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I have been made aware of an error in Sec. IV of my paper, relating to backflow.
I attempted to prove the absence of backflow in transverse electric (TE) and transverse magnetic (TM) pulses based on

a general waveform. The electric and magnetic fields are calculated from a vector potential, which is the curl of the vector
[0, 0, ψ], where ψ is a solution of the wave equation (∇2 − ∂2

ct )ψ = 0.
In cylindrical coordinates ρ, φ, z the solutions of the wave equation may be expressed in the form

ψ (ρ, φ, z, t ) = eimφ

∫ ∞

0
dk e−ikct

∫ k

0
dq w(k, q)eiqzJm(κρ), k2 = q2 + κ2.

These scalar solutions are manifestly forward propagating since the longitudinal component of the wave vector q is non-negative.
However, the vector electromagnetic fields are obtained from ψ by operations that include curl, and the curl of a vector has,
in general, a different direction from the that of the original vector. It is not true in general that the momentum density p,
proportional to E×B, has no regions with negative pz (assuming net propagation in the positive z direction).

My attempted method of proof of positive-definite pz was to examine the sign of the integrand in the z component of the
momentum. The integral is over four wave-number variables k, q, k′, q′, and two angle variables χ, χ ′ (which appear when the
Bessel function is expressed as an integral over angle), but my “proof” considered the sign only in the dominant diagonal case
k′ = k, q′ = q, χ ′ = χ .

In fact, there is a small amount of backflow. Figure 1 below shows the energy density and momentum density at t = 0 for
a TE or TM pulse based on the imaginary part of the simplest waveform, G = a2

R(R−iz) , R2 = ρ2 + (a + ict )2. This solution

of the wave equation is of the form given above, with m = 0 and w = a2e−ka. The regions of negative pz are those outside
the hyperboloids of revolution ρ2 + a2 = (1 + 2/

√
3)z2, shown in the figure as red curves. The momentum density is largely

transverse in these regions of backflow. The maximum negative pz is located at the points indicated by the diamonds. It is about
2.4% of the maximum positive value located at ρ = a

√
2/3, z = 0. More details may be found in Appendix 3C of [1]; see

also [2–4], for other examples of backflow.
Electromagnetic pulses localized in space-time may be Lorentz transformed, as discussed in Chapter 5 of [1]. Pulses with net

propagation along the z direction always have cPz < U (Pz and U are the total pulse momentum along z and the total pulse energy)
and a Lorentz boost along z with speed c2Pz/U will bring the pulses to their zero-momentum frame, in which P

′
z = ∫ d3r′ p

′
z = 0.

In the zero-momentum frame there are equal amounts of positive and negative momentum density, and net backflow equals net

FIG. 1. Energy density (contours) and momentum density (arrows) for a TE or TM pulse based on the imaginary part of the waveform G,
at t = 0. The red curves (hyperboloids of revolution, see text) are the boundaries of the backflow regions where pz < 0. The location of the
most negative pz is indicated by the diamonds.
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forward flow. In general, the amounts of forward and backward flow of momentum and energy (the momentum density and
energy flux vectors p and S are related by S = c2 p) depends on which inertial frame the electromagnetic pulse is observed.

I thank Peeter Saari and Ioannis Besieris for pointing out the errors in Sec. IV.
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