
to assume that the entropy of the ensemble of these quantum
trajectories will be radically different in the integrable and
chaotic regimes, as proved in this study.

This paper is structured as follows. Sections II and III
introduce the model in question. In Sec. IV we explain our
treatment of the decoherence history approach. Section V
describes a method for deriving the environmental degrees of

freedom, which contain information about the OQS motion.
In Sec. VI we construct quantum trajectories (decoherent
histories) and calculate the entropy of an ensemble of such
trajectories. In Sec. VII we present our results. We conclude
in Sec. VIIL

II. THE CONSIDERED CHAOTIC SYSTEM

We consider the model of a quantum kicked top [45] as
the OQS, which at the classical level has chaotic behavior
for certain values of kick strength K (hereinafter, the natural
system of units is used: 7 = 1). This model has been well
studied in the context of quantum chaos [7,45,46]:

N p. K . >
Hs=~J,+ z—j(Jz —B? > 8t —n1). (1)

n=—oo

The system is characterized by the angular momentum
J= (Jx, Jy, J;) with the corresponding commutators [J;, J;] =
i€jjxJr (i, j,k run through x,y,z). The classical limit is
reached when j — oo, i — 0 while preserving 7. The first
term is responsible for the precession around the y axis with

the angular frequency E; the second one is related to the
T

periodic sequence of kicks at the time distance 7.

With changing K, the motion of the system changes from
integrable to chaotic. Figure 2 shows the level-spacing distri-
butions for different values of the kicked strength K.

The physical implementation of this model is provided by
the system of interacting spins [28,47].

III. OPEN CHAOTIC QUANTUM SYSTEM

Our main idea is to introduce trajectories in the quantum
case to obtain a method for diagnosing quantum chaos. To do
this, it is necessary to connect the environment to the con-
sidered chaotic system (in this work the model of a quantum
kicked top; Sec. II). The role of the environment is played by
a bosonic bath.

The complete Hamiltonian of the system is as follows:

H= Hs + Hg + Hiy, )
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FIG. 2. Crossover between integrable (Poisson statistics) and chaotic (Wigner-Dyson statistics) motion; for the left statistics K = 2, for the
right statistics K = 3. The image was plotted for j = 40. In this work we use the following parameters for the kicked top [Eq. (1)]: B = 0.1,

t=1,and p=1.7.

where Hy, Hg, and Hy, are the free Hamiltonians of the OQS
(1) and the environment and the Hamiltonian of the interaction
between them, respectively, and are given by

A

Hp = / wa'(w)a(w)do, 3)
0
Au=J, @ +0). 0= [ cwiwdo. @)
0

where @' (w) and a(w) are the bosonic environment’s creation
and annihilation operators, with [a(w), &' (®)] = §(w — &),
and c(w) is the coupling. Such an interaction indicates that
the environment records the trajectory of the projection of the
y component of the angular momentum of the kicked top

Figure 3 shows the behavior of a quantum kicked top in
the case of integrable and chaotic motion. In the following
sections, we describe how these results were obtained.

In the interaction picture with respect to the free bosonic
environment,

A(t) = As(t) + J, [a" (1) + a)], (5)
a@) = / ” c(w) a(w)e ™ dw. (6)
0

In our work, it is convenient to represent the environment
in the equivalent chain representation [48]. This representa-
tion is necessary in order to introduce the concept of the
Lieb-Robinson light cone [38]. For a sufficiently wide class
of spectral densities, a unitary operator U exists that takes
the system into a chain representation [48]. Using the unitary
operator, the environment is represented as a chain in which
only neighboring modes interact:

a = f ) Up()a' (0)do, (7
0

H(t) =Hs(t) + Jy h (af + ao)
oo
+ Y (enttian + hydt) ay + hptlni),  (8)
n=0

with commutator [a;, &j.] = §;;. Knowing the spectral density,
the coefficients ¢,, h,, and h can be calculated by recurrent
formulas using orthogonal polynomials [48].

In the interaction picture with respect to the free bosonic
environment in the chain representation, we obtain the fol-
lowing:

H(t) = Hs(t) + Jy h[a)(t) + ao(t)]. ©)

IV. QUANTUM ENVIRONMENT AS THE RECORDER OF
0QS TRAJECTORIES

In this study, the main idea is to consider the environ-
ment as a recording device that records information about the
movement of the OQS in some degrees of freedom. Thus,
the environment contains a sequence of projection operators
corresponding to the records (facts) of the OQS motion. The
definition of the trajectories we introduce is related to the
approach of decoherent histories [32,34,49].

Consistent histories, also known as decoherent histories
(DH) formalism, were introduced by Griffiths, Omnes, Gell-
Mann, and Hartle [49,50]. This formalism is an interpretation
of quantum mechanics that allows one to resolve or tame
the main quantum paradoxes. The DH approach is based on
the assumption of the probabilistic nature of quantum time
dependence [34]. The DH concept also aims to explain how
classical reality emerges from quantum mechanics [50].

A “history” is a set of events or propositions, represented
by projection operators ISO}], cee, 130’;” at a succession of times
t,...,t, time ordered with unitary evolution between each
projection. At each time moment ¢;, there are different alter-
natives o; = 1, ..., m; that correspond to a set of projection
operators {ﬁ;i}, where «; is the number of particular alter-
natives and i is the number of time moments. Such sets are
exhaustive and exclusive at each time moment #;: (1) the sum
of all alternatives of the set is unity Za’_ 130’;[ =1; (2) two

distinct alternatives are mutually orthogonal, B} P} = 84,5, P .

Thus, the history is represented as time-ordered product of the
projection operators [32,50,51]:
Coroa, = B )P~ (t01) -+ By (1), (10)
where
Pt @) = e%ﬁE(ti_li—l)P\i e_%ﬁl-?(li_ti—l) (1)
o o °

Here, the projections correspond to the records inside the
degrees of freedom of the bath. We consider a bipartite system
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FIG. 3. Mean value of J, versus time along one trajectory. The top images show regular motion K = 1; the bottom images show
chaotic motion K = —10; the right plots enlarge the left ones. The initial condition |[¥(0)) = |/, = 0) ® |0), |0)£ is a vacuum state of the
environment. Images were obtained using the following parameters for the environment: €, = 1, h, = 0.2, and & = 0.05.

comprising an OQS and a bosonic bath; |¥) is the wave
function in the joint Hilbert space of the OQS and bath, and
the density matrix is p = |WV)(W¥]|.
The probability of a history, a sequence of alternatives, can
be given as [32]
plar,....an) =Te(Co o, PCL ) (12)

44444

However, in general, it does not obey all the probability sum
rules, e.g., p(ar) = Zal p(oy, ap). To satisfy them, the fol-
lowing condition is necessary and sufficient [49,50]:

ReTr(Coy.,0Ch 5) =0, a#B.  (13)

44444

In this paper we use a stronger consistency condition,
which means that all the different pairs of histories o and 8
do not interfere (medium decoherence condition [50]):

Tr(Caycon0 €l 5) =0, a#B. (14)

,,,,,

In practice, it is generally difficult to achieve the consistency
condition [52] and find exactly decoherent sets. However, the
consistency condition can be approximated arbitrarily well
with respect to a given level of significance [32]. Thus, we

arrive at the condition of approximate consistency:

Tr(Corva0 Gy ) 0. # B (15)

.....

In the DH approach, the question arises of how to build
these projections ﬁ;i and what observables and time moments
to consider. There is some arbitrariness in this choice [43].
Moreover, it is difficult to construct them. Recently, searching
for them on a quantum computer was proposed [52]. Our
approach naturally resolves this problem. On the one hand, we
have a physical model in which the scattered field carries away
information about the OQS motion, and on the other hand, we
propose a formal consideration of how these projections may
be found. The projections must match the degrees of freedom
of the environment and naturally arise from the properties of
the environment. In the next section, we derive these degrees
of freedom.

V. ENVIRONMENT DEGREES OF FREEDOM WHICH
CARRY INFORMATION ABOUT THE TRAJECTORY

In this section, we describe our procedure for deriving the
environmental degrees of freedom carrying useful information
about the OQS trajectory.
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A. Statistically significant interacting modes

The quantum environment is treated as a recording device.
Its records can be measured, and decoherent histories can
be obtained. Decoherent histories can be contained only in
environmental modes within a light cone. Naively, to find
these modes it is necessary to solve a many-body problem.
However, solving a many-body problem is difficult, and from
a practical point of view, it is a useless approach. In our work,
we first propose to approximate the light cone a priori and
then solve the many-body problem inside it. An algorithm for
estimating the light cone a priori is given below.

The light cone allows one to determine which degrees of
freedom are significant and which are not. The region outside
the light cone consists of degrees of freedom that will be
significantly excited only in the future or will never be excited
at all. In particular, for each chain site in Eq. (8), there is a
point in time after which it becomes statistically significant
for the evolution of the system.

In order to a priori estimate which modes the OQS ex-
cites, it is necessary to introduce a measure that determines
the influence of the OQS on the considered mode. For this
purpose, it is convenient to use the commutator [ag(t), &j.],
which will show whether the operator dg(¢) affects the mode
corresponding to ;. If this mode is currently interacting with
the OQS, then &; and aop(¢) do not commute. The operator
ap(t), which is the degree of freedom with which the OQS
interacts at time ¢ in the interaction picture, can be expressed
in terms of the original chain operators as follows:

ao(t) =) et (16)

k=0

where ¢y (¢) is a one-particle wave function that satisfies the
following first-quantized Schrodinger equation with the initial
condition corresponding to the interaction quench at time ¢t =
0:
{3z (1) = —i€xPr(t) — ihips1 (1) — ihg—1p—1(1), (17)
¢x(0) = ko,

where h_; = 0.

The Hamiltonian responsible for the evolution of the one-
particle wave function is as follows:

€0 h() 0 0

hO €] h] 0 .
H=|0 mh e mn . (18)

0 e ce 0 hm(l)—l €m(r)

Here, m(¢) is the number of environmental degrees of freedom
that have been excited due to coevolution with the OQS over
time ¢. The perturbation propagates along the Lieb-Robinson
light cone [38] from the zero site ag, to which the OQS is
connected. Figure 4 shows the spread of the operator dg(t)
over sites of the chain.

For the simplest case of a linear environment, the commu-
tator is

[ao(t), &} = ¢;()1,

where 1 is the identity operator in the bath Hilbert space.

chain site No.

200 300
time

FIG. 4. Wave function ¢y (¢) propagating the interaction operator
ap(t) over time. The color matches |¢;(¢)|. It can be seen that the
perturbation propagates along the light cone.

Thus, the measure characterizing the instant interaction
intensity with the OQS at time ¢ can be expressed as follows:

le; (O = (Ollao(), a{1[ao(t), a71710) = ;). (19)

If Cj(t) = 0, then mode ¢; does not interact. If C;(t) > 0,
then mode ¢; is currently interacting with OQS. This function
takes the form of an OTOC [12]. The condition C;(t) > 0
indicates that the mode is coupled with the OQS at a given
time. If the instant interaction intensity C;(t) is negligible, the
excitation of this mode due to the OQS is also negligible.

The light cone is determined by the average intensity of the
mode interaction over the time interval from O to ¢ rather than
by the instantaneous intensity of the mode interaction. During
time ¢, only those modes that interact significantly on average
over the entire interval enter the light cone. Therefore, it is
necessary to consider only statistically significant interactions
during the chosen time interval and to eliminate sudden short-
term excitations of environmental modes, which would make
a negligible contribution. The OTOC (19) averaged over time
is as follows:

(CF () = /0 C;(t)dr. (20)

Since the boundary of the light cone is fuzzy, it always has
exponentially decaying tails outside its front, so it is necessary
to introduce a significance threshold at which we make the
cutoff. Thus, the condition for the mode to be inside the light
cone is that the average intensity of the mode interaction is
above a certain threshold of significance acy:

(Cf 1)) — acu > 0, 21

and we consider the modes that are effectively coupled and
interact with the OQS, influencing their joint evolution.

B. Records may be nonlocal

When constructing decoherent histories, we need to de-
fine the grid of times #; at which projections 130’;1 appear. In
the literature, one usually introduces time coarse graining ad
hoc by hand [35,36]. In our case of non-Markovian quantum
dynamics, the grid of times emerges naturally from the envi-
ronmental spectral density of states.
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A light cone defined in a chain basis has a drawback,
namely, that the environmental modes are not statistically
independent. If we consider the environment to be a trans-
mission line, there is a Kotelnikov sampling theorem [53]
which states that statistically independent wave packets can
be emitted into the line at a rate proportional to the band-
width of this line. By analogy, in the context of decoherent
histories, truly statistically independent degrees of freedom
will appear in a basis where the speed of propagation of the
light cone is minimal. In this basis the intervals between the
times of appearance of the modes are proportional to the width
of the spectral density of the environment as the bandwidth
of a recording device [40]. The projections IA’;;I_, which carry
independent bits of history, should occur in these times.

Therefore, it is necessary to generalize the concept of the
light cone to an arbitrary frame. Instead of the chain operators
a; and &f, we consider a unitary transformed set of them: IQ; =

Yoo U ik&,t for arbitrary unitary matrix U. Given a sequence
of K;, we can, by analogy with (21), define the criterion for
when the mode corresponding to &; enters the interaction with
the OQS for the first time. The average statistical significance
of state |k;) = Y o, Ujlk), where |k) is quantum localized
in the k chain site, is as follows:

() = / 0||:ao(f) ZU,kak} |:ao(f) ZUM}

= (Kjlfo dt|p(T)) (b (D)) = (kjlo+ OlKj),  (22)
with
,0+(t)=/0 dt|p(T)) (@(T)l. (23)

We introduce a metric that determines whether the contri-
bution of the |«;) state is significant or not:

g+(kj, 1) = (Kjlp(D)|Kj) — deur- (24)

If g1(xj,t) <0, the contribution of this mode can be ne-
glected with threshold a.,. Modes lying inside the light cone,
i.e., satisfying the condition g, (x;,?) > 0, contain informa-
tion about the OQS (the kicked top). Figure 5 shows the modes
(chain sites) coupled to the OQS over time, as determined
according to Eq. (24).

Since the Lieb-Robinson metric (24) is defined for an ar-
bitrary mode, we can pose a variational problem and find U
where the light cone propagates with minimum speed, which
we call the minimal light cone & ”Lm =Y, Uia,. Moments
when modes enter the light cone are delayed as much as pos-
sible. Then, by analogy with the Kotelnikov theorem, modes
that managed to enter the minimum light cone carry useful
information, and the rest do not have time to interact and
do not carry a decoherent history; they do not need to be
considered. Further, unless otherwise stated, we will work
within the frame of the minimal light cone. Information about
the OQS is recorded in nonlocal environmental degrees of
freedom.

A detailed algorithm for obtaining the minimal light cone
is derived in Ref. [40]. We denote the modes coupled to the

30

254

204

154

10 A

number of coupled lattice sites

0 10 20 30 40 50
time
FIG. 5. The chain sites coupled to the OQS, depending on time,

form a forward light cone. Coupled modes are defined according to
Eq. (24).

0QS for the time interval [0, T] as «{", ...,k ; and the
discrete times of their appearance as ¢I", .. ., t,i,;‘m )

The total joint state of the quantum kicked top and bosonic
bath |W(z)) effectively evolves with the Hamiltonian:

Hegr(t) =

min (1)

Hy(t) + Z

Entanglement between degrees of freedom is neglected when
their statistical significance is below a certain threshold.

Mo]i"e)" + L"), ). (25)

C. Irreversibly decoupled modes: Stable records

Records carrying information about the OQS must be sta-
ble facts; therefore, it is necessary to consider modes that are
irreversibly decoupled from the OQS.

Two different cases of outgoing (decoupled) modes are
possible: (1) modes that have never interacted with the OQS
and (2) modes that interacted with the OQS and were ir-
reversibly decoupled from it. The first situation does not
contain any information about the OQS, and we discard
these modes from consideration. However, it is necessary to
track the evolution of modes in case 2. A mode decoupled
from the OQS at time 1P must be a linear combination of

in L. .
Kl , K2 e Km;“(tl"“‘) That is, it must be in the subspace

of modes coupled to the OQS in the time interval [0, tl"”t].
These modes are the ones that will store information about
the trajectory of the OQS.

Similar to Eq. (22), for outgoing modes, the measure of
statistical significance at time ¢, which determines the decou-
pling of the mode from the OQS, is

T
(CK_,,(I)) = (KjI/ dT|p(T)N(D)lij) = (Kl o—(@)lic)s
(26)
with

T
p— (1) =/ dt|p(t)){(p(D)]. 27
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FIG. 6. The number of modes in the system over time, where

min (1), Moy (¢), and r(¢) are the coupled, irreversibly decoupled, and
relevant modes, respectively. The entire time interval 7 = 500.

A mode can be considered irreversibly decoupled if the
OTOC averaged over future times is negligible.
The condition of a lack of statistical significance for the
irreversibly decoupled modes is as follows:

g (k™ 1) = (k™ p_()|k™) — dew < O. (28)

These modes can be found similarly to the coupled modes
in the minimal light cone by some unitary rotation of the
basis of the coupled modes Kl e Km" . We denote the
1rrever51bly decoupled modes for the time 1nterval [0,T] as
kP, ..o ket ) and the discrete times of their decoupling as
tf“t, . t"“‘(T) Information about the OQS is contained in
irreversibly decoupled modes that have previously interacted
with it. For more details see Ref. [40].

D. Relevant modes

By the time 72", when the kth x?"" mode is decoupled,
there are modes that remain coupled to the OQS. We call
these modes “relevant modes” because they are statistically
significant for future evolution. For the time moment 1™ they
consist of modes that once became coupled to the OQS before
t"”t (Kin o K’i: ( tom)) except for modes that managed to irre-

versibly decouple from the OQS by this time («™, ..., k™).
Thus, there are m;, (t2") coupled modes and k — 1 1rrever51bly
decoupled modes, and their difference is the number of rele-
vant modes r(t"):

") = (1)
The total system state |\W(¢)) evolves over the time interval
[#, t,?”‘] where #; is the time of the previous mode coupling

or decoupling event with the relevant modes [, ..., k™

)
[40].

Figure 6 shows the number of coupled modes, irreversibly
decoupled modes, and relevant modes over time. It can be seen
that the number of relevant modes saturates and practically
does not change during the evolution of the system.

There are no decoherent histories in the relevant modes.
After the interaction quench, the OQS is renormalized (by
analogy with the electron in high-energy physics) and consists

—k+1 (29)

of a bare OQS and relevant modes with which it will interact
significantly in the future.

E. Relation to DH approach

The problem with the DH approach is related to the
difficulty in achieving the consistency condition (14). Our
approach suggests an effective solution to this problem.

The records are contained in irreversibly decoupled modes;
therefore, we find the projections ﬁ(i‘k in the subspace of these
modes. The corresponding terms from the Hamiltonian are
eliminated. The projections commute with the Hamiltonians;
they become an integral of motion after the time of the irre-
versible decoupling mode and thus satisfy the sum rule, so the
histories decohere.

VI. SIMULATING DECOHERENT HISTORIES

Once we know the degrees of freedom in which the envi-
ronment records information about the trajectory of the kicked
top, they can be measured. The measurement statistics will
give an ensemble of quantum trajectories: decoherent histo-
ries.

Before t = 12" the mode «{"" is coupled to the OQS. It is
in an entangled state with the OQS due to Schmidt decompo-
sition:

Z e ¥

(1)) ® 1957 (12")) on (30)

K

where the index rel indicates the wave function belongs to
a joint Hilbert space of the OQS and relevant modes, k™
refers to the newly formed irreversibly decoupled mode, and
g enumerates the basis elements for such a mode.

Since this " mode is irreversibly decoupled, the am-
plitudes c,(k) do not depend on time; they are invariants.
A sequence of motion invariants arises; they cease to effec-
tively depend on time by the threshold of significance. Thus,
form (30) is invariant at all future times, and an invariant
entanglement structure arises for future evolution. This has
also been confirmed numerically. If we perform the Schmidt
decomposition recursively at the moments of mode decou-
pling, the emerging invariant structure of entanglement is as
follows:

[W(r)) = Z Cq(Deg, 2lgr) - - - cq, (klgt, - -+ s Gr—1)
q1seees Gk
}\ch(glll Qk)(t))re] ® ‘\Ij(ﬂ]l)( out))K;)m
® - ® W (")) o - 31)

Moyt (1)

It carries an ensemble of decoherent histories.

According to the von Neumann measurement model [54],
one can collapse the wave function (30) and interpret the equa-
tion as the kth quantum jump at time 1 = 2" [W(")) —

|w§gl’l (12")) with probability |c,(k|q1, . ..

tum jumps are irreversible over time.
By time ¢, mqy () modes have been irreversibly decoupled

(31). Each mode decoupling is accompanied by a quantum

jump, which is obtained from the measurement procedure

s Qk—1 )|2. Such quan-
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recurrently applied:

W) = [ () e

coll

D ) — P )

coll coll

| \p(qllqu) (tg)m) >rel - | v () (t§m)>rel ’

co coll

(32)

Therefore, mgoy(t) quantum jumps occur before time ¢.
They are characterized by the history of choices h =
(g1, 92, - - -, qi) = {qi k. o<, » appearing with probabilities

[] leatklar. ...

kot <r

P(q1,q2, - qr) = gD (33)

This is the proposed definition of decoherent histories. An
important feature of our approach is that the average of all
decoherent histories observables % up to time ¢ corresponds to
the full many-particle quantum dynamics of the OQS in terms
of the significance threshold [40].

Thus, in the environment, projection operators [Eq. (10)]
in the DH approach (Sec. IV) naturally appear as follows:

ﬁo’:k =l ® |\IJJ (tlsm»i(,i’"‘(\pj (tlgm)"‘i‘m‘ (34

A. The entropy of the decoherent histories ensemble

The statistical ensemble of quantum jump histories is en-
coded in an emerging invariant entanglement structure (31)
that does not change in the future.

In summary, a measuring device is required to observe the
trajectory. By adding the environment, which is considered a
recording device, information about the trajectory is recorded
in the stream of irreversibly decoupled degrees of freedom.

We now introduce the definition of the entropy of an en-
semble of decoherent histories (33):

S=- > Pa....

h=(q1,....qn)

,qn)InP(q1, ..., qn).  (35)

VII. THE ENTROPY OF DECOHERENT HISTORIES AS A
MARKER OF QUANTUM CHAOS

We proposed that the entropy of a decoherent histories
ensemble (35) may be a criterion for quantum chaos. In this
section, we present our main results.

The entropy was calculated by considering the simplified
assumption of the presence of ergodicity for quantum tra-
jectories in the sense that averaging over all trajectories is
equivalent to averaging within one sufficiently long trajectory
over all choices. Averaging over one trajectory was used in
this study.

As soon as the irreversibly decoupled degree of freedom
appeared, a quantum jump was performed. Figure 7 presents
the probability distribution of the quantum jumps |cq|2 (all
possible choices). Here and below, the dependence of ¢, on
all the earlier outcomes is not indicated.

Figure 7 shows that for the integrable case at K = 0, the
probability distribution is very narrow, whereas for the chaotic
regime K = —10 the jump probability distribution is very
broad.

P(q) =Ic,l2

10-11 4

10-14 4

10-17 4

FIG. 7. Quantum jump probability distribution |, | in two cases
for kick strength K = 0 (blue curve) and K = —10 (orange curve).
Here, we plot the converged results of simulations in the Fock space

truncated at seven quanta.

This procedure was repeated for the entire time interval
T. One random implementation of the choice of quantum
transitions was considered. In Fig. 8 the instantaneous produc-
tion of entropy depends on the number of quantum jumps. In
integrable and chaotic regimes, entropy along one trajectory
behaves in radically different ways.

When n quantum jumps have already happened and the
moment of the next jump has come, we can expand the wave
function of the system in terms of the Schmidt expansion (30),
and from the previous set of significant modes, we select a
new set of significant modes and a mode that is irreversibly
decoupled (on which the projection is carried out):

W) = Y cq WS g1, ..

Gn+1

’ q"))rel ® |\p5q”+l)(t)>l(§“"
(36)

At the (n 4 1)th step, a new distribution of quantum jumps
arises (a set of alternatives). The entropy for one jump

1.75 A

1.50 A

1.25 A

1.00 A

— k=1
S k=-10
0.75 A
0.50 A
0.25 A
0.00 A .
0 10 20 30 40 50 60

number of quantum jump

FIG. 8. Instantaneous entropy production along one trajectory
for K = 1 (blue curve) and K = —10 (orange curve).
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1.751

1.50 4

1.25 1

1.00 1

0.75 A

0.50

< AS > per quantum jump

0.25
— j=40

0.00 A j=20

-100 -7.5 -50 -25 00 25 50 75 100

K

FIG. 9. Average entropy production (38) depending on kick
strength K. One can see a sharp increase in entropy pro-
duction in the region of crossover between integrable and
chaotic dynamics. The calculation was performed for two dif-
ferent quantum numbers, j =20 (orange curve) and j =40
(blue curve).

increases:

AS == ¢, In(c,.,)- (37)

qn+1

The average entropy production for one trajectory per quan-
tum jump is

1
(AS) = v ; AS, (38)

where N is the total number of quantum jumps. Figure 9
represents the average entropy production per quantum jump.
As can be seen, its behavior changes strongly when passing
from the integrable case, where there is practically no increase
in entropy, to the chaotic case, where there is a strong increase
in entropy.

It was confirmed that in the integrable case the trajecto-
ries behave more regularly and the entropy basically does
not increase, whereas in the transition to the chaotic case,
the trajectories mix strongly and the entropy grows rather
sharply. Moreover, with an increase in j, the entropy growth
angle increases. Thus, it is assumed that the entropy pro-
duction along one trajectory can be a criterion of quantum
chaos.

VIII. CONCLUSIONS

The main idea was to introduce a definition of quantum
chaos similar to the classical definition through the divergence
of nearby trajectories.

Quantum trajectories can be introduced by connecting the
system to the environment. In this case, the quantum envi-
ronment is analogous to a recording device. The role of the
information carrier in the quantum environment is played by
the degrees of freedom that are irreversibly decoupled from
the OQS (the stable records), which periodically arise during
the evolution of the joint system in time.

In this work, we first offered a different way of finding the
degrees of freedom of the environment that carry information
about the trajectory by averaging the OTOC. Second, on the
basis of this, we introduced the definition of the trajectories.
As a criterion for quantum chaos, we proposed using the
entropy of the ensemble of given trajectories (35).

Thus, one can consider the environment to be a measuring
device that autonomously selects the time of measurement
and the preferred basis without the intervention of a hu-
man experimenter. In turn, during the evolution in real time,
by measuring irreversibly decoupled modes with a certain
probability one after another, a sequence of measurements is
obtained, which results in a quantum trajectory.

It was confirmed that for regular motion, decoherent his-
tories behave relatively regularly, whereas for chaotic motion,
the recorded particle trajectory fluctuates more and is irreg-
ular. The entropy of an ensemble of such trajectories grows
faster in the chaotic case than in the integrable case. It is
also possible to observe a noticeable sharp increase in entropy
during the transition of the system dynamics from integrable
to chaotic at values of the kick strength K from 2 to 3 (Fig. 9).
Thus, this approach made it possible to fix the phenomenon
of quantum chaos for the model of a quantum kicked top. We
propose connecting any considered chaotic system to the envi-
ronment and using the entropy of the ensemble of decoherent
histories as a criterion of chaos.

We are currently developing a software package that im-
plements the methods outlined in this work [55].
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