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Topology-dependent giant-atom interaction in a topological waveguide QED system
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We investigate topology-dependent giant-atom–photon bound states in a giant-atom coupled topological
waveguide system and find that the bound states can induce topology-dependent dipole-dipole interactions
between giant atoms. For bridged giant atoms, when the waveguide is in the topological phase, there is no
interaction between them and the atom-atom interaction can only survive in the trivial phase. Conversely, for
separated giant atoms, they interact with each other only in the topological phase rather than in the trivial phase.
The characteristics of these two cases provide us a way to model pure nearest-neighbor interactions and double
chains, respectively. Our work may promote the application of topological physics in quantum information
processes and quantum simulations.
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I. INTRODUCTION

In conventional waveguide-QED systems [1,2], atoms are
considered as pointlike objects if the wavelength of the atoms
is much smaller than the wavelength of the coupling field,
which is also known as the dipole approximation [3]. Re-
cently, a new model of giant atoms has been developed in
artificial atomic systems in which the giant atom can simul-
taneously couple with the waveguide at different points, for
example, the superconducting quantum qubits can be consid-
ered as giant atoms by employing the small atom coupling
to a waveguide at multiple nodes [4]; the coupling of giant
atoms to surface acoustic waves and to microwave waveg-
uides has also been reported [5–7]. A theoretical scheme for
the realization of giant atoms in dynamic state-dependent
optical lattices using ultracold atoms has been proposed [8].
In addition, the giant-atom physics has also been extended
to giant molecules [9,10] and giant spin ensembles [11,12].
Compared to pointlike atoms, the giant atoms can be con-
joined to the waveguide by multiple coupling points, which
leads to many peculiar phenomena due to the interference
and time-delay effects between the coupling points such
as frequency-dependent decay rates and Lamb shifts [13],
waveguide-mediated decoherence-free interaction [14–16],
chiral phenomena [10,17–20], generation of two-giant-atom
entanglement [21,22], oscillating bound states [23–25], and
non-Markovian effects [26–28].

In recent years, topological photonics have received a
great deal of attention in quantum physics because of their
many interesting features, including robustness to local de-
coherence processes and potential applications in quantum
information [29–32]. The topological waveguide (TW) de-
scribed by the Su-Schrieffer-Heeger (SSH) model has been
realized in a superconducting circuit [33,34] and photonic
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waveguide [35,36]. Meanwhile, atoms coupled with a TW
present new opportunities to study single-excitation dynamics
such as topologically protected states and photon-mediated
interactions between atoms [34,37–41]. In particular, several
unconventional quantum optical phenomena were predicted
and realized when quantum emitters interact with a TW
such as the emergence of chiral bound states, directional
dipole-dipole interactions, and topologically dependent super-
and subradiative states [42–45]. Many works have pointed
out the importance of topology for quantum physics such
as topologically protected atomic coherence [46], enhanced
nonreciprocal scattering and photon absorption [47], and pro-
tected optomechanically induced transparency [48].

In conventional atom-photon bound-state theories, photons
tend to be symmetrically localized around atoms and the over-
lapping of the wave functions of photon bound states around
different atoms can cause the exchange of photons, which in
turn induces the interaction between atoms [49–51]. Thus,
by designing a special distribution of atom-photon bound
states, the special interaction between atoms can be engi-
neered. In this paper we consider the topological effects on
the giant-atom–photon bound states in the giant-atom cou-
pled TW system and show that the spatial distribution of the
giant-atom–photon bound states exhibits a clear topological
dependence. When multiple giant atoms are coupled within
the band gap of the TW, due to the overlap of the bound-
state wave functions, the effective dipole-dipole interactions
between the giant atoms are generated by exchanging vir-
tual photons, and the strength of the interactions depends
on the degree of overlap between the bound states. Thus,
topologically dependent bound states can induce topologically
dependent dipole-dipole interactions between giant atoms.
In the trivial phase, nearest-neighbor interaction between
giant atoms can be obtained; in the topological phase, a
double chain of the atoms can be realized. These charac-
teristics are valuable in quantum information and quantum
simulation.
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FIG. 1. Schematic diagram of a giant atom coupled to an SSH
chain. Each cell of the SSH chain contains two sublattices A and B,
with intercellular and extracellular coupling strengths of J1 and J2,
respectively. The giant atoms can couple with the TW at cells j and
j + l with strengths of ga and gb, respectively.

II. MODEL

As shown in Fig. 1, we consider that the giant atoms with
two coupling nodes couple to a SSH chain at cells j and j + l
with strengths of ga and gb, respectively. The distance between
two coupling nodes of a single giant atom is l . Experimentally,
the SSH chain has been realized in superconducting circuit
systems, where each cell of the SSH chain can be mapped
to the two LC resonators (microwave cavity). In addition,
the intra- and intercellular couplings between neighboring
resonators have been determined by the auxiliary capacitance
and inductance [34]. Each cell contains two sublattices A
and B with frequencies ωa and intercellular and extracellular
couplings with strengths J1 and J2, respectively. The total
Hamiltonian of the system can be written as

H = H0 + HI + HB, (1)

with

H0 =
M∑

n=1

�σ †
n σn,

HI =
M∑

n=1

[(gaa†
n + gbb†

n+l )σn + H.c.],

HB =
N∑

j=−N

(J1a†
j b j + J2a†

j+1b j + H.c.), (2)

where a†
n (b†

n) and an (bn) are the creation and annihilation
operators for the microwave cavity, respectively; σn = |g〉〈e|
is the spin operator representing the transition |e〉 → |g〉; H0

denotes the free energy of the giant atom with the detuning
� = ω0 − ωa, where we use the center frequency of the SSH
chain ωa as the reference energy and ω0 is the frequency of the
giant atom; HI represents the interaction between giant atoms
and the SSH chain, where n denotes the position of the left
coupling point of the giant atom corresponding to the cavity;
and HB is the Hamiltonian of the SSH chain. Hereafter, we set
J1 = J (1 − δ) and J2 = J (1 + δ), with J as a unit. We con-
sider the weak-coupling condition, i.e., (ga, gb) � (J1, J2).
Under this condition, we can first diagonalize the Hamilto-
nian HB with periodic boundary condition and then HB in the
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FIG. 2. (a) Variation of the energy dispersion of the SSH chain
with k (dimensionless) in the first Brillouin zone. (b) Variation of the
energy spectra with � for δ = 0.3. The other parameters are ga =
0.1J , gb = 0.1J , m = 10, and N = 20.

momentum space can be written as

HB =
∑

k

(J1 + J2e−ik )a†
kbk + (J1 + J2eik )b†

kak

=
∑

k

ψ
†
k HB(k)ψk, (3)

where ψ
†
k = (ak, bk ), ak = 1√

N

∑
j a je−ikx j , bk = 1√

N

∑
j b j

e−ikx j , and HB(k) is given by

HB(k) =
(

0 f (k)
f ∗(k) 0

)
, (4)

with f (k) = J1 + J2e−ik . The dispersion relation of the SSH
model [energy spectrum of Eq. (4)] can be calculated as
E (k) = ±ω(k) = ±

√
J2

1 + J2
2 + 2J1J2 cos(k). In Fig. 2(a) we

plot E (k) varying with k in the first Brillouin zone. It can be
seen that the energy spectrum of the SSH model can be di-
vided into two parts. One is the energy-band region, including
the upper energy band (orange) and the lower energy band
(cyan), where photons can propagate in the TW with veloc-
ity vg = ∂E (k)/∂k. The other region is the band gap region,
where photons are forbidden to propagate. In the momentum
space, the interaction Hamiltonian HI becomes

HI = 1√
N

M∑
n=1

∑
k

{e−ikxn [(gaa†
k + gbb†

ke−ilk )]σn + H.c.}.

(5)

Given that the SSH model satisfies the chiral symme-
try, we can diagonalize HB(k) as HB = ∑

k ω(k)(α†
k αk −

β
†
k βk ), where the relationship between the diagonalized bases

(αk, βk ) and (ak, bk ) satisfies(
ak

bk

)
= 1√

2

(
1 −1

e−iφ(k) e−iφ(k)

)(
αk

βk

)
. (6)

Substituting Eq. (6) into Eq. (5), we obtain

HI = 1√
N

M∑
n=1

∑
k

{[p(k)α†
k + q(k)β†

k ]e−ikxnσn + H.c.}, (7)
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where p(k) = 1√
2
(ga + gbe−ikl eiφ(k) ) and q(k) = 1√

2
(−ga +

gbe−ikl eiφ(k) ), with φ(k) = arctan J2 sin(k)
J1+J2 cos(k) . It is worth noting

that for ga or gb = 0, the system reduces to a model of small
atoms coupling to a TW.

III. TOPOLOGY-DEPENDENT GIANT-ATOM–PHOTON
BOUND STATES

In this section we discuss the giant-atom–photon bound
states in the single-excitation subspace. We consider that a
giant atom couples to the TW at the mth cell and the (m + l )th
cell. The bound state of the wave function has the form

|ψBS〉 =
(

Ceσ
† +

∑
k

(
Cα

k α
†
k + Cβ

k β
†
k

))|g, vac〉, (8)

where Cσ and Cα(β )
k are the probability amplitudes for giant

atom and photons, respectively. By solving the Schrödinger
equation H |ψBS〉 = EBS |ψBS〉 with EBS lying outside the
bands, we can obtain the probability amplitudes of photons
under the diagonalized basis

Cβ

k = 1√
N

Ceq(k)e−ikxm

EBS + ω(k)
,

Cα
k = 1√

N

Ce p(k)e−ikxm

EBS − ω(k)
. (9)

In addition, the eigenenergy satisfies the transcendental equa-
tion

EBS = � +
∫ π

−π

dk

2π

( |p(k)|2
EBS − ω(k)

+ |q(k)|2
EBS + ω(k)

)
. (10)

It is difficult to obtain an analytical solution of the tran-
scendental equation. Instead, we can appeal to the numerical
diagonalization of the Hamiltonian in real space and plot the
energy spectrum in single excitation under periodic boundary
conditions. In Fig. 2(b) we plot the energy spectrum varying
with �. The energy levels marked in blue are the scattering
states and those marked in red are the bound states [52]. It can
be seen that in each band gap there exists a bound state such
as the points P1, P2, and P3. Thus, for a given �, we can obtain
the energy of the bound state EBS on the energy spectrum.

Combining with the relationship between (αk, βk ) and
(ak, bk ), we can find that the probability amplitudes for pho-
tons Ca(b)

k satisfy

Ca
k = Ce√

N

[gaEBS + gbω(k)ei[φ(k)−kl]]e−ikxm

E2
BS − ω(k)2

,

Cb
k = Ce√

N

[gbEBSe−ikl + gaω(k)e−iφ(k)]e−ikxm

E2
BS − ω(k)2

. (11)

Transferring the probability amplitudes in momentum space
to real space by a Fourier transform, we can obtain the proba-
bility amplitudes Ca(b)

j in the real space.

In Fig. 3 we plot the probability distribution |Ca(b)
j |2 on the

cells by numerically calculating Eq. (11), where we choose
detuning values corresponding to the three points in Fig. 2(b),
i.e., � = −2.3J (P1), 0 (P2), and 2.3J (P3), with the bound-
state energies EBS = −2.317J , 0, and 2.317J , respectively.
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FIG. 3. Probability distributions of the photon bound states |Ca
j |2

and |Cb
j |2 for (a) and (d) � = 2.3J , (b) and (e) � = 0, (c) and (f)

� = −2.3J for the waveguide in (a)–(c) the topological phase (δ =
0.3) and (d)–(f) the trivial phase (δ = −0.3). The other parameters
are ga = gb = 0.1, m = 10, l = 5, and N = 20.

Figures 3(a)–3(c) correspond to the waveguide in the topo-
logical phase (δ = 0.3) and Figs. 3(d)–3(f) correspond to the
waveguide in the trivial phase (δ = −0.3). For the giant atom
the frequency falls in the upper band gap with � = 2.3J , as
shown in Figs. 3(a) and 3(d); the photon probability distri-
butions are similar, with � = −2.3J shown in Figs. 3(c) and
3(f), and are mainly distributed in the sublattices A and B near
the giant-atom coupling node. Then the topological properties
of the waveguide have no particular effect on the distribution
of bound states for � = ±2.3J .

However, for the giant atom the frequency falls in the mid-
dle band gap with � = 0, as displayed in Figs. 3(b) and 3(e),
although also mostly distributed near the giant-atom coupling
nodes, the photons are distinctly different from � = ±2.3J .
Specifically, when the TW is in the topological phase, the
photons are distributed only on the left sublattice B of the
left coupling node and on the right sublattice A of the second
coupling node, and photons are not distributed within the giant
atom. When the TW is in the trivial phase, the photons are
distributed only on the right sublattice B of the left coupling
node and on the left sublattice A of the second coupling node.
Consequently, they are only distributed within the giant atom.
Overall, the topology of the waveguide has a completely dif-
ferent effect on the giant-atom photon bound state for � = 0.
When multiple small atoms are coupled within a band gap
in a structured waveguide, effective dipole-dipole interactions
between them through the exchange of virtual photons and
the strength of the interactions depend on the overlap between
bound states [50,53–55]. The case is also valid for giant
atoms, where interactions between giant atoms can be medi-
ated when photon wave functions around different giant atoms
are overlapped together. In particular, for � = 0, since the

053720-3



WANG, ZHAO, YAN, YANG, WANG, AND ZHOU PHYSICAL REVIEW A 109, 053720 (2024)

distribution of photons in the topological phase is significantly
different from that in the trivial phase, the dipole interactions
between the giant atoms exhibit topology-dependent exotic
phenomena when multiple giant atoms are coupled to the TW
at the band gap, as we discuss in the next section.

IV. VIRTUAL-PHOTON-INDUCED INTERACTIONS
BETWEEN GIANT ATOMS

The overlap of the wave function between the bound
states of the multiple giant atoms induces coherent interaction
between giant atoms, and the coherent interaction can be
described with an effective Hamiltonian by eliminating the
waveguide mode [50,51]. Next we derive the effective Hamil-
tonian between giant atoms. By employing the large detuning
method, under the diagonal basis vector, the full Hamiltonian
is

H = H0 + HI , (12)

with

H0 =
∑

k

ω(k)(α†
k αk − β

†
k βk ) +

M∑
n=1

ωoσ
†
n σn,

HI = 1√
N

M∑
n=1

∑
k

{e−ikxn [p(k)α†
k + q(k)β†

k ]σn + H.c.}.

(13)

We use the Schrieffer-Wolff transformation to adiabat-
ically eliminate the photon modes [56]. Define S =∑

k[−(ηα,kαk + ζβ,kβk )σ †
n + (η∗

α,kα
†
k + ζ ∗

β,kβ
†
k )σn], where S

is an anti-Hermitian operator S† = −S. Then the Hamiltonian
becomes

HS = UHU † = H + [S, H] + 1
2 [S, [S, H]] + · · · , (14)

where U = eS . By setting the term of the first-order per-
turbation to zero as HI + [H0, S] = 0, we can find that the
determined parameters satisfies ηα,k = p(k)e−ikxn√

N[�−ω(k)]
and ζβ,k =

q(k)e−ikxn√
N[�+ω(k)]

. In the case of {ηα,k, ζβ,k} � 1, we can keep
only the second-order terms and safely omit the higher-order
terms. This is equivalent to the large detuning condition as
{ga, gb} � N |� − �edge|, where �edge is the band edge as
{−2J,−2Jδ, 2Jδ, 2J}, which is the specific requirement for
(ga, gb) � (J1, J2). The large detuning condition seems a
mathematical requirement. Actually, the weak-coupling ap-
proximation is also a physical requirement for achieving
atomic interactions mediated by a waveguide. The excitation
of photons is equal to dissipation for the atom interaction; then
the virtual excitation of photons favors our goal. Therefore,
the weak coupling is necessary because under this condition
excitation of photons is nearly virtual. Then, under the second-
order perturbation approximation, we can obtain

HS =
∑
n,m

(Jnmσ †
n σm + H.c.), (15)

with Jnm = ∑
k

1
N ( |p(k)|2

�−ω(k) + |q(k)|2
�+ω(k) )eikxnm , where xnm = xm −

xn refers to the distance between giant atoms, namely, the
distance between the cavities corresponding to the first

0 10 20
0

0.005

0.01

|Jnm|/J

l=0
l=5
l=12

0 10 20
0

0.005

0.01

|Jnm|/J

l=0
l=5
l=12

0 10 20
xnm

0

0.005

0.01

|Jnm|/J

l=0
l=5
l=12

0 10 20
xnm

0

0.005

0.01

|Jnm|/J

l=0
l=5
l=12

(a)

(c) (d)

(b)

FIG. 4. (a) Variation of the coherent interaction between giant
atoms |Jnm| with xnm (dimensionless) for l = 0, 5, 10 with (a) � =
2.3J and δ = 0.3, (b) � = 2.3J and δ = 0, (c) � = 0 and δ = 0.3,
and (d) � = 0 and δ = −0.3. The other parameters are ga = gb =
0.1J .

coupling nodes of different giant atoms. By replacing the
discrete modes with the continuous distribution, we can
obtain

Jnm =
∫ π

−π

dk

2π

( |p(k)|2
� − ω(k)

+ |q(k)|2
� + ω(k)

)
eikxnm . (16)

Bringing the parameters p(k), q(k), and ω(k) into the in-
tegral, we can numerically obtain the interactions between
giant atoms. In particular, for � = 0 we can analytically ob-
tain the effective interaction for the TW in the topological
phase

Jnm =
{

0, l − xnm + 1 > 0

− gagb

J1
(− J1

J2
)xnm−l , l − xnm + 1 � 0

(17)

and in the trivial phase

Jnm =
{

− gagb

J1
(− J1

J2
)xnm−l , l − xnm + 1 > 0

0, l − xnm + 1 � 0.
(18)

From Eqs. (17) and (18) we can see that the interactions
between the giant atoms depend on the topology of the waveg-
uide and the difference between xnm and l . For example, for a
TW in the topological phase, when the distance between two
coupling points of a single giant atom is longer than the dis-
tance between two giant atoms (l > xnm), the two giant atoms
are bridged and there is no interaction between them. The
interaction exists only when l < xnm, namely, the two giant
atoms are separated. In addition, for fixed δ, the coupling is
invariant as long as xnm − l is invariant. Thus, the interaction
between giant atoms depends on xnm − l .

In Fig. 4 we plot the coherent interaction between giant
atoms |Jnm| varying with xnm for different l , �, and δ. For the
frequency of giant atoms lying in the upper band of the TW,
with � = 2.3J and δ = 0.3 shown in Fig. 4(a), we can see
that when l = 0, the effective interaction between giant atoms
decreases with increasing xnm. For l �= 0, when xnm < l (two
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FIG. 5. Dynamic evolution of fidelity F (l, xnm ) governed by
Eq. (1) for (a) δ = 0.3 and (b) δ = −0.3. The small-atom exci-
tation transfer fidelity F (xnm ) varies with t for (c) δ = 0.3 and
(d) δ = −0.3. The other parameters are ga = gb = 0.1J , � = 0, and
N = 40.

giant atoms are separated), the effective interactions show a
U-shaped configuration; when xnm > l (two giant atoms are
bridged), the effective interaction decreases with increasing
xnm, while the maximum value of the interaction corresponds
to xnm = l + 1 for different l . For � = 2.3J and δ = 0, as
shown in Fig. 4(b), the effective interaction between giant
atoms varies with xnm as in Fig. 4(a). However, when the giant
atom frequency falls in the middle band gap with � = 0, by
comparing Figs. 4(c) and 4(d) we can see that the effective
interactions between giant atoms exhibit topology-dependent
behavior. Specifically, for l = 0, the energy shift of the single
giant atom �s = Jnn corresponding to xnm = 0 for the TW in
the topological phase (δ = 0.3) is zero �s = 0 and in the TW
trivial phase (δ = −0.3) the energy shifted becomes �s =
−gagb/J1. For l �= 0 and the TW in the topological phase,
when l > xnm there is no interaction between the giant atoms,
while when l < xnm (the two giant atoms are bridged) the
interaction between the giant atoms decreases with distance.
The maximum value of the interaction is constant with respect
to xnm = l + 1 under different l as displayed in Fig. 4(c),
which means that we can realize coupling between two distant
giant atoms only with l < xnm. In the TW in the trivial phase
shown in Fig. 4(d), the results are completely opposite to
that in the topological phase, where the interaction between
giant atoms increases with the distance between them when
l > xnm and the maximum value of the interaction is constant
with respect to xnm = l under different l for l �= 0, while the
interaction between two giant atoms disappears when l < xnm.
For the TW in the topological phase (δ = 0.3) and trivial
phase (δ = −0.3), the reason for the different interactions is
caused by the different distribution of photon bound states
for the two cases (see Fig. 3). For the TW in the topological
phase with � = 0, the photons are distributed only on the
outside of the giant atoms. When xnm < l , photon bound states
around the giant atoms do not overlap and therefore do not
induce interactions between them; it is only when xnm > l that

photon bound states overlap and then the interaction between
giant atoms can exist. Meanwhile, when the distance between
atoms increases, the degree of overlapping of the photon
wave functions decreases, which results in the decrease of
interactions. In other words, for l �= 0, when � = 0, the in-
teractions exhibit topological dependence. When the TW is
in the topological phase, there is no interaction for xnm < l;
only when xnm > l is the effective interaction induced, which
can offer us a method to realize a double chain. When the
TW is in the trivial phase, only if xnm < l do the giant
atoms interact with each other, which provides us a method
to model chains of giant atoms with only nearest-neighbor
interactions.

Next we would like to prove the topology-dependent ef-
fective interaction between the two giant atoms using the
full Hamiltonian (1). We employ fidelity F to indicate the
effective exchange interaction by transferring the excitation
from the left giant atom to the right giant atom. The fidelity
is defined as F (l, xnm) = 〈ψt |ψ f 〉, with |ψ f 〉 (|ψt 〉) the wave
function of the final (target) state. We assume that initially
the left giant atom is in the excited state and the right giant
atom is in the ground state. The fidelity equal to 1 means that
the excitation is transferred from the left giant atom to the
right one. In Figs. 5(a) and 5(b) we plot the fidelity F (l, xnm)
varying with t for � = 0 and δ = ±0.3. When the TW is in
the topological phase (δ = 0.3) [see Fig. 5(a)], F (l, xnm) is
always zero when l > xnm, which implies there is no effective
interaction between them, which is consistent with Fig. 4(c).
Meanwhile, when l < xnm, we can see that F (l, xnm) is pe-
riodically varying, where the period of fidelity evolution can
indicate the effective interaction between giant atoms. For the
TW in the trivial phase (δ = −0.3), as displayed in Fig. 5(b),
we can see that the result is opposite that in the topological
phase, where F (l, xnm) is periodically varying when l > xnm,
while F (l, xnm) is always zero for l < xnm. Interestingly, the
evolution of F (12, 13) is consistent with that of F (5, 6) when
δ = 0.3 and that of F (12, 11) is consistent with that of F (5, 4)
when δ = −0.3, which proves that the effective coupling de-
pends only on the difference between xnm and l , which is
consistent with Figs. 4(c) and 4(d). Thus, by analyzing the
behavior of the transfer fidelity of the giant-atom excitations
under the full Hamiltonian, we can predict from the dynamics
of the process that the topology-dependent interactions are
reasonable.

In order to see the characteristics of the current system, in
Fig. 5(c) we plot the time evolution of the fidelity F (xnm) for
the case of small atoms coupling to a TW so as to compare
the difference between giant atoms and small atoms. We can
see that in the topological phase the excitation cannot be
transferred. For δ = −0.3 [see Fig. 5(d)] the period of fidelity
F (xnm) increases with increasing distance. The minimum fi-
delity period corresponds to xnm = 1. Only when the TW is
in the trivial phase can the excitation transfer between the two
small atoms occur, which is consistent with [37]. Comparing
Figs. 5(a)–5(d), we can see that the minimum periods of the
small and giant atoms are almost the same for a TW in the
trivial phase and both are smaller than the giant-atom coupled
to a TW in the topological phase. Overall, compared to small
atoms, giant atoms can realize excitation transfer in any topol-
ogy of the TW.
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FIG. 6. Schematic diagram of a coupled waveguide with multiple
giant atoms. (a) Neighboring giant atoms are separated from each
other for l < xnm. (b) Neighboring giant atoms are bridged to each
other for l > xnm. The coupling strengths of the giant atoms coupled
to the TW are all ga and the detuning of all giant atoms is set to
� = 0.

V. SIMULATION OF NEAREST-NEIGHBOR
INTERACTIONS AND the DOUBLE-CHAIN STRUCTURE

OF GIANT-ATOM CHAINS

In this section we use this topology-dependent interaction
to simulate pure nearest-neighbor interaction models as well
as double-chain structure models. We consider two config-
urations of giant-atom chain structures, where the distance
between two coupling nodes of a single giant atom is l = 12.
As shown in Fig. 6(a), the giant atoms are coupled to the
topological chain separately from each other. The distance
between neighboring giant atoms is xn,n+1 = 13. Because the
distance between atoms in the next-nearest neighbor is greater
than xn,n+2 = 26, the induced interactions are almost zero, as
displayed in Fig. 4(c); therefore, there are no next-nearest-
neighbor interactions between giant atoms. In this case, the
effective Hamiltonian of the giant-atom chain can be written
in the spin picture as

Hchain =
M∑

n=1

2g2
a

J2

(
σ x

n σ x
n+1 + σ y

n σ
y
n+1

)
. (19)

It can be seen that the Hamiltonian (19) describes a one-
dimensional spin-1/2 chain with XX -type nearest-neighbor
coupling. The model is widely used in quantum communica-
tion [57] and quantum information processing [58,59].

For the second configuration as shown in Fig. 6(b), we
consider the nearest-neighbor giant atoms to be bridged and
separated from next-nearest-neighbor giant atoms. The dis-
tance between neighboring giant atoms is xn,n+1 = 8. For the
TW in the trivial phase, according to Eq. (18), we can derive
the effective interaction Hamiltonian for the chain of giant
atoms to be the same as in Eq. (19) except that the coupling

becomes − g2
a

J1
(− J2

J1
)4. For the TW in the topological phase,

according to Eq. (17), we can derive the effective interaction
Hamiltonian for the chain of giant atoms as

Hchain = T
M∑

n=1

(σ †
2n−1σ2n+1 + σ

†
2nσ2n+2 + H.c.), (20)

where T = − g2
aJ3

1

J4
2

. This Hamiltonian describes a
double-chain model, where one chain represents coupling
between odd-numbered giant atoms and the other between
even-numbered giant atoms. For example, for M = 4

(four giant atoms), the Hamiltonian (20) becomes

Hchain = − g2
aJ3

1

J4
2

(σ †
1 σ3 + σ

†
2 σ4 + H.c.). For the initial state

|ψ (0)〉 = {1; 0; 0; 0}, where the first giant atom is in the
excited state and the other giant atom is in the ground
state, under the Hamiltonian Hchain, the final state will
evolve as |ψ (t )〉 = {cos(T t ); 0; sin(T t ); 0}. Choosing the
evolution time t f = π/4T , we can realize the maximally
entangled state between the first and third giant atoms
|ψ (t f )〉 = {1/

√
2; 0; 1/

√
2; 0}. In the same way, we can

achieve the maximally entangled state of the second and
fourth giant atoms. In addition, if the initial state of the
system is assumed to be in an arbitrary entangled state of the
first and second giant atoms |ψ (0)〉 = {√p;

√
1 − p; 0; 0},

then at evolution time t f = π/4T , the final state becomes
|ψ (t f )〉 = {0; 0;

√
p;

√
1 − p}, which is an arbitrary entangled

state of the third and fourth giant atoms. Thus, the structure of
the double chain can be used not only to prepare a maximally
entangled state of two giant atoms but also to transfer an
arbitrary entangled state.

VI. DISCUSSION AND CONCLUSION

It should be noted that giant atoms coupling to topolog-
ical waveguides has not been reported experimentally. The
coupling of giant atoms to waveguides [60] and the coupling
of small atoms to topological waveguides [34] have been
realized recently in superconducting circuits. The parameters
used in this paper, for example, the coupling strength between
neighboring microwave cavities J = 256 MHz [34] and the
coupling strength between giant atoms and the waveguide
ga = 0.01J = 2.56 MHz, are within the experimental range
that has been realized in experiment [60]. Therefore, our
proposed model may theoretically be promising for imple-
mentation in superconducting circuits.

In this paper we considered the topological effects on the
giant-atom–photon bound states in the giant-atom coupled
TW system and showed that the spatial distribution of the
giant-atom–photon bound states exhibits a clear topological
dependence. When multiple small atoms are coupled within
the band gap of the TW, the effective dipole-dipole interac-
tions are generated between the giant atoms by exchanging
virtual photons, and the strength of the interactions depends
on the degree of overlap between the bound states. Thus,
topologically dependent bound states can be induced by topo-
logically dependent dipole-dipole interactions between giant
atoms. Employing this feature, we considered two configura-
tions of giant-atom chain structures and found that they lead
to the purely nearest-neighbor interaction and double indepen-
dent next-nearest-neighbor interactions between giant atoms.
Furthermore, we found that the structure of the double chain
can be used not only to prepare a maximally entangled state
of two giant atoms but also to transfer an arbitrary entangled
state.
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