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We develop a method for semi-device-independent certification of the number of measurements. We achieve
this by testing whether Bob’s steering equivalent observables can be simulated by k measurements, which we do
by testing whether they are k-compatible with separable joint observable. This test can be performed with the
aid of hierarchy of semidefinite programs, and whenever it fails one can conclude that Alice must have access to
at least (k + 1)-incompatible measurements.
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I. INTRODUCTION

Quantum measurement theory, pivotal in our comprehen-
sion of quantum mechanics, was originally devised to explain
measurements at a foundational level. While its applications
in quantum information processing have become apparent,
particularly in the realm of quantum networks (see [1,2] for
reviews on the topic), the focus has primarily been on single-
system measurements. This is despite the fact that quantum
networks have gone through a rapid development recently
[3], and the investigation of such platforms necessitates the
use of multipartite measurements. On top of fundamental
achievements, such as disproving real-number-based mod-
els of quantum theory [4], the approach has improved our
understanding of measurements on compound systems, e.g.,
in the form of the elegant joint measurement [5]. However,
the full theory of quantum measurements on such systems is
still developing, and the exact role of known concepts, such
as entangled measurements and measurements simulable by
local operations supported by classical communication [6,7],
in networks remains unclear.

This paper contributes to the evolving theory of compound
system measurements by establishing a connection between
two central concepts: simulability of measurements and com-
patibility of measurements on many copies, resulting in a
hierarchy for certifying the number of measurements in a
semi-device-independent manner. On one hand, simulability
examines whether the statistics of a set of quantum mea-
surements can be explained using a predetermined set of
measurements, aided by randomness and classical data pro-
cessing. Recently, the concept was used to improve bounds on
the Grothendieck constant KG(3) [8] in cases of sharp mea-
surements [9]; to show the existence of truly nonprojective
measurements in quantum theory [10] for measurements with
fixed number of outcomes [11,12]; or yet to allow for a record
high semi-device-independent certification of entanglement
dimensionality [13]. Here we consider a fixed number of
simulating measurements [11].

On the other hand, compatibility on many copies inves-
tigates the recovery of measurement statistics from a single

measurement on a compound system [14], a generalization
of compatibility of measurements, which is recovered when
a single system is considered. This special case has found
connections with an advantage in quantum correlations in
bipartite [15–17], prepare-and-measure [18–20], and temporal
[21–28] scenarios, but the more general many-copy case has
not yet found applications in such setting.

We demonstrate the use of the proposed hierarchy in
a quantum steering scenario. Steering manifests itself in
asymmetric scenarios where Alice and Bob cannot be in-
terexchanged [29–35] (cf. Fig. 1). Consequently, it can be
exploited for practical applications, such as quantum key
distribution [36], randomness certification [37–39], or secret
sharing [40,41], where such asymmetry is advantageous.

Beyond applicability, steering has a considerable role
in foundations of quantum mechanics. Although a distinct
and independent phenomenon, it is closely related to Bell
nonlocality, entanglement, and measurement incompatibility
[42,43]. Indeed, steering can only be observed if the shared
state is entangled and Alice’s measurements are incompatible
[16,17]. Such requirement makes steering detection a strategy
that certifies measurements incompatibility in a semi-device-
independent approach [44,45], a feat relevant on its own since
incompatibility is central in many protocols.

Using our results on measurements, we go beyond witness-
ing incompatibility of measurements through the violation of
a steering inequality, providing a strategy to actually certify
the number of incompatible measurements one of the parties
can access. Consider the following steering scenario: Alice
and Bob share a bipartite quantum state and Alice has access
to some set of measurement devices acting on her part of
the state (cf. Fig. 1). Alice performs a measurement corre-
sponding to an input x and outputs the measurement outcome
a. Bob’s task is to certify the cardinality of the set of the
measurements settings {x}x. In particular, we will construct
a hierarchy of tests such that if one of them is successful,
Bob will be able to give a lower bound for the number of (in-
compatible) measurements at Alice’s possession. Our method
also displays the main advantage of admitting a semidefinite
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FIG. 1. The steering scenario. Alice performs local measure-
ments x suggested by Bob and reports the outcomes a. Our aim is
to set lower bounds on the cardinality of x based only on the updated
local states σa|x on Bob’s side. In the scenario, Alice is treated as a
black box and Bob’s measurements are fully characterized.

programming (SDP) formulation, and our hierarchy of
tests can, consequently, be efficiently computed with well-
established methods.

II. COMPATIBILITY AND SIMULABILITY

Joint measurability of a set of positive-operator valued
measures (POVMs) encapsulates the notion of whether a set
of measurements can be performed simultaneously by a single
device. Let {Ma|x}a,x be a measurement assemblage, i.e., a set
of POVMs obeying Ma|x � 0 and

∑
a Ma|x = 1 for all a, x.

This way, the set {Ma|x}a forms a POVM for every value of
x, which labels the measurement setting while a labels its
associated outcome. Formally, an assemblage is said to be
compatible or jointly measurable if there exist a POVM {Gλ}λ
and a probability distribution p such that, for any state ρ and
all a, x,

tr[ρMa|x] =
∑

λ

p(a|x, λ)tr[ρGλ]. (1)

When this condition is met, the observable {Gλ}λ repre-
sents a joint measurement of {Ma|x}a,x, as it can recover
its statistics through a suitable postprocessing given by p.
Equivalently, this condition can be put in terms of the
marginalization of some joint measurement. In this case, there
must be a POVM G with effects Ga1,...,an such that Ma|x =∑

ai,i �=x Ga1,...,ax−1,a,ax+1,...,an . Then it is said that Ma|x can be
recovered as the xth marginal of G.

The notion of joint measurability can be extended to the
concept of k-compatibility [14], that is central for our work.
The idea is that we are allowed to perform the joint mea-
surement on k copies of the state ρ. A set of measurements
{Ma|x}a,x is said to be k-compatible if there exists a joint
observable {Gλ}λ such that for any state ρ and all a, x we have

tr[ρMa|x] =
∑

λ

p(a|x, λ)tr[ρ⊗kGλ]. (2)

G is called a k-copy joint observable of {Ma|x}a,x. This is a re-
laxation of the usual concept of compatibility, recovered when
one has access to only one copy of ρ, meaning k = 1. Also,
notice that any set of k measurements is k-compatible. An
example of incompatible but 2-compatible POVMs is given in
[46], by a set of 3-incompatible POVMs that are compatible
pairwise. Such triplet of POVMs is clearly 2-compatible, as
one can construct the 2-copy joint POVM by measuring one

of the POVMs on one copy of ρ and measuring the joint
observable of the other two on the other copy of ρ.

Another central concept for our work is k-simulability
[11]. In contrast to having many copies of the state, in k-
simulability one has k measurements. Also, on top of classical
postprocessing, in k-simulability one is allowed to use clas-
sical preprocessing. Formally, a set of measurements given
by POVM elements {Ma|x}a,x is k-simulable if there exist
probability distributions p and q, as well as k POVMs with
elements Bb|y such that for all a and x

Ma|x =
k∑

y=1

p(y|x)
∑

b

q(a|b, x, y)Bb|y. (3)

The interpretation of the simulation scheme is the following:
given a measurement setting x the system is first measured
with a POVM {Bb|y}b with probability p(x|y) after which the
measurement b outcome is postprocessed to a new outcome a
with probability q(a|b, x, y). When this scheme results in the
POVMs {Ma|x}a,x, the POVMs {Bb|y}b,y are called k-simulators
of {Ma|x}a,x. Notice that, similarly to k-compatibility, any set
of k POVMs is k-simulable since one can always choose the
k-simulators to be the same k measurements of the POVM
set, i.e., any set of POVMs can be trivially simulated by itself.
Furthermore, we recover the notion of usual compatibility
when k = 1. As an example of 2-simulable but incompatible
measurements one can again take the same POVMs from [46]
and apply a construction analogous to the previous one.

III. STEERING AND STEERING
EQUIVALENT OBSERVABLES

Consider a scenario where two parties, Alice and Bob,
share a quantum state ρAB, upon which they can perform
measurements and classically exchange results. On Alice’s
side, she has access to a set of measurements labeled by x with
outcomes a, described by the POVM effects {Ma|x}a,x. After
Alice measures, Bob is left with reduced states conditioned to
Alice’s measurement choice and measurement outcome, i.e.,
Bob has access to a state assemblage {ρa|x}a,x given as ρa|x =
trA[(Ma|x ⊗ 1)ρAB]. Upon determining his state assemblage,
Bob can check whether the assemblage can be explained by
a local hidden state (LHS) model. An assemblage is said to
allow LHS model if there are probabilities p(a|x, λ) and sub-
normalized states σλ such that ρa|x = ∑

λ p(a|x, λ)σλ. In this
case, Bob could just claim the states he observes come from
local states σλ in his laboratory whose probability distribu-
tions are simply updated by finding out Alice’s measurement
outcomes. When that is not the case, Bob concludes that Alice
is able to steer his states, i.e., the state assemblage cannot be
realized using a separable state.

Steerability of any state assemblage can be put in terms
of a joint measurability problem. Let ρB = trA[ρAB] be Bob’s
reduced state and �B be the projection onto range(ρB), i.e.,
the subspace spanned by the column vectors of ρB. The
steering equivalent observables (SEO) of Bob’s state assem-

blage {ρa|x}a,x are defined as Sa|x = ρ̃
− 1

2
B ρ̃a|xρ̃

− 1
2

B , where ρ̃a|x =
�Bρa|x�†

B and ρ̃B = �BρB�
†
B. It is known that {ρa|x}a,x has

LHS model if and only if {Sa|x}a|x is jointly measurable [47].
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IV. CONSTRUCTING THE TEST

We now introduce a string of implications that leads to
a test certifying that Alice must have access to more than
k-incompatible measurements. We start showing that if a
measurement assemblage is k-simulable, then the SEO of
the corresponding state assemblage is also k-simulable. Con-
sider a measurement assemblage {Ma|x}a,x. If {Ma|x}a,x is
k-simulable, then there exist probability distributions p and q,
as well as k POVMs with effects {Bb|y}b,y, that satisfy Eq. (3).
Bob’s SEO are given by

Sa|x = ρ̃
− 1

2
B �BtrA[(Ma|x ⊗ 1)ρAB]�†

Bρ̃
− 1

2
B . (4)

Using Eq. (3) we have

Sa|x =
k∑

y=1

∑
b

p(y|x)q(a|b, x, y)

× ρ̃
− 1

2
B �BtrA[(Bb|y ⊗ 1)ρAB]�†

Bρ̃
− 1

2
B . (5)

We can simply identify B̃b|y, the simulators of Sa|x, as

B̃b|y = ρ̃
− 1

2
B �BtrA[(Bb|y ⊗ 1)ρAB]�†

Bρ̃
− 1

2
B . (6)

We assume p, q to be probability distributions, so if {B̃b|y}b,y

is a measurement assemblage of k POVMs then, by definition,
Sa|x is k-simulable. All that is left is to show that B̃b|y � 0 and∑

bB̃b|y = 1 for all b, y.
One easily sees that the first condition holds since Bb|y � 0,

we only need to check that
∑

b B̃b|y = 1. We have

∑
b

B̃b|y = ρ̃
− 1

2
B �BρB�

†
Bρ̃

− 1
2

B = ρ̃
− 1

2
B ρ̃Bρ̃

− 1
2

B = 1. (7)

With that we conclude that if a measurement assemblage is
k-simulable, then the steering equivalent observables of the
state assemblage it generates will also be k-simulable. Notice
that the converse is not true: if the SEO of a state assem-
blage is k-simulable, it does not mean that the measurement
assemblage that generated it is also k-simulable. As a coun-
terexample, whenever Alice and Bob share a separable state,
Bob’s steering equivalent observables will be k-simulable for
any k � 1, regardless of whether Alice’s measurement assem-
blage is k-simulable.

We now recall a result of [48] where it was shown
(in the framework of general probabilistic theories) that
k-simulability implies k-compatibility of the measurement
assemblage. Furthermore, in this case the k-copy joint mea-
surement can be chosen to be of the product form. For
completeness, we formulate the proof in the case of quantum
theory. We prove it by directly constructing a joint measure-
ment for the assemblage. Consider the set {Ma|x}a,x that is
k-simulable, meaning there must exist probability distribu-
tions p, q and measurement assemblage {Bb|y}b,y of k POVMs

that satisfy (3). Define

Nb|y = 1 ⊗ · · · ⊗
yth term︷︸︸︷
Bb|y ⊗ · · · ⊗ 1︸ ︷︷ ︸

k terms

, (8)

it follows that

tr[ρMa|x] =
k∑

y=1

∑
b

p(y|x)q(a|b, x, y)tr[ρ⊗kNb|y]. (9)

Now, notice that the POVM elements Nb|y can be obtained as
yth marginal of Ñ�b = Bb1|1 ⊗ · · · ⊗ Bby|y ⊗ · · · ⊗ Bbk |k , where
�b = (b1, . . . , bk ). Indeed,

Nb|y =
∑

bi,i �=y

Bb1|1 ⊗ · · · ⊗ Bb|y ⊗ · · · ⊗ Bbk |k . (10)

So one can derive that

tr[ρMa|x] =
k∑

y=1

∑
b1...bk

p(y|x)q(a|by, x, y)tr[ρ⊗kÑ�b]. (11)

One can identify
∑k

y=1 p(y|x)q(a|by, x, y) with a probability

distribution p′(a|x, �b), and easily check that this object obeys
p′(a|x, �b) � 0 ∀ a, x, �b and

∑
a p′(a|x, �b) = 1 ∀ x, �b. We thus

conclude that the set {Ma|x}a,x must be k-compatible with k-
copy joint observable in a product form.

In our context, this implication requires that if Bob’s SEO
are k-simulable they will also admit a k-copy joint measure-
ment in a product form. The conditions that we have derived
here are necessary and will, in the following section, enable
us to develop a hierarchy of conditions to check k-simulability
in a semi-device-independent scenario. It is an open question
whether the conditions are also sufficient, or whether one
needs to consider additional conditions. We present sufficient
conditions for 2-compatibility in the Appendix and we rel-
egate the question of necessary and sufficient conditions to
future research.

V. CONSTRUCTING THE SDP HIERARCHY

Given Bob’s state assemblage {ρa|x}a,x, one can construct
its SEO {Sa|x}a,x. We know that if Alice’s measurement as-
semblage {Ma|x}a,x is k-simulable then so is Bob’s SEO,
which means that if {Sa|x}a,x is not k-simulable then neither
is {Ma|x}a,x. Additionally, recall that any set of k POVMs is
k-simulable, i.e., if {Ma|x}a,x is not k-simulable it must consist
of more than k measurements. Furthermore, the POVMs must
be incompatible since otherwise they would be compatible,
i.e., 1-simulable and thus also k-simulable. Thus, by check-
ing the k-simulability of {Sa|x}a,x one can extract information
about Alice’s measurements: if Bob’s SEO are k-simulable the
test is inconclusive, but if {Sa|x}a,x is not k-simulable then we
conclude that Alice’s measurement assemblage must consist
of at least k + 1 incompatible measurements.

The task of directly checking the k-simulability of a set
of POVMs cannot in general be easily computed, as the
corresponding problem deals with nonlinear constraints, for
which there is no known SDP formulation. However, it is still
possible to perform different tests, and one can, for instance,
simply check the k-compatibility of {Sa|x}a,x using an SDP.
Alternatively, one can test the k-compatibility of {Sa|x}a,x and
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enforce that the k-copy joint observable has positive partial
transpose also using an SDP. Lastly, one can test whether
{Sa|x}a,x is k-compatible with k-copy joint observable in a
separable form through an SDP hierarchy. These SDPs give
a series of tests and if any of these programs is not feasible,
then we know that Alice’s assemblage must consist of at least
(k + 1)-incompatible measurements. If all these SDPs are fea-
sible, then the test’s result is inconclusive since the existence
of a separable k-copy joint observable does not imply that it
can be selected to be in a product form.

Even though SDPs for computing the joint measurability
of a set {Ma|x}a,x can be directly written from the definition of
compatibility, it takes further investigation to be able to for-
mulate an analogous construction to k-compatibility. We must
recall the main result in [14], stating that the k-compatibility
of a set {Ma|x}a,x is equivalent to compatibility of the set
{M̃k

a|x}a,x, defined as

M̃k
a|x = 1

k

k−1∑
�=0

1� ⊗ Ma|x ⊗ 1⊗k−�−1. (12)

With this, one can construct an SDP to check the k-
compatibility of Bob’s SEO. All that is left is to also require
that the k-copy joint observables are separable. From Eq. (12)
it is clear that if the k-copy joint observable of {Ma|x}a,x is
of the product form then the joint observable of {M̃a|x}a,x is
separable.

A bipartite operator X ∈ L(HA ⊗ HB), where L(HA ⊗
HB) denotes the set of linear operators on the tensor product of
Hilbert spaces HA and HB, is said to be separable if it can be
written as X = ∑

i Yi ⊗ Zi, where Yi, Zi are positive operators
on HA and HB, respectively. Determining whether an operator
can be put in this form is an NP-hard problem but there are
many separability criteria that can be used, most famously
the positive partial transpose (PPT) criterion, stating that if
X is separable then its partial transpose must be positive, i.e.,
X TA � 0. Here TA denotes the partial transpose over the system
A, defined as (XA ⊗ XB)TA = X T

A ⊗ XB.
One can consider the hierarchy of criteria established

in [49] by Doherty, Parrilo, and Spedalieri, known as the
DPS hierarchy, where symmetric extensions of X ∈ L(HA ⊗
HB1 ) are constructed, namely, operators X̃N ∈ L(HA ⊗ HB1 ⊗
· · · ⊗ HBN ) such that trB2,...,BN [X̃N ] = X and X̃N = PX̃N P,
where P is the operator that performs any permutation
of HB1 , . . . ,HBN . If a certain operator X has symmetric
extension for arbitrary N ∈ N, then X is separable. This con-
struction is easily generalized to proving full separability of
multipartite operators. In this case one needs to search for
symmetric extensions over all parties but one (see [50]).

With this construction, one can build an SDP hierarchy
to test whether Bob’s SEO is k-compatible with separable
k-copy joint observable. Since the N th level of the hierarchy
corresponds to symmetrically extending its POVM elements
to N copies, we can also apply the PPT criterion to them to
improve convergence of the hierarchy. Whenever the test fails
one is sure that {Sa|x}a,x are not k-compatible with k-copy joint
observable in a product form and, hence, after evaluating the
string of implications we constructed, Alice must have access
to at least (k + 1)-incompatible measurements. For N = 2 we

obtain the following SDP:

given
{
S̃k

a|x
}

a,x

find {G̃λ}λ
s.t.

k-compatibility

⎧⎨
⎩

S̃k
a|x = ∑

λ p(a|x, λ)Gλ,∀ a, x∑
λ Gλ = 1

Gλ � 0,∀ λ

PPT
{
G̃TX

λ � 0, X = {A, B1, B2}

first level of DPS

{
trB2 [G̃λ] = trB1 [G̃λ] = Gλ

G̃λ � 0.

Recall that {S̃k
a|x}a,x are constructed from {Sa|x}a,x according

to (12), and the variables of the SDP are the operators {G̃λ}λ.
Whenever this task has no solution one can conclude that Al-
ice has access to at least (k + 1)-incompatible measurements.
If there are {G̃λ}λ that obey these constraints the test is incon-
clusive and one can consider higher levels of the separability
hierarchy.

VI. EXAMPLES

To test the efficiency in certifying a lower bound for
the number of Alice’s measurements, one can investigate
the typical example of measurements in mutually unbiased
bases (MUB), considering that Alice and Bob share a max-
imally entangled state. Consider the noisy version of Alice’s
measurement assemblage {Ma|x}a,x, consisting of nx measure-
ments with na outcomes each, parametrized by the visibility
t ∈ [0, 1] as Mt

a|x = tMa|x + (1 − t ) 1
na

. For t = 0 we have
simply a trivial set of measurements, which is clearly k-
compatible with separable k-copy joint measurement, and for
t = 1 we recover the original MUB measurements. One can
evaluate what is the critical visibility tc for which {Mt

a|x}a,x

passes the test, meaning for t � tc we can certify that Al-
ice’s assemblage consists of at least (k + 1)-incompatible
measurements.

For qubits we do not need to consider the DPS hierarchy
since in this case an operator is separable if and only if it
is PPT. We thus obtain that for all three MUBs, the critical
visibility for 2-compatibility is

√
3

2 , while the critical visibility
for 2-compatibility with separable k-copy joint observable is√

2
3 .
For qutrits our findings are summarized in Fig. 2. The

full criteria to be evaluated is that the set {Sk
a|x}a,x must be

k-compatible with separable k-copy joint observable. We pro-
vide three upper estimates: k-compatibility, k-compatibility
with PPT, that is, the case when we enforce that the k-copy
joint observable is PPT, and k-compatibility with PPT and first
level DPS, that is, we enforce that the k-copy joint observable
is PPT and satisfies the first level of the DPS hierarchy.

VII. CONCLUSION

We developed a hierarchy of conditions that enable
semi-device-independent certification of the number of mea-
surements, establishing a lower bound for this quantity. We
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FIG. 2. Critical values tc for the visibility below which the set
{Sk

a|x}a,x is k-compatible, k-compatible with PPT, i.e., we enforce that
the k-copy joint observable is PPT, and k-compatible with PPT and
first-level DPS, i.e., the k-copy joint observable is PPT and satisfies
the first level of the DPS hierarchy. The number of measurements
used to generate {Sk

a|x}a,x is denoted by nx , the state was taken to be
a maximally entangled state. For visibility values above the critical
tc depicted for the different analyses, one certifies that the number of
Alice’s measurements must be at least k + 1.

implemented the first levels of the hierarchy using CVXPY

[51], a freely accessible software. Particularly, we investi-
gated noisy MUBs measured on a maximally entangled state,
a setting well in reach of today’s experimental techniques.
Specifically, our results show that Bob can verify Alice’s
access to more than two measurements in presence of sig-
nificant background noise. A potential bottleneck of our
methods is that for a bigger number of measurements acting
on multiple qubits the resulting SDP may be too large to
be solved numerically; addressing this, symmetry-reduction
techniques [52] and optimizing the SDP implementation and
solver choice are suggested.

Our results extend to checking k-simulability of POVMs,
establishing necessary conditions for k-simulability that can
be cast as SDPs, filling a prior knowledge gap before this
work. For future directions, we highlight finding conditions
for k-simulability that are both necessary and sufficient, and
can be efficiently checked numerically.

This work has broad implications in quantum information
scenarios, as demonstrated by some examples: A main obsta-
cle in applying device-independent quantum key distribution
protocols [53,54] is low robustness to experimental noise. It
is known that using higher-dimensional Bell inequalities and
Bell inequalities with more than two inputs and outcomes
[55–59] can improve the noise thresholds necessary for se-
cure quantum key distribution. Our methods can be used
by the parties to mutually certify that they have the nec-
essary number of incompatible measurements to implement
these protocols. Also, the results hint at the possibility of
semi-device-independent cryptography based on more than
two measurements, which may improve feasibility of exper-
imental applications. Another potential use is attacking an
unknown quantum device, where there is a discovery phase
and the attacker aims to learn as much as possible about
the target. Our results indicate that an attacker able to send
entangled states to the device could bound the number of
incompatible measurements it can perform. Furthermore, we
envision that applications in randomness certification [38]

hold promise for future developments. Finally, there are po-
tential applications within the prepare-and-measure scenario,
notably the receiver-device-independent quantum key distri-
bution protocol [60,61].
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APPENDIX: SUFFICIENT CONDITIONS FOR
2-SIMULABILITY BASED ON 2-COMPATIBILITY

We make the following simple observation: Consider a set
of k-compatible measurements {Ma|x}a,x with a k-copy joint
observable Gλ so that

tr[ρMa|x] =
∑

λ

p(a|x, λ)tr[ρ⊗kGλ] (A1)

for all states ρ for some conditional probability distributions
p. Suppose now that the POVM {Gλ}λ is a mixture of k
POVMs {1⊗y−1 ⊗ Bλ|y ⊗ 1⊗k−y}λ,y, where y ∈ {1, . . . , k} and
{Bλ|y}b,y are some k POVMs. Thus, there exists a probability
distribution q such that

Gλ =
k∑

y=1

q(y)
(
1⊗y−1 ⊗ Bλ|y ⊗ 1⊗k−y

)
. (A2)

Now we see that the original measurements {Ma|x}a,x are in
fact k-simulable:

tr[ρMa|x] =
∑

λ

p(a|x, λ)tr[ρ⊗kGλ]

= tr

⎡
⎣ρ

⎛
⎝ k∑

y=1

q(y)
∑

λ

p(a|x, λ)Bλ|y

⎞
⎠

⎤
⎦. (A3)

Consider now a set of 2-compatible measurements
{Ma|x}a,x with a joint observable Gλ. Let us take any two
different states ρ1 and ρ2 and consider their mixture ρ =
μρ1 + (1 − μ)ρ2 by some weight μ ∈ (0, 1). By the linearity
of the trace we naturally have that tr[ρMa|x] = μ tr[ρ1Ma|x] +
(1 − μ)tr[ρ2Ma|x] and by using Eq. (A1) for k = 2 one can
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easily rephrase the condition as∑
λ

p(a|x, λ)tr[(ρ1 − ρ2)⊗2Gλ] = 0. (A4)

Since this must hold for any two states ρ1 and ρ2, we must
have that for all a, x, λ such that p(a|x, λ) �= 0 we have
that Gλ = B̃λ|1 ⊗ 1B + 1A ⊗ B̃λ|2 + Wλ for some operators
B̃λ|1, B̃λ|2,Wλ such that in particular tr[(ρ1 − ρ2)⊗2Wλ] = 0.
In the case when Wλ = 0 and the operators B̃λ|1 and B̃λ|2 are
self-adjoint we can show that the observation described above
applies.

Proposition 1. Let {Ma|x}a,x be a set of 2-
compatible POVMs with a 2-copy joint POMV G.
If Gλ ∈ span({B1 ⊗ 1B + 1A ⊗ B2 : B1 ∈ L(HA), B2 ∈
L(HB), B1, B2 are self-adjoint}) for all λ, then {Ma|x}a,x

are 2-simulable.
Proof. Since G is a 2-copy joint POVM for {Ma|x}a,x,

there exists a conditional probability distribution p such
that tr[ρMa|x] = ∑

λ p(a|x, λ)tr[ρ⊗2Gλ] for all a, x. If
now G ∈ span({B1 ⊗ 1B + 1A ⊗ B2 : B1 ∈ L(HA), B2 ∈
L(HB), B1, B2 are self-adjoint}), then there exists some
self-adjoint Ãλ ∈ L(HA), B̃λ ∈ L(HB) such that Gλ =
Ãλ ⊗ 1B + 1A ⊗ B̃λ. We see that in fact we can choose
another decomposition Gλ = Aλ ⊗ 1B + 1A ⊗ Bλ such that
Aλ and Bλ are positive semidefinite: Namely, let us consider
the spectral decompositions Ãλ = ∑

i ν
(i)
λ |φ(i)

λ 〉〈φ(i)
λ | and

B̃λ = ∑
j μ

( j)
λ |ψ ( j)

λ 〉〈ψ ( j)
λ | for some real numbers ν

(i)
λ , μ

( j)
λ

and some orthonormal bases {φ(i)
λ }i and {ψ ( j)

λ } j of HA and
HB, respectively. Then we clearly have that

Gλ = Ãλ ⊗ 1B + 1A ⊗ B̃λ

=
∑
i, j

(
ν

(i)
λ + μ

( j)
λ

)∣∣φ(i)
λ

〉∣∣ψ ( j)
λ

〉〈
ψ

( j)
λ

∣∣〈φ(i)
λ

∣∣. (A5)

The above equation defines a spectral decomposition for Gλ

so that from the positive semidefiniteness of Gλ it follows that

ν
(i)
λ + μ

( j)
λ � 0 for all i, j, λ. Thus, in particular we must have

that either Ãλ or B̃λ or both of them are positive semidefinite
for all λ. Without loss of generality, we assume that Ãλ � 0
so that ν

(i)
λ � 0 for all i, λ. By denoting νmin

λ := mini ν
(i)
λ and

defining Aλ := Ãλ − νmin
λ 1A we see that also Aλ � 0. Now we

see that

Gλ = Ãλ ⊗ 1B + 1A ⊗ B̃λ = Aλ ⊗ 1B + νmin
λ 1A ⊗ 1B + 1A

⊗ B̃λ = Aλ ⊗ 1B + 1A ⊗ (
νmin

λ 1B + B̃λ

)
so that by denoting Bλ := νmin

λ 1B + B̃λ we must have that Bλ

is positive semidefinite because νmin
λ + μ

( j)
λ � 0 for all j.

By taking the partial traces separately with respect to HA

and HB from the normalization condition
∑

λ Gλ = 1A ⊗ 1B

we see now that
∑

λ

Aλ =
(

1 −
∑

λ tr[Bλ]

dB

)
1A, (A6)

∑
λ

Bλ =
(

1 −
∑

λ tr[Aλ]

dA

)
1B . (A7)

Since Aλ and Bλ are positive semidefinite, we must have
that q := (1 −

∑
λ tr[Bλ]
dB

) � 0 and q′ := (1 −
∑

λ tr[Aλ]
dA

) � 0,
and from the normalization of G it also follows that q′ = 1 −
q. By denoting Cλ := 1

q Aλ and Dλ := 1
1−q Bλ whenever q, 1 −

q �= 0 and Cλ := 0 =: Dλ otherwise, we have that {Cλ}λ and
{Dλ}λ are in fact two POVMs such that

Gλ = qCλ ⊗ 1B + (1 − q)1A ⊗ Dλ (A8)

for all λ. Now we see that we are in the case described by the
observation in the beginning of this section so that {Ma|x}a,x

are 2-simulable. �
We note that both the 2-compatibility and the previ-

ously described condition for the 2-copy joint POVM can be
checked by using SDPs.
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