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The dynamics of open quantum systems is often solved by stochastic unravelings where the average over
the state-vector realizations reproduces the density matrix evolution. We focus on quantum-jump descriptions
based on the rate-operator formalism. In addition to displaying and exploiting different equivalent ways of
writing the master equation, we introduce state-dependent rate-operator transformations within the framework
of stochastic pure state realizations, allowing us to extend and generalize the previously developed formalism.
As a consequence, this improves the controllability of the stochastic realizations and subsequently greatly
benefits when searching for optimal simulation schemes to solve open system dynamics. At a fundamental level,
intriguingly, our results show that it is possible to have positive unravelings, without reverse quantum jumps
and avoiding the use of auxiliary degrees freedom, in a number of example cases even when the corresponding
dynamical map breaks the property of P divisibility, thus being in the strongly non-Markovian regime.

DOI: 10.1103/PhysRevA.109.062201

I. INTRODUCTION

Stochastic unravelings are a powerful tool to describe the
dynamics of open quantum systems [1,2]. With this formal-
ism, the time evolution of the state of the system is described
as the average over different realizations of a stochastic pro-
cess on the set of quantum states. Such stochastic processes
can be separated in two major families: they can be either dif-
fusive [3–10] or the deterministic evolution can be interrupted
by sudden discontinuous jumps [11–19]. In this paper, we will
focus on the latter situation. These quantum-jump methods
are particularly convenient for simulating high-dimensional
master equations and have been linked to several distinct
experimental scenarios [20–25].

The standard jump unraveling method for Markovian dy-
namics, namely, the Monte Carlo wave function (MCWF),
consists of jumps whose effects and probabilities are fixed
directly by the rates and operators in the master equa-
tion [11,12]. The probabilities of the jumps are guaranteed to
be positive if and only if all rates are positive, with the MCWF
method failing whenever this condition is not satisfied. The
positivity of all rates is equivalent, under suitable assump-
tions of regularity, to the completely positive (CP) divisibility
of the dynamical map [26], meaning that the dynamics can
be arbitrarily subdivided in intermediate completely positive
maps. The notion of CP divisibility has been connected to the
definition of Markovianity for open system dynamics [27,28].

The MCWF method has been generalized to nonpositive
rates by the non-Markovian quantum-jumps (NMQJ) method
[29,30]. However, the different stochastic realizations are no
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longer independent, thus making the simulations more ex-
pensive. Nevertheless, it was shown that it is possible to
generalize the MCWF method and maintain independent re-
alization also under the weaker assumption of positive (P)
divisibility of the dynamical maps [31]. This method relies on
the definition of the rate operator (RO) [32–35] and was there-
fore named rate-operator quantum jumps (ROQJ). Violations
of P divisibility have also been linked to a different definition
of non-Markovianity [26,36]. Interestingly, these unravelings
rely on jumps to mutually orthogonal states and have been
linked to the study of pointer bases [37,38].

Recently, in [39], the RO formalism has been expanded by
employing the nonunique ways of writing the master equa-
tion by applying arbitrary time-dependent transformations,
thus leading to the formulation of a family of distinct RO
unravelings for the same master equation. In this paper, we
generalize those results by allowing the arbitrary transforma-
tion to depend on the current state of the particular realization.
This generalized RO not only enhances the efficiency of
controlling the stochastic realizations, but also enables the
characterization of certain dynamics violating P divisibility,
thus non-Markovian according to all definitions, while pre-
serving the independence between the different realizations.
Noticeably, we are able to do so without requiring any addi-
tional ancillary degree of freedom.

The rest of the paper is organized as follows. In Sec. II,
we recall the main features of open system dynamics and
of quantum-jump unravelings, focusing on the rate-operator
formalism. In Sec. III, we introduce the generalized RO, by
allowing it to depend on the current state of the stochastic
realization. This generalized RO is characterized in Sec. IV,
with a particular focus on the conditions for its positivity for
all realizations. In Sec. V, we present some examples showing
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the flexibility given by this approach. Importantly, we also
show that it is possible to have an unraveling with a positive
RO for all realizations even for some dynamics which break P
divisibility. Finally, we present the conclusions of our work in
Sec. VI.

II. RATE-OPERATOR FORMALISM

We start by recalling the open quantum systems formalism
and the quantum-jump unravelings to describe open system
dynamics, focusing in particular on the ROQJ formalism.

A. Open quantum systems

The time-local master equation governing the time evo-
lution of a finite-dimensional open quantum system can be
written as dρ/dt = Lt [ρ], with the generator Lt given by
[40,41]

Lt [ρ] = −i[H (t ), ρ] +
∑

α

γα (t )Lα (t )ρL†
α (t ) − 1

2
{�(t ), ρ},

(1)

where H (t ) = H (t )† is the system Hamiltonian, Lα (t )
are the Lindblad operators with rates γα (t ), and �(t ) =∑

α γα (t )L†
α (t )Lα (t ). The rates γα (t ) can be temporarily neg-

ative, with the dynamical map �t = T exp(
∫ t

0 dτ Lτ ) being
completely positive [1,42,43]. Positivity of the rates, however,
is equivalent to CP divisibility of the dynamical map, i.e.,
∀ t � s � 0 it is possible, under suitable regularity condi-
tions [44], to decompose �t = �t,s�s for completely positive
operators �t,s. Simple positivity of �t,s, on the other hand,
corresponds to a P-divisible dynamical map, which is equiva-
lent to [26,45] ∑

α

γα (t )| 〈ϕi|Lα (t )|ϕ j〉 |2 � 0 (2)

for all orthonormal bases {ϕi}i, for all i �= j.
A common way to look at the master equation (1) in the

context of quantum unravelings is to write it as the sum of a
jump term

Jt [ρ] :=
∑

α

γα (t )Lα (t )ρL†
α (t ) (3)

and a driving term

Dt [ρ] := −i[K (t )ρ − ρK†(t )], (4)

with the effective non-Hermitian Hamiltonian

K (t ) := H (t ) − i

2
�(t ). (5)

On the other hand, such a decomposition is highly nonunique.
In fact, any transformation [39]

Jt [ρ] �→ J ′
t [ρ] := Jt [ρ] + 1

2
[C(t )ρ + ρC†(t )], (6)

K (t ) �→ K ′(t ) := K (t ) − i

2
C(t ), (7)

for an arbitrary operator C(t ), preserves Eq. (1). Such a
freedom in writing the master equation is different from the
conventional approach employed in MCWF methods, which

relies on the invariance of the master equation under unitary
transformations on the set of Lindblad operators [1].

B. Quantum-jump unravelings

In the literature, there have been introduced many different
unravelings consisting of piecewise deterministic processes
on the set of pure states on the system’s Hilbert space H . The
exact dynamics of Eq. (1) is reproduced by averaging over
all stochastic realizations, with the form of the deterministic
and jump process that can vary significantly for the different
unraveling methods. Differently from other methods, our ap-
proach does not use additional degrees of freedom [46–51],
which would require additional computational effort, nor tem-
porarily negative probabilities for the occupation of certain
states [52].

Whenever CP divisibility holds, it is possible to unravel the
dynamics via the MCWF method [11,12], with deterministic
evolution

|ψ (t )〉 �→ |ψ (t + dt )〉 = [1 − iK (t )dt] |ψ (t )〉
‖[1 − iK (t )dt] |ψ (t )〉 ‖ , (8)

where K (t ) is the effective non-Hermitian Hamiltonian of
Eq. (5), interrupted by sudden jumps

|ψ (t )〉 �→ |ψ (t + dt )〉 = Lα (t ) |ψ (t )〉
‖Lα (t ) |ψ (t )〉 ‖ (9)

with probability

pα
ψ (t ) = γα (t )‖Lα (t ) |ψ (t )〉 ‖2dt . (10)

Naturally, this method calls for the positivity of all rates γα (t ).
The requirement of positivity of all rates can be weakened

by considering the ROQJ formalism. One possible way to do
so consists of unraveling with jumps to the eigenstates of the
operator [31,32]

Wψ (t ) := (1 − Pψ (t ) )Jt [Pψ (t )](1 − Pψ (t ) ), (11)

where Pψ = |ψ〉 〈ψ |, with probabilities given by the cor-
responding eigenvalues multiplied by the infinitesimal time
increment dt . Following the nomenclature of [39], we call this
unraveling method W-ROQJ, emphasizing that the jumps and
their probabilities are fixed by the eigenstates and eigenval-
ues of W . We further note that the prejump state ψ (t ) is an
eigenstate of Wψ (t ), so that the state after the jump is always
orthogonal to ψ (t ). The deterministic evolution is generated
by the non-Hermitian nonlinear effective Hamiltonian KW

ψ (t ) =
K (t ) + 
ψ (t ), with


ψ (t ) = i

2

∑
α

γα (t )(2Lα (t )�∗
ψ (t ),α (t ) − |�∗

ψ (t ),α (t )|2), (12)

where �ψ (t ),α (t ) = 〈ψ (t )|Lα (t )|ψ (t )〉. The operator Wψ (t )

does not depend on the particular form (6) of the master
equation [33,34] and is positive for all states ψ if and only
if the dynamics is P divisible [10]. Therefore, such method
can be used to unravel any P-divisible dynamics, significantly
beyond the range of applicability of the MCWF.

The ROQJ method can be extended [39] relying on the
nonuniqueness of the decomposition of the master equa-
tion (6) and (7) and considering jumps |ψ (t )〉 �→ |ϕ j

ψ (t )〉 to
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the eigenstates of the RO

Rψ (t ) := J ′
t [Pψ (t )] = Jt [Pψ (t )] + 1

2 [C(t )Pψ (t ) + Pψ (t )C
†(t )]

(13)

with probability

pj
ψ (t ) = λ

j
ψ (t )dt (14)

given by the corresponding eigenvalue multiplied by the time
increment dt . We refer to this method as the R-ROQJ. The de-
terministic evolution is as in Eq. (8), but using the transformed
non-Hermitian Hamiltonian K ′(t ) of Eq. (7). The nonunique-
ness of the unravelings could allow one to design different
realizations for the stochastic process, possibly simplifying
the computational task of simulating the dynamics. Whenever
P divisibility holds, the RO can have at most one negative
eigenvalue and the existence of at least one positive RO as
in Eq. (13) is guaranteed by the dissipativity of the dynamics,
a stronger requirement than P divisibility [39].

Going beyond the MCWF, it is possible to deal with
temporarily negative rates by using the NMQJ technique
as in [29,30], by considering reverse jumps |ψi(t )〉 =
Lα (t ) |ψ j (t )〉 /‖Lα (t ) |ψ j (t )〉 ‖ �→ |ψ j (t )〉, with probability
depending on the ratio Nj (t )/Ni(t ) between the occupations of
|ψ j (t )〉 and |ψi(t )〉. However, one needs to know the average
state ρ(t ) to compute the ratios, and therefore the realizations
become dependent one on the other, making the simulation
more expensive. The same method can be employed similarly
also for the RO whenever some eigenvalues are negative. If,
instead, the eigenvalues of the RO, and therefore the jump
probabilities, are positive for all realizations, we say that such
unraveling is a positive unraveling. In this case, the stochastic
realizations are independent since the jump probabilities can
be calculated from the state of the given individual realization,
and the simulation is more efficient.

III. GENERALIZED RATE OPERATOR

We now proceed to generalize the ROQJ method by
exploiting the invariance under Eqs. (6) and (7) on each in-
dividual trajectory. This will significantly extend the class of
generated unravelings of a given master equation with respect
to both W -ROQJ and R-ROQJ, which will indeed be regained
as special instances.

Suppose that, at some time t , the state can be written in
terms of the single realizations as ρ = ∑

i pi(t )Pψi (t ). From
the point of view of a single realization |ψ (t )〉, it is possible to
choose the transformation C of Eqs. (6) and (7) to depend not
only on time but also on the current state |ψ (t )〉 and leaving
the average evolution unaffected. The new generalized RO is
therefore of the form


-Rψ (t ) := Jt [Pψ (t )] + 1
2 [Cψ (t )Pψ (t ) + Pψ (t )C

†
ψ (t )(t )], (15)

with Cψ (t ) that can depend nontrivially on the current state
of the realization ψ (t ). To emphasize the dependence on the
state ψ (t ), we refer to the generalized RO as 
-ROQJ. Indeed,
whenever Cψ (t ) does not depend on ψ (t ), the 
-ROQJ reduces
to the R-ROQJ of Eq. (13). The deterministic evolution is
nonlinear because of the state dependence of the effective

non-Hermitian Hamiltonian

Kψ (t ) := H (t ) − i

2
�(t ) − i

2
Cψ (t ). (16)

Since Cψ (t ) appears only to applied to |ψ (t )〉, it is possible
to simplify the transformation by defining the unnormalized
vector

|�ψ (t )〉 := Cψ (t ) |ψ (t )〉 . (17)

This way, omitting the explicit time dependence, the RO takes
the form


-Rψ (t ) =
∑

α

γαLαPψ (t )L
†
α

+ 1

2
(|�ψ (t )〉 〈ψ (t )| + |ψ (t )〉 〈�ψ (t )|). (18)

The unraveling is obtained by considering jumps |ψ (t )〉 �→
|ϕ j

ψ (t )〉 to the eigenstates of the RO, with probability pj
ψ (t ) =

λ
j
ψ (t ) dt , where λ

j
ψ (t ) is the corresponding eigenvalue. The

deterministic evolution is, up to normalization, given by

|ψ (t )〉 �→ |ψ̃det(t + dt )〉 = (1 − iKψ (t ) dt ) |ψ (t )〉

= [1 − iK (t ) dt] |ψ (t )〉 − dt

2
|�ψ (t )〉 . (19)

In Appendix A, we show that averaging over all the real-
izations indeed reproduces the master equation (1). The key
argument is that each state |ψi(t )〉 evolves, on average, as it
would according to (1), for any possible choice of 
-Rψi (t ).

In Table I, we compare the 
-ROQJ with other unraveling
methods, namely, MCWF, W -ROQJ, R-ROQJ, and NMQJ. In
particular, we take into account their range of applicability, as
well as whether each trajectory can be realized independently
from the others.

IV. CHARACTERIZATION AND LIMITATIONS

In this section, we introduce the main features of the gen-
eralized RO, showing in particular that it is always possible
to have a positive RO for any P-divisible dynamics. More
interestingly, we also discuss some necessary conditions for
its positivity even when P divisibility is broken.

A. Comparison with the W -ROQJ unravelings

By using the formalism of the W -ROQJ of Eq. (11), it is
always possible to unravel any P-divisible dynamics by con-
sidering orthogonal jumps to the eigenstates of such operator.
It is possible to obtain the same unravelings also with the

-ROQJ formalism by imposing that ψ (t ) is an eigenstate of
the RO: 
-Rψ (t ) |ψ (t )〉 = λdet |ψ (t )〉 for all ψ (t ), where λdet is
the corresponding eigenvalue. This way, the other post-jump
states |ϕ j

ψ (t )〉 are orthogonal to |ψ (t )〉 and it can be shown that
the corresponding eigenvalues are (see Appendix B)

λ
j
ψ (t ) =

∑
α

γα

∣∣ 〈ϕ j
ψ (t )|Lα|ψ (t )

〉 ∣∣2
, (20)

which, according to Eq. (2), are positive for all states if and
only if the dynamics is P divisible. This thus shows that W -
ROQJ is a special instance of 
-ROQJ and thus that also the
latter can be applied to any P-divisible dynamics (see Table I).
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TABLE I. Comparison of the 
-ROQJ unravelings with the previously introduced methods. : yes, ×: no, ◦: sometimes, ∗: yes, unless
some rates are negative since the beginning of the dynamics. Each column refers to a distinct unraveling method, the first three rows denote
the applicability of the methods to different classes of dynamics, while the fourth row denotes the possibility to realize each trajectory
independently from the others. We note in particular that 
-ROQJ is the only method that can tackle also some non-P-divisible dynamics,
while keeping the different realizations independent, as shown in Sec. V B. As explained in the text, the 
-ROQJ includes the W - and the
R-ROQJ as special cases, while there is no inclusion among the latter two. The table refers to ROQJ methods without reverse jumps; note that
all the ROQJ methods can be supplemented with reverse jumps [29], leading to correlated realizations and extending their range of applicability
to non-P-divisible dynamics.

MCWF W -ROQJ R-ROQJ 
-ROQJ NMQJ

CP divisible � � � � �
P but not CP divisible × � ◦ � �∗

Non-P divisible × × × ◦ ◦
Independent realizations � � � � ×

B. Necessary conditions for a positive unraveling

We now investigate when it is possible to have a positive
unraveling for dynamics breaking P divisibility. This possi-
bility drastically simplifies the simulations since, for positive
unravelings, the different realizations do not depend on each
other. For any non-P-divisible dynamics, there always exists
some state ψ and time t such that 
-Rψ �� 0. In fact, from the
condition for P divisibility (2), there always exists a state ψ⊥,
orthogonal to ψ , such that

〈ψ⊥|
-Rψ |ψ⊥〉 =
∑

α

γα (t )| 〈ψ⊥|Lα (t )|ψ〉 |2 < 0. (21)

Notice that this condition does not depend on the particular
transformation |�ψ 〉 present in (18), but only onJt . This fact,
however, does not necessarily limit the existence of a positive
unraveling: it could still exist if one is able to describe the state
ρ(t ) only using realizations |ψi(t )〉 for which 
-Rψi (t ) � 0.

Let us define the set of all states for which the RO can be
positive as the positivity domain

HJt
:= {ψ ∈ H | ∀ ψ⊥ : 〈ψ⊥|ψ〉 = 0,

〈ψ⊥|Jt [Pψ ]|ψ⊥〉 � 0}, (22)

where H is the system Hilbert space. From Eq. (2), it is
evident that a dynamics is P divisible if and only if HJt =
H ∀ t . At variance with the positivity domain introduced,
e.g., in [53,54], which refers to a subset of the set L(H )
of linear operators on H , the positivity domain defined in
Eq. (22) is a subset of H . However, HJt is not a Hilbert
space, and in particular it is not even a linear space.

A positive unraveling can exist only if it is possible to write
any state as a convex combination ρ(t ) = ∑

i pi(t )Pψi (t ) using
only states ψi(t ) ∈ HJt ∀ t . Naturally, if HJt = ∅ for some
time, it is not possible to have a positive unraveling. If we
further assume invertibility of the dynamical map, then it is
also not possible if HJt is zero measured: if, for any initial
state, all stochastic realizations were inside a zero-measure
set, then the whole set of quantum states S(H ) would be
mapped to a zero-measure set, thus breaking invertibility.

On the other hand, if HJt is sufficiently large, we can
consider using the freedom given by the generalized RO to
have all realizations |ψi(t )〉 ∈ HJt ∀ t . There are two neces-
sary conditions that HJt must obey in order to have a positive
unraveling:

(1) It must contain an orthonormal basis, otherwise some
of states that have jumped at time t − dt would violate posi-
tivity.

(2) Each state ρ(t ) can be written as convex combinations
of elements of HJt . Equivalently, let P(HJt ) be the set of all
convex combinations projectors Pψ , with ψ ∈ HJt , then

�t [S(H )] ⊆ P(HJt ) ∀ t . (23)

These conditions are depicted pictorially in Fig. 1. In-
terestingly, they do not depend on the unraveling but only
on the dynamical map �t . Therefore, it is possible to rule
out the possibility to have a positive unraveling for some
dynamics by simply looking at �t . On the other hand, as we
will see in Sec. V C such conditions can be satisfied even by
non-P-divisible dynamics, which in fact do admit a positive
unraveling

It is worth emphasizing that, although currently not known,
the conditions for having a positive unraveling with the 
-
ROQJ formalism cannot depend only locally on time. In fact,
the left-hand side of condition 2 does depend on the whole
time evolution before P divisibility is broken. Therefore, it
could happen that for two dynamics, although having the same
behavior at times when divisibility is broken, their evolution
might differ at previous times and so the inclusion of condition
2 may or may not hold depending solely on the times before

FIG. 1. Examples of positivity domain HJt (red), convex com-
bination of projectors on elements of the positivity domain P(HJt )
(lighter red), and the time-evolved Bloch sphere �t [S(H )] (green)
for three non-P-divisible qubit dynamics at some fixed time t , show-
ing the slice y = 0 of the Bloch sphere. Left: no positive unraveling
since HJt does not contain any orthonormal basis. Middle: no pos-
itive unraveling since �t [S(H )] �⊆ P(HJt ). Right: both necessary
conditions hold, therefore a positive unraveling could exist.
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the violation of divisibility. This will be illustrated explicitly
in the evolution considered in Sec. V.

V. CONTROL OF THE REALIZATIONS

We now proceed to present some examples of unravelings
obtained using the 
-ROQJ formalism, showing its increased
flexibility compared to the previous methods. In particular, we
demonstrate that it is possible to have positive unravelings also
for dynamics violating P divisibility.

A. Phase covariant dynamics

Let us consider a generic qubit phase covariant dynamics,
i.e., a dynamics �t satisfying covariance with respect to phase
transformations, namely,

e−iσzt�t [ρ]eiσzt = �t [e
−iσztρeiσzt ]. (24)

A phase covariant dynamics has a jump term of the form
[55–57]

J[ρ] = γ+σ+ρσ− + γ−σ−ρσ+ + γzσzρσz, (25)

where σ+ = |1〉 〈0| = σ
†
−, and a free Hamiltonian H ∝ σz.

Such dynamics is CP divisible if and only if all rates are
positive, and P divisible whenever [58,59]

γ± � 0 and γz � −1

2
√

γ+γ−. (26)

We now show that, as long as P divisibility holds, it is
always possible to have a positive unraveling using only
three states: the eigenstates |0〉 , |1〉 of σz, and |ψdet(t )〉, the
initial state deterministically evolved up to time t according
to Eq. (19). The possibility of using such a small effective
ensemble drastically simplifies the simulations. The RO is
chosen such that |ψdet(t )〉 only jumps to |0〉 , |1〉 and, after
one jump has occurred, only jumps |1〉 ↔ |0〉 are present,
without any deterministic evolution. Thus, the effective en-
semble used for the simulations only contains three states.
The possibility of considering such finite (and small) effective
ensemble significantly enhances the computational efficiency
of this method since one is not required to compute at each
time step the evolution of all states, but only needs to update
the probability of occupation of such states. This fact is partic-
ularly interesting in comparison with the NMQJ method that,
except for some special cases, needs infinitely many states in
the effective ensemble.

If no jumps have occurred, it is possible to have jumps
|ψ (t )〉 �→ |0〉 , |1〉, with |ψ (t )〉 deterministically evolved ac-
cording to Eq. (19), by imposing that |0〉 is an eigenstate of

-Rψ (t ). This corresponds to a transformation defining the RO
of Eq. (17) of the form

|�ψ (t )〉 = α

(
2γz − φ1√

1 − |α|2

)
|0〉 + φ1 |1〉 , (27)

where |ψ (t )〉 = α |0〉 +
√

1 − |α|2 |1〉, with α that, without
loss of generality, can be assumed to be real because of
phase covariance, while φ1 which can be chosen freely inside
a suitable time- and state-dependent interval φ1 ∈ [φlb

1 , φub
1 ]

(for the details, the definition of φlb
1 , φub

1 and the proof of

the positivity, see Appendix C). The freedom in choosing φ1

allows us to have different realizations for the unraveling:
even if the post-jump states are fixed, it is possible to unravel
the dynamics with different jump rates and deterministic evo-
lutions. In particular, for φ1 = φlb

1 , only jumps |ψ (t )〉 �→ |1〉
are allowed, while for φ1 = φub

1 , only |ψ (t )〉 �→ |0〉. On the
other hand, for any φ1 = λφlb

1 + (1 − λ)φub
1 , 0 < λ < 1, the

unraveling remains positive, with jumps to both eigenstates of
σz and with the possibility of choosing different jump rates
depending on λ.

1. Eternally non-Markovian dynamics

To move further, we focus on a simple, yet significant,
example, namely, the eternally non-Markovian dynamics, i.e.,
a phase covariant dynamics with rates [60,61]

γ+(t ) = γ−(t ) = 1, γz(t ) = − 1
2 tanh t . (28)

The negativity of γz at all times implies that such dynam-
ics is CP indivisible at all times, and therefore cannot be
unraveled using the standard MCWF nor its non-Markovian
generalization [29,30] because of the negativity of the rate
since the very beginning of time. However, it is possible to
unravel it using the generalized RO. In addition, it is possible
to realize qualitatively different realizations of the stochastic
process. In Figs. 2(a) and 2(b), we show unravelings obtained
either with only jumps to |0〉 or to |1〉 by suitably choosing
φ1. The code used for obtaining the simulations is available
at [62]. Additionally, it can also be unraveled with jumps to
|±〉 = (|0〉 ± |1〉)/

√
2, by imposing |±〉 to be eigenstates of


-Rψ (t ), thus giving

|�±
ψ (t )〉 = 2(1 − γz )

√
1 − |α−|2 |+〉 , (29)

where |ψ (t )〉 = α− |−〉 +
√

1 − |α−|2 |+〉, with α− that can
be chosen to be real because of phase covariance. Such unrav-
eling is shown in Fig. 2(c). This model shows the flexibility
of the generalized RO, which allows us not just to have an
effective ensemble consisting of only three states, but also to
choose such ensemble in nonunique ways and with different
deterministic evolutions for the initial state.

The possibility of controlling the realizations in many
different ways is an evident advantage of the method pro-
posed since it allows us to choose the most convenient
ensemble, thus improving the computational efficiency of our
model. In Fig. 2(d), we show the Shannon entropy H ({pi}) =
−∑

i pi log2 pi of the probabilities {p0, p1, pψ } of the occu-
pations of the states |0〉 , |1〉 , |ψdet(t )〉 for different choices of
φ1 = λφlb

1 + (1 − λ)φub
1 . Therefore, it is possible to choose

the unravelings in order to minimize the amount of classi-
cal information required to describe the average state ρ =∑

i piPψi . In Fig. 2(e), we show that it is possible to have
unravelings with vastly different number of jumps involved.
This is crucial for the computational efficiency since the fewer
jumps involved the more efficient the simulation is, since one
does not need to diagonalize the RO at each time step, but
only at the rare times in which a jump happens [63]. This
can be done by connecting the jump probability to the reduc-
tion of the norm of the deterministic state. This fact is shown
in Fig. 2(f), in which we show a strong dependence between
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FIG. 2. Eternally non-Markovian dynamics, for the initial state |ψ (0)〉 = α |0〉 +
√

1 − |α|2 |1〉, with α ≈ −0.49. Top: z (blue, solid) and
x (green, dashed) components of the Bloch vectors. The thick solid lines are the exact results, the dots are obtained with the RO technique. In
lighter shade, five realizations are shown. The unravelings are obtained using N = 103 states. (a) φ1 = φub

1 and only jumps to |0〉; (b) φ1 = φlb
1

and only jumps to |1〉; (c) jumps to |±〉. Bottom: characterization of the stochastic realizations for different choices of φ1 = λφlb
1 + (1 −

λ)λφub
1 , 0 � λ � 1. (d) Shannon entropy H ({pi}) = −∑

i pi log2 pi for the probability distribution {p0, p1, pψ } of the occupations of the states
|0〉 , |1〉 , |ψdet(t )〉; (e) number of jumps, using N = 104 states; (f) computational time (left axis, solid) and total number of jumps (right axis,
dotted).

the total number of jumps, with more efficient simulations for
fewer jumps.

B. Positive unraveling for non-P-divisible dynamics

As one of our main results, we now proceed to show that
it is possible to have positive unravelings for some dynamics
that violate P divisibility. We consider again the phase covari-
ant dynamics (25), and we show that one can have positive
unravelings when P divisibility is broken by any of the two
conditions of Eq. (26).

1. P divisibility broken by γz

Let us start from the case that, for some time t ,

γz = −1

2
√

γ+γ− − ε, (30)

where ε > 0 quantifies the violation of P divisibility according
to the second condition of Eq. (26). Let us consider again a RO
with �ψ in the form of Eq. (27). If, for γz = − 1

2
√

γ+γ−, any
φ1 in the interval [φlb

1 , φub
1 ] gives a positive unraveling, the ef-

fect of ε is that of shrinking the allowed interval [φlb
1 , φub

1 ] �→
[φlb

1 + 2ε, φub
1 − 2ε]. But, for a sufficiently small ε, this new

interval will still exist for all ψ for which φlb
1 �= φub

1 , i.e.,√
γ−(t )

γ+(t )
�= 1 − |α|2

|α|2 , (31)

where α = 〈0|ψ〉. Therefore, a positive unraveling will still
exist, provided that one is able to describe the dynamics with
states |ψi(t )〉 such that this condition always holds at times
for which P divisibility is broken. In other words, recalling the
two necessary conditions of Sec. IV B, the positivity domain
HJt is the whole Bloch sphere, excluding the state for which
Eq. (31) holds and their neighborhood. Therefore, since HJt

is large, we can find unravelings for which condition 2 holds.
Also, condition 1 holds since |0〉 , |1〉 ∈ HJt and therefore the
positivity domain contains an orthonormal basis at all times.
We are therefore led to unravel the dynamics with jumps to
such orthonormal basis.

As an example, let us consider the rates [64]

γ+(t ) = e−t/2, γ−(t ) = e−t/4, γz(t ) = κ

2
e− 3

8 t cos(2t ),

(32)

for which P divisibility is violated for κ > 1. In Fig. 3(a), we
show a positive unraveling for κ = 4. Again, it is possible
to use an effective ensemble consisting only of three states
{|0〉 , |1〉 , |ψdet(t )〉}, thus greatly simplifying the task of sim-
ulating such non-Markovian dynamics. It is worth noticing
that this particular value of κ = 4 gives positive unraveling
only for some initial states, while for others the eigenval-
ues might become negative. Nevertheless, there exist values
1 < κ � κmax ≈ 1.2 for which P divisibility is broken and the
unraveling is positive for all initial states. In Appendix D,
we show the existence of such κmax > 1 for which a positive
unraveling exists for all initial states. For all values of κ , the
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FIG. 3. Positive unravelings for non-P-divisible phase covariant
dynamics for the initial state |ψ (0)〉 = α |0〉 +

√
1 − |α|2 |1〉, with

α ≈ 0.92. z (blue, solid) and x (green, dashed) components of the
Bloch vectors. The thick solid lines are the exact results, the dots are
obtained with the RO technique. In lighter shade, five realizations
are shown. (a) γz < − 1

2

√
γ+γ− as in Eq. (32) with κ = 4; (b) γ+ =

γ− < 0 as in Eq. (35) with κ = 0.25. The unravelings are obtained
using N = 104 states.

resulting dynamics is qualitatively similar to the one presented
in Fig. 3(a) for κ = 4.

The non-Markovian behavior is evident because of the
nonmonotonic behavior of the coherence of ρ(t ). This non-
monotonicity is entirely captured by the deterministic state,
which evolves towards the equator of the Bloch sphere (thus
increasing its coherence) at times when P divisibility is bro-
ken. Therefore, a positive unraveling of this type is possible
only as long as the absolute value of the recoherence for ρ(t )
is strictly smaller than the maximal possible recoherence for
|ψdet(t )〉 times the fraction of realizations in this state before
P divisibility is broken. For comparison, if one would use the
NMQJ, the recoherence would happen because of the reverse
jumps that recreate the superposition of |0〉 and |1〉.

2. P divisibility broken by γ±

It is possible to have a positive unraveling also when the
violation of P divisibility arises from γ± < 0. Unlike the pre-
vious case, it is not possible to have |0〉 or |1〉 in the effective
ensemble because they are not in the positivity domain HJt

since

〈0|Jt [P1]|0〉 = γ− < 0, (33)

and therefore 
-R cannot be positive for these states. On the
other hand, by imposing jumps to |±〉, it is possible to have
a positive unraveling. Let us focus, for the sake of simplicity,
to the case γ+ = γ− =: γ . Imposing jumps to |±〉 and solving
for |�ψ (t )〉 gives us

|�±
ψ (t )〉 =

√
1 − |α−|2

α−
[2α−(γ − γz ) − φ−] |+〉 + φ− |−〉 ,

(34)

with |ψ〉 = α− |−〉 +
√

1 − |α−|2, with α− that, because of
phase covariance, can be taken to be real. Furthermore, since
γ+ = γ−, it is possible to have |±〉 which do not evolve
deterministically but only via jumps |±〉 �→ |∓〉 with positive
rates, thus having again a three-dimensional effective ensem-
ble {|±〉 , |ψdet(t )〉}.

In Fig. 3(b), we show such unraveling for the rates

γ = 1
2 e−t/4[κ + (1 − κ )e−t/4 cos(2t )], γz = 1

2 . (35)

It is possible to notice a revival in the absolute value of tr[ρσz]
for t ≈ 2, which is a clear indication of the non-Markovian
behavior. It is worth noticing that, for both dynamics of Fig. 3,
non-Markovianity is also witnessed by a revival of the trace
distance. Therefore, the condition for a positive unraveling
cannot coincide with the BLP condition [44,65] of monotonic-
ity of the trace distance.

Figure 3(b) also shows why a generic condition for the
existence of a positive unraveling cannot be local in time.
Here, before P divisibility is broken, the z component of the
Bloch vector is reduced, mapping the whole Bloch ball close
to the equator. This fact is crucial since |0〉 and |1〉 (as well
as a neighborhood of them) lie outside HJt , so that the only
way to have a positive unraveling is to be able to describe ρ(t )
without using such states outside HJt . Therefore, the second
necessary condition of Sec. IV B can only hold if S(H ) is
mapped towards the equator of the Bloch sphere before P
divisibility is broken.

C. Nonpositive unravelings

Although we have proven that there exist non-P-divisible
dynamics that can be positive unraveled using the 
-ROQJ
formalism, these positive unravelings do not exist for all non-
P-divisible dynamics. We now present some examples for
which a positive unraveling using the 
-ROQJ does not exist,
by finding dynamics for which the two necessary conditions
of Sec. IV B for the existence of positive unravelings are
violated.

First of all, it is easy to notice that, whenever all rates are
negative at the same time, Eq. (21) is satisfied for (almost)
all states, thus HJt is zero measured, which, as discussed in
Sec. IV B, implies that no positive unraveling can be devised
even with the generalized RO formalism. As a special case, it
is easy to see that a qubit pure dephasing dynamics dρ/dt =
γ (t )(σzρσz − ρ) cannot have a positive unraveling whenever
γ (t ) < 0 since

〈ψ⊥|
-Rψ |ψ⊥〉 = 4|α|2(1 − |α|2)γ (t ) < 0, (36)

where α = 〈0|ψ〉 and therefore HJt only contains |0〉 and |1〉.
For a generic phase covariant dynamics (25), it is possible

to characterize the positivity domain by considering the in-
finitesimal time evolution of the state ψ . Let rψ be the Bloch
vector associated to the state, then ψ is in HJt if and only if
‖rψ (t )‖ = 1 � ‖rψ (t + dt )‖. For the phase covariant,

‖rψ (t + dt )‖2 = 1 − dt[γ+ + γ− + 4γz + 2z(γ− − γ+)

+ z2(γ+ + γ− − 4γz )], (37)

with z = 〈ψ |σz|ψ〉, from which it is easy to determine HJt .
For the special case γ+ = γ− = γ < 0, γz > 0, ψ ∈ HJt if
and only if

|z| �
√

g − 2

g + 2
, g = |γ |/γz. (38)

For g < 2, HJt = ∅; for g = 2 it only contains the equator of
the Bloch sphere, and for g → ∞ only the poles are excluded,
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FIG. 4. Driven dynamics of Eq. (39) for the ratio β/γ = 10 and initial state |ψ (0)〉 = α |0〉 +
√

1 − |α|2 |1〉, with α ≈ 0.20. (a) z (blue,
solid) and x (green, dashed) components of the Bloch vectors. The thick solid lines are the exact results, the dots are obtained with the RO
technique. In lighter shade, five realizations are shown. The unraveling is obtained using N = 104 states. (b) Trajectory in the Bloch sphere of
ρ(t ) (black, dashed) and of |ψdet(t )〉.

therefore, not all phase covariant dynamics can be positively
unraveled.

D. Driven dynamics

Simulating driven dynamics is a notoriously difficult task,
especially when divisibility is violated. We now show that
with the 
-ROQJ formalism it is possible to simplify notice-
ably the task. Let us consider, as an example, a phase covariant
dynamics with rates

γ+(t ) = γ−(t ) = γ , γz(t ) = −γ

2
tanh γ t, (39)

with γ a positive constant, and a driving

H = βσx. (40)

The jump term, except for the constant factor γ , is the same
as the eternally non-Markovian of Eq. (28). However, the
dynamics is not phase covariant since the driving, not being
proportional to σz, breaks phase covariance Eq. (24).

It is possible to unravel such dynamics, regardless of the
relative strength of the driving β/γ , by simply using a three-
dimensional effective ensemble {|ψdet(t )〉 , |+〉 , |−〉}, with the
driving fully captured by the deterministically evolving state
|ψdet(t )〉 only.

From |ψdet(t )〉, it is always possible to impose jumps only
to the eigenstates of the driving σx (for the details see Ap-
pendix E) with positive rates as long as γ � 0. Interestingly,
such RO does not depend on the driving, therefore, this
method works for any value of the ratio β/γ . Furthermore,
it also works for time-dependent rates and/or driving.

In Fig. 4(a), we show the agreement between the exact
solution and the unraveling with the three-dimensional ef-
fective ensemble for a strong driving β = 10γ . Furthermore,
in Fig. 4(b), we show the trajectory on the Bloch sphere of
the exact solution ρ(t ) and of the deterministically evolving
state |ψdet(t )〉. As ρ(t ) spirals towards the asymptotic state
ρ∞, |ψdet(t )〉 evolves rotating on the same x component of the
Bloch sphere of ρ∞. However, this is not the only possible
choice for the deterministic evolution since for different un-
ravelings one could have qualitatively different evolutions of
|ψdet(t )〉.

VI. CONCLUSIONS

In this work, we have generalized the RO approach to
unravel open system dynamics by allowing the RO to explic-
itly depend on the current state of the realization. We have
shown that this gives us additional freedom in controlling the
different stochastic realizations of the jump process, even in
the case of strongly driven dynamics, which are notoriously
hard to simulate, by using a small effective ensemble. With
this method, we have also shown that one is able to choose the
RO in order to optimize the simulations, i.e., by minimizing
the classical entropy of the probability of occupation for the
states in the effective ensemble, thus minimizing the classical
information needed to describe the unravelings, or the number
of jumps needed, thus minimizing the computational time.

We have also shown that it is possible to simulate some
P-indivisible dynamics which are non-Markovian according
to the different definitions of quantum non-Markovianity
[26,28]. This is particularly remarkable since the previous
methods based on the RO do not work whenever P divisibility
is broken and since our method does not require to establish
correlations among different trajectories, nor to include ad-
ditional degrees of freedom. Future work aims to explicitly
characterize which dynamics can be unraveled with the gen-
eralized RO method.

In the future, we will exploit the generalized RO to
study more complex dynamics, with a particular focus on
higher-dimensional systems, since the ability of fixing a small
finite-dimensional effective ensemble would noticeably sim-
plify the computational efficiency. We also aim to connect
these state-dependent unravelings with a proper continuous-
measurement scheme. In addition, the possibility of having
a broad class of distinct unravelings could allow us to study
open systems evolving under non-Hermitian Hamiltonians,
when conditioned to no jumps happening.
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APPENDIX A: CONNECTION TO THE MASTER
EQUATION

We now show that the state-dependent unraveling (18)
reproduces exactly the master equation (1). Suppose that, at
some time t , the state of the system is described by ρ(t ) =∑

i piPψi (t ). Let us focus on one particular realization |ψi(t )〉.
In the infinitesimal time interval dt , the state can evolve via a
jump

|ψi(t )〉 �→ ∣∣ϕ j
ψ (t )

〉
, j = 1, . . . , d (A1)

to an eigenstate of 
-Rψi (t ), with probability pj
ψi (t ) = λ

j
ψi (t )dt ,

with λ
j
ψi (t ) being the corresponding eigenvalue. Alternatively,

it can evolve deterministically

|ψi(t )〉 �→ ∣∣ψdet
i (t + dt )

〉 = (1 − i Kψi (t )dt ) |ψi(t )〉
‖(1 − i Kψi (t )dt ) |ψi(t )〉 ‖ ,

(A2)

with probability

pdet
ψi (t ) = 1 −

∑
j

pj
ψi (t ) = 1 − tr[
-Rψi (t )] dt . (A3)

It is easy to see that, at the first order in dt ,

‖(1 − i Kψi (t )dt ) |ψi(t )〉 ‖2 = 1 − tr[
-Rψi (t )] dt = pdet
ψi (t ).

(A4)

Therefore, the average evolution for |ψi(t )〉 is

Pψi (t ) �→ pdet
ψi (t )Pψdet

i (t+dt ) + dt
d∑

j=1

λ
j
ψi (t )Pϕ

j
ψi (t )

= − i dt (Kψi (t )Pψi (t ) − Pψi (t )K
†
ψi (t ) )

+ dt 
-Rψi (t ) + Pψi (t ). (A5)

Therefore, Pψi (t ) evolves, on average, as by the master equa-
tion (1). If one averages over all possible states |ψi(t )〉, the
exact master equation (1) is obtained also for ρ(t ), thus
showing that such unravelings indeed reproduce the exact
dynamics.

APPENDIX B: PROOF OF EQ. (20)

In the unravelings using the W operator, the jumps are
to states orthogonal to the prejump state, with positive rates
whenever the dynamics is P divisible. Analogous unravelings
can also be obtained using 
-R by imposing


-Rψ (t ) |ψ (t )〉 = λdet |ψ (t )〉 , (B1)

which, in the basis {|ψi〉}i, with |ψ1〉 = |ψ (t )〉, corresponds to
the choice

Cψ (t ) = c11Pψ1 − 2
d∑

i=2

〈ψi|Jt [Pψ1 ]|ψ1〉 |ψi〉 〈ψ1| , (B2)

with Re c11 � −〈Jt [Pψ (t )]〉ψ (t ) to ensure the positivity of λdet.
Aside from this constraint, c11 is a free parameter that can be
used to modify the free evolution. Also, any additional term
proportional to |ψi〉 〈ψ j |, j � 2, in (B2) does not affect the
unraveling since Cψ (t ) only acts on |ψ (t )〉. Any eigenstate
|ϕi〉 �= |ψ (t )〉 of 
-Rψ (t ) must be orthogonal to |ψ (t )〉, there-
fore, |ϕi〉 = (1 − Pψ (t ) ) |ϕi〉 and


-Rψ (t ) |ϕi〉 = 
-Rψ (t )(1 − Pψ (t ) ) |ϕi〉
= λi

ψ (t ) |ϕi〉
= λi

ψ (t )(1 − Pψ (t ) ) |ϕi〉 . (B3)

Multiplying on the left by (1 − Pψ (t ) ), we obtain that |ϕi〉 is an
eigenstate also of Wψ = (1 − Pψ )Jt [Pψ ](1 − Pψ ). Therefore,
Wψ and 
-Rψ (t ) have the same eigenstates and eigenvalues

λi
ψ (t ) =

∑
α

γα| 〈ϕi|Lα (t )|ψ (t )〉 |2, (B4)

which are positive if and only if the dynamics is P divisible.

APPENDIX C: POSITIVE UNRAVELING FOR P-DIVISIBLE
PHASE COVARIANT DYNAMICS

Starting from the phase covariant master equation, impos-
ing |0〉 to be an eigenstate of the RO corresponds to |�ψ 〉 as
in Eq. (27). If no jump has occurred, it is easy to see by direct
calculation that the eigenvalues λi, corresponding to the rates
for the jumps |ψ〉 �→ |i〉, are

λ1 = α2γ+ + γz(1 − α2) +
√

1 − α2φ1, (C1)

λ0 = (1 − α2)γ− + 3α2γz − α2

√
1 − α2

φ1. (C2)

Imposing the positivity of the eigenvalues, one finds

φ1 � − α2

√
1 − α2

γ+ − γz

√
1 − α2 =: φlb

1 ,

φ1 � (1 − α2)3/2

α2
γ− + 3

√
1 − α2γz =: φub

1 . (C3)

Any φ1 ∈ [φlb
1 , φub

1 ] gives λi � 0 and therefore a positive un-
raveling. This is possible only provided that φub

1 � φlb
1 . To

show that this is indeed the case, one can use the conditions
for P divisibility (26) to obtain

φlb
1 � 1

2

√
γ+γ−(1 − α2) − γ+

α2

√
1 − α2

=: φ̃lb
1 ,

φub
1 � (1 − α2)3/2

α2
γ− − 3

2

√
γ+γ−(1 − α2) := φ̃ub

1 . (C4)

It is easy to verify that

φ̃ub
1 − φ̃lb

1√
γ+γ−(1 − α2)

= x + 1

x
− 2, x =

√
γ+
γ−

α2

1 − α2
, (C5)

and x + 1/x � 2 ∀ x � 0. Therefore, it is always possi-
ble to chose φ1 ∈ [φ̃lb

1 , φ̃ub
1 ] ⊆ [φlb

1 , φub
1 ] giving a positive

unraveling.
After a jump has occurred, only the states |0〉 and |1〉 are

present in the realization. It is possible to have a positive rate
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FIG. 5. Positive unravelings of the dynamics of Eq. (32) for dif-
ferent choices of κ and initial states. The initial state is parametrized
as |ψ0〉 = cos θ |0〉 + sin θ |1〉, 0 � θ � π/2, while the transforma-
tion |�ψ 〉 defining the RO as in Eq. (27), with φ1 chosen according
to Eq. (D1). For all values of κ � 1.2, a positive unraveling exists for
all initial states.

for the jumps |0〉 ↔ |1〉 by choosing∣∣�post
ψ

〉 = −γz |ψ〉 , ψ = 0, 1. (C6)

In order to show that the effective ensemble is indeed
{|0〉 , |1〉 , |ψdet(t )〉}, we also have to show that |0〉 does not
evolve deterministically according to Eq. (19). This is easy to
show by noticing that |0〉 is an eigenstate of � and |�post

0 〉 ∝
|0〉. Additionally, if there is a nontrivial Hamiltonian H that
does not break phase covariance (i.e., H ∝ σz), then |0〉 must
be also an eigenstate of H . Therefore, |0〉 remains fixed under
the free evolution. It is possible to prove analogously that also
|1〉 does not evolve, thus showing that the effective ensemble
is indeed three dimensional.

APPENDIX D: PROOF OF THE POSITIVITY OF THE
UNRAVELINGS FOR NON-P-DIVISIBLE DYNAMICS

Let us now show that it is possible to have a positive
unraveling for the non-P-divisible dynamics of Eq. (32). Let
us start by noticing that, after a jump has occurred, the jump
rates |0〉 �→ |1〉 and |1〉 �→ |0〉 are proportional, respectively,
to γ− and γ+ and therefore they are positive.

For the deterministically evolving state, instead, there are
some states for which Eq. (31) holds, and therefore the rate
would not be positive. However, we now show that it is
possible to describe the dynamics without using such states.
Let us write the initial state as |ψ0〉 = cos θ |0〉 + eiϕ sin θ |1〉.

Because of phase covariance, we can consider, without loss
of generality, ϕ = 0 and 0 � θ � π/2. Let φ̃lb

1 := φlb
1 + 2ε,

φ̃ub
1 := φub

1 + 2ε and fix the transformation |�ψ 〉 defining the
RO as in Eq. (27). We can use the fact that φ1 can be chosen
arbitrarily inside the interval [φ̃lb

1 , φ̃ub
1 ] and choose it as

φ1 =
{

φ̃lb
1 , if θ � θ̄

φ̃ub
1 , if θ < θ̄.

(D1)

We then sample numerically the dynamics arising from dif-
ferent values of κ and θ̄ for all initial states. In Fig. 5, we
show all positive unravelings obtained using θ̄ = 1.3, for all
initial states and different values of κ . Interestingly, for all
values of κ � 1.2, it is possible to have a positive unraveling
for all initial states. This value of 1.2 is only a lower bound for
the true κmax, but it suffices to show the existence of positive
unravelings for all initial states for some non-P-divisible dy-
namics. The price we have to pay to obtain this is to have a RO
that depends also on the initial state, but this is by no means
different from the dependence on the current state only.

APPENDIX E: RO FOR THE DRIVEN DYNAMICS

Let us consider, without loss of generality, γ = 1. It is
possible to impose jumps |ψdet(t )〉 �→ |±〉 by choosing

|�ψ 〉 =
√

1 − |α|2
α∗ [α(1 − 2γz ) + α∗ + φ∗

0 ] |1〉 + φ0 |0〉 ,

(E1)

where ψ = α |−〉 +
√

1 − |α|2 |+〉.
The jump rates only depend on the real parameter ξ =

φ−α∗ + φ∗
−α = 2 Re φ−α∗ and are given by

2λ0 = (1 + 2γx )(1 − |α|2) + |α|2 + ξ, (E2)

2|α|2λ1 = − ξ (1 − |α|2) + (1 − 2γx )(1 − |α|2)(α∗2 + α2),

+ |α|4(1 + 2γx ) + 3|α|2(1 − |α|2) (E3)

and are positive whenever

ξ � −(1 + 2γz )(1 − |α|2) − |α|2 =: ξ lb,

ξ � (1 − 2γz )(α∗2 + α2) + 3|α|2 + |α|4
1 − |α|2 (1 + 2γz )

=: ξ ub. (E4)

It is easy to show that ξ ub � ξ lb for any γ � 0 or, in other
words, that there always exists a solution for ξ ∈ [ξ lb, ξ ub].
Therefore, it is always possible to choose φ− so that the rates
for the jumps |ψdet(t )〉 �→ |±〉 are always positive.
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