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Compasslike states in a thermal reservoir and fragility of their nonclassical features
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Superposed photon-added and photon-subtracted squeezed-vacuum states exhibit sub-Planck phase-space
structures and metrological potential similar to the original compass states (superposition of four coherent states),
but are more closely tied to modern experiments. Here, we observe that these compasslike states are highly
susceptible to loss of quantum coherence when placed in contact with a thermal reservoir; that is, the interaction
with the thermal reservoir causes decoherence, which progressively suppresses the capacity of these states to
exhibit interference traits. We focus on the sub-Planck structures of these states and find that decoherence effects
on these features are stronger with increasing the average thermal photon number of the reservoir, the squeezing
parameter, or the quantity of added (or subtracted) photons to the squeezed-vacuum states. Furthermore, we
observe that the sub-Planck structures of the photon-subtracted case survive comparatively longer in the thermal
reservoir than their counterparts in the photon-added case, and prolonged contact with the thermal reservoir
converts these compasslike states into a classical state.
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I. INTRODUCTION

The prototypical Schrödinger cat state, a superposition
of macroscopically distinct quantum states, originated from
the well-known gedanken experiments [1], in which a cat
appeared to be both alive and dead simultaneously. This
notion morphed into a macroscopic cat state [2,3], which
is the superposition of two distinguishable coherent states,
and then into multicomponent cat states [4,5]. Such states
are of great interest because they may hold particular
nonclassical features such as non-Gaussian interference char-
acteristics [6,7] and sub-Planck phase-space structures [4],
and have both fundamental and practical implications in the
field of continuous-variable quantum information processing.
These implications span from understanding the fundamental
physics of quantum decoherence [8] to practical implications
in quantum metrology [9–11], quantum teleportation, and
cryptography [12–14], to name a few.

The addition (or subtraction) of photons to the squeezed-
vacuum states (SVSs) leads to the quantum states having
Wigner phase-space features similar to those of cat states
[15–17]. Similarly, when photons are added to or subtracted
from the superposition of a SVS, one may obtain compasslike
states [18] that have comparable sub-Planck phase-space
structures as the original compass states [4]. Sub-Planck struc-
tures have been explored in various contexts [19–28] and it

*yangxs@ujs.edu.cn
†gaoxl@zjnu.edu.cn
‡chenyp@ujs.edu.cn

has been found that such structures are highly sensitive to
environmental decoherence [29] and play a crucial role in
the sensitivity of a quantum state against phase-space dis-
placements [30–32]. Both theoretically and experimentally,
the addition (or subtraction) of photons to the SVSs has been
explored [33–37], and it has been found that these methods
are quite effective in producing larger cat states for quantum
computing [38].

The interaction of a quantum system with its surround-
ing environment leads to the loss of its quantum features, a
so-called decoherence phenomena [8,39]. Superposed states,
such as macroscopic catlike states, are theoretically attainable
but difficult to achieve in practical applications due to their
extreme sensitivity to environmental decoherence [40,41]. In
the case of macroscopic systems, the interaction with the en-
vironment can never be avoided because the decoherence rate
is proportional to the “macroscopic separation” between the
two states [42–45], and when propagating through damping
channels, such states rapidly lose their nonclassical properties
and the corresponding negative oscillations of their Wigner
functions [46–52]. Consequently, it has been discovered that
although catlike states are theoretically possible, they are dif-
ficult to observe in actual experiments as a macroscopic object
like a cat cannot be completely isolated from its surroundings
[53]. The recent rapid advancement in the theory of quan-
tum information processing, which involves the protection of
quantum states and their quantum dynamics after contact with
an environment generating decoherence, is a highly important
subject [54–56].

In this work, we theoretically investigate the interaction
between the quantum states of our interest and a thermal
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reservoir that acts as a cause of decoherence; in particular,
we examine how the decoherence deforms the nonclassical
phase-space assets of our states. The Fokker-Planck equa-
tion that controls the temporal evolution of the relevant
quantum system can be obtained directly from the mas-
ter equation for the density operator in the Born-Markov
approximations [40,41]. Using the Wigner quasidistribution
formalism [57], we solve the Fokker-Planck equations to
obtain the temporal evolution of the associated Wigner func-
tions under a thermal reservoir [41]. We pick compasslike
states for this interaction, which were recently obtained
by adding to or subtracting photons from two superposed
SVSs [18]. As previously mentioned, the Wigner func-
tions of these states contain sub-Planck structures, which
makes them a potential substitute for the original compass
states [4]. Moreover, compared to the original compass states,
these states may be more appropriate for contemporary exper-
iments [36,37].

We mainly focus on analyzing the impact of the given
thermal reservoir on the sub-Planck structures of the stated
compasslike states. Visualizing plots of the corresponding
Wigner functions, we observe that the sub-Planck structures of
these compasslike states are highly influenced by the thermal
reservoir; that is, the decoherence aroused by this interaction
may eventually smear out these structures from the phase
space. A numerical examination of these Wigner function
plots reveals that the corresponding sub-Planck structures de-
cay more quickly as the average thermal photon number of
the reservoir, the quantity of added (or subtracted) photons
to the squeezed-vacuum states, or the squeezing parameter
increase. Compared to the corresponding photon-subtracted
case, the sub-Planck structures related to the photon-added
case decay faster in the thermal reservoir. Furthermore, we
observe that the long-term contact of these compasslike states
with the thermal reservoir eventually converts them into a
thermal state.

The structure of our paper is as follows: Section II con-
tains an overview of the basic concepts that are employed
throughout this manuscript. We address the interaction be-
tween the quantum states of our interest and a thermal
reservoir in Sec. III. Finally, Sec. IV contains the main
conclusions and the detailed physical explanations of our
findings.

II. THEORETICAL FRAMEWORK

This section provides an overview of the main ideas and
findings from earlier research that are relevant to the present
work. We organized this section as follows: First, we review
the basic concept of the phase-space representation of a quan-
tum state via the Wigner function in Sec. II A, and then this
concept is further reviewed for the quantum states of our in-
terest in Sec. II B. In Sec. II C, we revisit the thermal reservoir
that will be employed to interact with the quantum states of
Sec. II B.

A. Phase-space analysis

The Wigner quasiprobability distribution is the visualiza-
tion of quantum mechanical states in phase space [57–60].

The Wigner function for a generic quantum state ρ̂ is written
as an expectation value of the parity kernel [59],

W (α) := tr[ρ̂�̂(α)] with α ∈ C, (1)

where

�̂(α) := 2D̂(α)�̂D̂†(α), �̂ := (−1)â†â (2)

is the displaced parity operator, and â† (â) are raising
(lowering) operators that satisfy the commutation relation
[â, â†] = 1.

The quantum uncertainty principle [53,60,61] arising from
commutator relations [x̂, p̂] = i of the position operator x̂ and
the momentum operator p̂ obeys

�x�p � 1
2 , (3)

where

�C2 := 〈Ĉ2〉 − 〈Ĉ〉2
(4)

is the uncertainty of any operator Ĉ, and we set h̄ = 1 here-
after. Hence, note that in the following, we use dimensionless
versions of position and momentum operators.

The single-mode SVS can be written as

|ψ〉 = Ŝ(r) |0〉 , (5)

where

Ŝ(r) := exp

[
r

2
(â†2 − â2)

]
(6)

is the squeezing operator [62], with r being the real squeezing
parameter. The Wigner function of the SVS is

W (α) = 2

π
exp(−2|ᾱ|2), (7)

where

ᾱ = α cosh(r) − α∗ sinh(r) with α := (x+ip)/
√

2. (8)

The Wigner function exhibits a Gaussian distribution, in-
dicating that the SVS is a Gaussian state that deviates
from classicality when these states are squeezed [62].
Non-Gaussian operations such as photon addition (PA) or sub-
traction (PS) applied to a Gaussian SVS lead to non-Gaussian
SVSs [15,17,63,64]; that is, the Wigner functions of the result-
ing states may attain non-Gaussian terms. The nonclassical
nature of such states is indicated by the negative value of their
Wigner function, apart from the squeezing in their quadrature,
which is another indicator of the aforementioned nature.

The sub-Planck structures are the phase-space features
having dimensions far smaller than the bound given by the
uncertainty relation (3), and such structures have achieved
significant attention in quantum metrology [30–32] due to
their high sensitivity to environmental decoherence [29]. The
PA and PS cases of the superposed SVSs have been pre-
viously analyzed and the Wigner functions of these states
are shown to have sub-Planck structures [18]. Specifically, it
has been found that an excess amount of the photons added
to or subtracted from the superposition of SVSs can cause
sub-Planck structures in the phase space. We revisit the sub-
Planck structures contained by the Wigner functions of these
non-Gaussian SVSs next.
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B. Compasslike states

This section provides an overview of the recently intro-
duced compasslike states [18], which were obtained by either
adding photons to or subtracting photons from the superposi-
tion of two SVSs. It has been shown that when a significant
quantity of photons is added (or subtracted), the Wigner func-
tions of these states are shown to have sub-Planck phase-space
features. Let us first review the case when m photons are added
to the superposed SVSs, which can be expressed as follows:

|ψPA〉 := NPAâ†m[Ŝ(r) |0〉 + Ŝ(−r) |0〉], (9)

where

NPA =
{

2√
cosh(2r)

(
cosh(r)√
cosh(2r)

)m

m!Pm

(
cosh(r)√
cosh(2r)

)

+ 2 coshm(r)m!Pm[cosh(r)]

}− 1
2

(10)

is the normalization coefficient.
The Wigner function of the state |ψPA〉 is calculated as [18]

W|ψPA〉(α) = N2
PA{W⊕(α) + 2 Re[W⊗(α)]}. (11)

The first term is

W⊕(α) = W +(α) + W −(α), (12)

where

W ±(α) = ℵ±
m∑

l=0

(m!)2[∓2 coth(r)]l

l![(m − l )!]2

× |Hm−l [−i
√

±2 coth(r)ᾱ±]|2, (13)

with Hm representing the Hermite polynomial, and

ℵ± := eθ± [± sinh(2r)]m

π22m
, ᾱ± := α cosh(r) ∓ α∗ sinh(r),

(14)

where

θ± := ± sinh(2r)(α∗2 + α2) − 2|α|2 cosh(2r). (15)

The second term in Eq. (11) is

W⊗(α) := O−
m

m∑
l=0

(m!)2[−2i coth(r)]l

[(m − l )!]2
Hm−l [i	α−]

× Hm−l [−	α∗
+], O±

m = eθ [±i tanh(2r)]m

π22m cosh(r)
√

1 + tanh2(r)
, (16)

where

	 :=
√

tanh(2r)

sinh(r)
(17)

and

θ := − tanh(2r)(α2 − α2∗) − 2|α|2sech(2r), (18)

with

α± := α∗ sinh(r) ± α cosh(r). (19)

We plot the Wigner function of the state |ψPA〉 in Figs. 1(a)
and 1(b) by varying photon number m. This implies that

as the number of added photons increases, the area of the
resulting sub-Planck structures decreases. The four Gaussian-
like peaks and the chessboardlike pattern are produced by
the term W⊕(α), where the tiles in the chessboard pattern
are sub-Planck structures in phase space. On the other hand,
oscillations that occur far from the phase-space center are
caused by W⊗(α).

In a similar way, subtracting m photons from the superpo-
sition of two SVSs yields

|ψPS〉 := NPSâm[Ŝ(r) |0〉 + Ŝ(−r) |0〉], (20)

where

NPS :=
{

2√
cosh(2r)

(
sinh(r)√
cosh(2r)

)m

m!Pm

(
sinh(r)√
cosh(2r)

)

+ 2[−i sinh(r)]mm!Pm[i sinh(r)]

}− 1
2

(21)

is the normalization coefficient, and the corresponding Wigner
function of this state |ψPS〉 is calculated as [18]

W|ψPS〉(α) = N2
PS{W⊕(α) + 2 Re[W⊗(α)]}. (22)

With

W ±(α) =ℵ±
m∑

l=0

(m!)2[∓2 tanh(r)]l

l![(m − l )!]2

× |Hm−l [−i
√

±2 tanh(r)ᾱ±]|2, (23)

the first term of Eq. (22) is expressed as

W⊕(α) = W +(α) + W −(α). (24)

The second term of Eq. (22) is

W⊗(α) := O+
m

m∑
l=0

(m!)2[2i tanh(r)]l

[(m − l )!]2
Hm−l [−ωα−]

× Hm−l [−iωα∗
+], ω :=

√
tanh(2r)

cosh(r)
. (25)

The relevant Wigner function for the state |ψPS〉 is shown
in Figs. 1(c) and 1(d) for different values of m, and similar
to the PA case, we observe that the area of the sub-Planck
structures decreases when the number of subtracted photons
is increased. Similarly as in the PA case, the term W⊕(α)
produces Gaussian-like peaks and a central pattern resembling
a chessboard consisting of sub-Planck structures in phase
space. And the interference pattern that appears far from the
phase-space origin is caused by the term W⊗(α). Note that an
excess amount of the photons, that is, m 	 1, is required to
induce the sub-Planck structures in the Wigner phase space of
the corresponding states.

The superposed photon-added and photon-subtracted SVSs
presented above can be an alternative to the original com-
pass states [4], which have the same phase-space features but
may have a connection with more feasible experiments. For
example, it has been previously demonstrated that the super-
positions of coherent states could be constructed deterministi-
cally by using third-order Kerr nonlinearity [3]. However, this
method requires the availability of Kerr nonlinearity for an
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FIG. 1. The Wigner function of the PA and PS cases of the superposed SVSs: the corresponding PA cases with (a) m = 5 and (b) m = 12,
and the corresponding PS cases with (c) m = 5 and (d) m = 12. For all cases, r = 0.8.

order, which is actually not applicable to currently available
Kerr media. Also, states of this type are particularly prone to
loss, and because absorption cannot be ignored in currently
available Kerr media, the capacity to extract coherent-state
superpositions before they lose their quantum properties is
severely limited [65]. Hence, adding or subtracting photons
from Gaussian SVSs seems to be a more feasible approach
for creating coherent-state superpositions [36,37].

Adding (subtracting) the same amounts of photons to
(from) SVSs may result in quantum states with different
phase-space characteristics [66], as illustrated in Fig. 1 for
our compasslike states, where the PA case yields smaller sub-
Planck structures than the PS case [18]. Furthermore, these PA
and PS cases also differ significantly in other characteristics,
such as the PA case always holds a higher average photon
number [67,68] and metrological potential [18,67] than the
PS case. The interaction of these compasslike states with a
noisy environment may alter their phase-space attributes, and
a prolonged interaction may destroy all of their critical quan-
tum traits. We believe that our compasslike states may also
perform differently in a noisy environment, and establishing
which of these two quantum states is better at maintaining
their quantum properties against environmental degradation is
an important research topic to address. The topic of interaction
between a quantum system and its environment has been in-
tensively investigated since the beginning [40–43,69–77] and
is a crucial issue to discuss [55]. In this study, we will mainly
focus on the interaction of our quantum states with a heat
reservoir, observing how the decoherence generated by this

interaction modifies our states. Next, we present an overview
of the heat reservoir under consideration in this study.

C. Thermal channels

The influence of damping on the quantum properties of
systems was originally discussed in [40–43,69–77], and it has
been found that such damping channels have a strong impact
on the quantum properties held by a system [42,77]. This
section discusses the model of a finite-temperature thermal
reservoir, which in the present work is referred to as a thermal
channel. The master equation describes the time evolution of
a single-mode state denoted by the density operator ρ̂ in this
thermal channel [40,41],

dρ̂

dt
= κ (n̄ + 1)(2âρ̂â† − â†âρ̂ − ρ̂â†â)

+ κ n̄(2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†), (26)

where κ is the decay rate and n̄ denotes the average number of
thermal photons in the cavity. The first term on the right-hand
side of Eq. (26) describes the transfer through the decay of
photons from the quantum system to the thermal reservoir,
while the second term corresponds to the transfer of excitation
from the nonzero temperature thermal reservoir to the quan-
tum system. For n̄ = 0, Eq. (26) leads to the case describing
the decay of the quantum state to a zero-temperature reservoir
(also known as the photon-loss channel) [50].

The temporal evolution of the Wigner function of a quan-
tum state in the thermal channel given by Eq. (26) can be
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obtained as [49]

W (ζ , t ) = 2

T

∫
d2α

π
W (α) exp

(
−2|ζ − αe−κt |2

T

)
, (27)

where ζ = (x+ip)/
√

2 and T = (1 + 2n̄)T , with T = 1 − e−2κt .
Note that in the following, we utilized a dimensionless version
of the time, τ = κt , for our convenience.

The subsequent sections provide a theoretical analysis
of the interactions between the thermal reservoir covered
in this section and the compasslike states of Sec. II B. To
determine the time evolution of the system prepared in
these compasslike states, we use the exact solution of the
Fokker-Planck equation described through the master equa-
tion in (26) for the Wigner quasidistributions, which are easily
obtained by solving Eq. (27). This solution clearly describes
the impact of the thermal channel on the quantum dynam-
ics of the compasslike states under consideration. Here, we
primarily study the decoherence effects resulting from this
interaction on the sub-Planck structures of these compasslike
states.

The thermal reservoir given by Eq. (26) has been shown to
have a substantial effect on the nonclassical features retained
by a quantum state in phase space; that is, cavity damping
causes decoherence, which swiftly eliminates the oscillations
of the Wigner functions. For example, this phenomenon has
been previously discussed for other quantum states as well
[46–52]. We now discuss the interaction of our quantum states
with a thermal reservoir and explain how decoherence affects
their nonclassical phase-space assets and stability in the pres-
ence of decoherence.

III. INTERACTION WITH ENVIRONMENT

In this section, we address the interaction between the com-
passlike states of Sec. II B and the thermal reservoir provided
in Sec. II C. We discuss in detail how the interaction with the
given thermal reservoir deforms the nonclassical phase-space
regions contained by these compasslike states, specifically
their sub-Planck structures. To accomplish this, we compute
the temporal evolution of the Wigner functions associated
with these states in the thermal reservoir by using Eq. (27),
and our analysis is structured in the following sections. First,
in Sec. III A, we provide the mathematical terms involved in
the temporal evolution of the corresponding Wigner functions
of our compasslike states, and then the discussion about these
temporal evolution of the Wigner functions is provided in
Sec. III B. The impact of the thermal reservoir on the sub-
Planck structures contained by these compasslike states is
covered in Sec. III C, and, finally, in Sec. III D, we provide
a numerical check of the results presented in Sec. III C.

A. Temporal evolution of Wigner functions

This section presents the detailed mathematics related to
the temporal evolution of the corresponding Wigner function
of our stated compasslike states, which will be used later
in our analysis to assess the effects of the heat reservoir on
these states. To make our approach more understandable, we
split the temporal evolution of these Wigner functions into a
number of mathematical terms.

First, consider the Wigner function of the PA case provided
in Eq. (11). The component of temporal evolution associated
to its first term contains W ±(α) that is obtained by using
Eq. (27), and it is given by

W ±(ζ , τ ) = [± sinh(2r)]me
B±

1
A+ − 2|ζ |2

T

π 22m−1T
√

A+

m∑
l=0

m−l∑
k=0

× (m!)2[∓2 coth(r)]l (−G±
1 )kχm−l−k

1

k!l![(m − l − k)!]2(−A+)m−l

× Hm−l−k (i�1C
±
1 )Hm−l−k (i�1D±

1 ), (28)

with A+, B1
±, C±

1 , D±
1 , G±

1 , χ1, and �1 provided in the
Appendix.

Similarly, the component of the temporal evolution of the
Wigner function for the second term of Eq. (11), denoted by
W⊗(α), is calculated as

W⊗(ζ , τ ) = [− tanh(2r)]me
B+

2
A− − 2|ζ |2

T

πT
√

A− cosh(r)22m−1
√

1 + tanh2(r)

m∑
l=0

×
m−l∑
k=0

(m!)2[2i coth(r)]l (−G2)kχm−l−k
2

k! l![(m − l − k)!]2(−A−)m−l

× Hm−l−k (i�2C2)Hm−l−k (i�2D2), (29)

where A−, B+
2 , C2, D2, G2, and �2 are given in the

Appendix.
Similar to the PA case, the Wigner function (22) of the PS

case is modified after interacting with the heat reservoir. Let
us consider its first and second terms, and then describe their
related temporal evolution as illustrated below. The first term
of Eq. (22) modifies as

W ±(ζ , τ ) = [± sinh(2r)]me
B±

1
A+ − 2|ζ |2

T

π 22m−1T
√

A+

m∑
l=0

m−l∑
k=0

× (m!)2[∓2 tanh(r)]l (−G±
3 )kχm−l−k

3

k!l![(m − l − k)!]2(−A+)m−l

× Hm−l−k (i�3C
±
3 )Hm−l−k (i�3D±

3 ), (30)

with A+, C±
3 , D±

3 , G±
3 , χ3, and �3 provided in the Appendix.

Similarly, for the second term of Eq. (22), we have

W⊗(ζ , τ ) = [−i tanh(2r)]me
B−

2
A− − 2|ζ |2

T

πT
√

A2 cosh(r)22m−1
√

1 + tanh2(r)

m∑
l=0

×
m−l∑
k=0

(m!)2[2i tanh(r)]l (−G4)kχm−l−k
4

k! l![(m − l − k)!]2(−A−)m−l

× Hm−l−k (i�4C4)Hm−l−k (i�4D4), (31)

where B−
2 , C4, D4, χ4, and �4 are provided in the Appendix.

All of the constituents described in this section for the
temporal evolution of the Wigner function of the PA and PS
instances will be included in our subsequent analysis.
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FIG. 2. The Wigner function of the PA case in the thermal reservoir, where m = 12 and r = 0.8. (a) n̄ = 0 and τ = 0.01; (b) n̄ = 0.5 and
τ = 0.01; (c) n̄ = 0.5 and τ = 0.03; and (d) n̄ = 1 and τ = 0.1.

B. Fragility of nonclassical features

In this section, we examine the interaction between the
thermal reservoir and the compasslike states introduced in
the previous sections. The temporal evolution of the Wigner
functions associated with the PA and PS cases of these
compasslike states is presented here by incorporating their
components of Sec. III A. Here, the main focus of our ob-
servations is to examine the impact of decoherence on the
nonclassical phase-space structures included by the Wigner
functions of these compasslike states.

First, we include the discussion related to the interaction
between the PA case of our compasslike states and the thermal
reservoir, which is made through the temporal evolution of the
corresponding Wigner functions. This temporal evolution of
the Wigner function for the PA case with terms W ±(ζ , τ ) and
W⊗(ζ , τ ) provided in the expressions (28) and (29), respec-
tively, with

W⊕(ζ , τ ) = W +(ζ , τ ) + W −(ζ , τ ), (32)

represents the temporal evolution of the central chessboard-
like pattern, and the terms denoted by W⊗(ζ , τ ) represent
the temporal evolution of the interference pattern appear-
ing far from the phase-space origin, and, hence, the total
temporal evolution of the Wigner function of the PA
case yields

W|ψPA〉(ζ , τ ) = N2
PA{W⊕(ζ , τ ) + 2 Re[W⊗(ζ , τ )]}, (33)

which we plot in Fig. 2.

Similarly, the temporal evolution of the Wigner function
associated to the PS case is written as

W|ψPS〉(ζ , τ ) = N2
PS{W⊕(ζ , τ ) + 2 Re[W⊗(ζ , τ )]}, (34)

and it is plotted in Fig. 3. The corresponding terms
W⊕(ζ , τ ) = W +(ζ , τ ) + W −(ζ , τ ) with W ±(ζ , τ ) are pro-
vided in Eq. (30), which shows the temporal evolution of
the central chessboard pattern. The second term W⊗(ζ , τ )
in Eq. (34) is supplied in Eq. (31) and depicts the temporal
evolution of the interference originating far from the phase
space.

Figures 2 and 3 present the temporal evolution of the
Wigner functions in the given thermal reservoir for the PA
and PS cases of our compasslike states, respectively. Here,
we include the situations for a zero value of average thermal
photon number (n̄ = 0), also referred to as the photon-loss
channel [50], and a nonzero value of the average thermal pho-
ton number, n̄ 
= 0. We analyze the temporal evolution of the
corresponding Wigner functions in the thermal reservoir for a
short- and long-range time, i.e., for small and large τ values.
Note that n̄ = 0 and τ ≈ 0 represent the case when there is
no interaction between our states and the thermal reservoir
and, consequently, the Wigner functions of the corresponding
PA and PS cases may exhibit similar forms, as illustrated in
Sec. II B.

First, let us consider the scenario when n̄ = 0 and τ =
0.01. We present the corresponding Wigner distributions as-
sociated with the PA and PS cases in Figs. 2(a) and 3(a),
respectively. By comparing these Wigner distributions with
their equivalent noninteracting cases, which are shown in
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FIG. 3. The Wigner function of the PS case in the thermal reservoir, where m = 12 and r = 0.8. (a) n̄ = 0 and τ = 0.01; (b) n̄ = 0.5 and
τ = 0.01; (c) n̄ = 0.5 and τ = 0.03; and (d) n̄ = 1 and τ = 0.1.

Figs. 1(b) and 1(d), we observe that the interaction of the
thermal reservoir with these states results in the decay of the
nonclassical parts of the corresponding Wigner functions. As
we can see, this decay of nonclassical features is readily ob-
servable for the sub-Planck structures contained in the central
chessboardlike pattern. Figures 2(b) and 3(b) represent the
PA and PS cases, respectively, in which the average thermal
photon number of the reservoir is raised to n̄ = 0.5, while the
interaction time remains the same as in the previous case, i.e.,
τ = 0.01. We find that the nonclassical phase-space structures
are much more suppressed than in the preceding situation of
zero-average thermal photon number. This shows that in the
case of nonzero values of the average thermal photon num-
ber, the nonclassical assets existing in the stated compasslike
states degrade significantly faster than in the case of a zero-
average thermal photon number.

As illustrated in Figs. 2(c) and 3(c), for the PA and PS
cases, respectively, monitoring the interaction for a longer
duration, that is, setting τ = 0.03 and maintaining the av-
erage thermal photon number n̄ = 0.5 as in the preceding
cases, leads to the sub-Planck structures being smeared out
of the phase space, and other nonclassical structures are also
weakened well here. Eventually, we raised the interaction
duration to τ = 0.1 and the average thermal photon number
of the reservoir to n̄ = 1, as illustrated in Figs. 2(d) and 3(d),
respectively, for the PA and PS cases of the corresponding
compasslike states. The associated positive peak Wigner dis-
tributions for these examples show that the higher values of
interaction time and the average thermal photon number of

the thermal reservoir entirely remove the nonclassical features
from the phase space.

Moreover, for the case when the interaction time is very
high, i.e., τ → ∞, the corresponding compasslike states are
simply transformed into thermal states with the subsequent
Wigner function, that is,

Wth(ζ ,∞) = 1

π (2n̄ + 1)
exp

(
− 2|ζ |2

(2n̄ + 1)

)
. (35)

As we can see, the corresponding Wigner function of thermal
states follows a Gaussian distribution centered at the phase-
space origin and is unaffected by the squeezing parameter r or
the photon number m. For n̄ = 0, this Wigner function yields
the Wigner function of a vacuum state.

To summarize, we examined the time evolution of the
Wigner functions related to the compasslike states under in-
vestigation in the thermal reservoir. We observed these Wigner
functions at zero and nonzero values of the average thermal
photon number for both short and long time frames. Our
finding indicates that the nonclassical phase-space structures
found in the Wigner functions of these states are dispersed
by this interaction, leading to a quicker decay of these char-
acteristics at non-zero-average thermal photon number in the
reservoir compared to the reservoir of zero-average thermal
photon number. After a very long interaction, these states fi-
nally become thermal states, indicating that the given quantum
states have lost all of their nonclassical components due to the
decoherence sparked by this interaction. For our purposes, we
will focus more on the sub-Planck structures that are enclosed
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FIG. 4. Decay of the central sub-Planck structure for the PS case
(blue solid line) and the PA case (red dashed line): (a) m = 5, r =
0.5, and n̄ = 0; (b) m = 11, r = 0.5, and n̄ = 0; (c) m = 11, r = 0.5,
and n̄ = 0.5; and (d) m = 11, r = 0.8, and n̄ = 0.5.

by the chessboardlike pattern and see how the interaction with
the specified heat reservoir affects these tiny structures. The
cavity parameters, such as the decay time τ and the aver-
age thermal photon number n̄ present in the reservoir, were
previously adopted as τ = 10−2 in experiments to achieve
Fock states with significantly smaller values of n̄ [78,79]. A
more thorough explanation of how the thermal channel affects
the sub-Planck structures of the present compasslike states is
covered in the next section.

C. Deformation of core interference fringes

In the previous section, we discussed the temporal evolu-
tion of the Wigner distributions for the PA and PS scenarios
of our compasslike states in the stated thermal reservoir. The
nonclassical phase-space features included by these Wigner
functions degrade after the interaction with this thermal reser-
voir, as we can observe by visualizing the relevant Wigner
distributions.

We now study the influence of this thermal reservoir on
the sub-Planck structures contained by these PA and PS
cases of the compasslike states. It has been found that sub-
Planck structures of such states are the crucial and notable
component [4,18], so it is necessary to determine how to
preserve these features in order to prevent them from being
destroyed after interacting with such heat channels. Here, we
now explore the effects of the added (or subtracted) pho-
tons (m), the average thermal photon number (n̄), and the
squeezing parameter (r) on the decay rate of these sub-Planck
structures.

First, let us consider the function f (τ ) that evaluates the
rate at which the central sub-Planck structure of our com-
passlike states decays over time, that is,

f (τ ) = W⊕(0, τ )∣∣W⊕(0, 0)
∣∣ , (36)

where |W⊕(0, 0)| denotes the initial height of the cen-
tral peak. In Fig. 4, we plot ln(| f (τ )|) for both the PA
and PS cases of these states. We vary m, r, and n̄ and

discuss how f (τ ) behaves over τ . The red dashed line rep-
resents the PA cases and the solid blue line represents the
PS cases.

First, we discuss the effect of increasing amounts of added
(or subtracted) photons on the decay rate of the sub-Planck
structures of these states. This is demonstrated by comparing
the correlative cases of PA and PS in Figs. 4(a) and 4(b),
where n̄ and r are kept the same but the number m repre-
senting the amount of photons being added (or subtracted)
is different. It is evident that the curves in Fig. 4(b), which
correspond to a higher number of photons added (or sub-
tracted), i.e., m = 11, are falling more quickly than the curves
in Fig. 4(a), which correspond to a lower number of photons
operated, i.e., m = 5. Hence, an increase in the number of
photons added or subtracted may cause the corresponding
sub-Planck structure to disappear more quickly in the thermal
reservoir.

Next, we investigate how varying the average thermal pho-
ton number of the thermal reservoir affects the decay rate
of the sub-Planck structures of the stated compasslike states.
Figures 4(b) and 4(c) present the cases where the values of
m and r are kept constant, but n̄ is varied over each case.
Note that the average thermal photon number has a direct
relationship with the associated temperature of a reservoir
[50]; for example, n̄ = 0 corresponds to the zero-temperature
thermal reservoir, and an increase in n̄ raises the temperature
of the reservoir. Here, we show that the height of the central
sub-Planck structure of both the PA and PS cases falls com-
paratively faster for higher values of n̄; that is, the curve with
n̄ = 0.5 presented in Fig. 4(c) decays faster than its previous
case when n̄ = 0, as shown in Fig. 4(b). This indicates that
an increase in the average thermal photon number of the
reservoir increases the decay rate of the sub-Planck structures
related to the PA and PS cases, i.e., at a higher temperature of
the thermal reservoir, the sub-Planck structures destroy much
faster.

We now examine how the squeezing parameter associated
with these compasslike states affects the decay rate of the
central sub-Planck structures. This is accomplished by com-
paring two cases, as presented in Figs. 4(c) and 4(d). Here, we
vary the values of the squeezing parameter r, while m and n̄
are kept constant across each case. It clearly shows that the
sub-Planck structures of the PA and PS cases decay faster in
the specified thermal reservoir when the squeezing parameter
is increased; that is, the curve shown in Fig. 4(d) with r = 0.8
is decaying faster than that shown in Fig. 4(c) for r = 0.5.

Let us now compare two equivalent PA and PS cases. As
illustrated in Fig. 4, the dashed lines representing the decay
rate of the central sub-Planck structure of the PA case are
approaching zero faster than the decay of an equivalent PS
instance. This implies that in the specified thermal reservoir,
the sub-Planck structures associated with the PA cases of the
defined compasslike states vanish faster than their equivalent
PS cases.

In summary, we examined the decay rate of the sub-
Planck structures associated with the compasslike states of
the present work in the indicated thermal reservoir. We dis-
covered that increasing the average thermal photon number
of the reservoir, or the number of added or subtracted pho-
tons from these superposed states, as well as the amount
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TABLE I. The numerical data for each case in Fig. 4 and their
associated temporal threshold values.

i m r n̄ τ PA
d τ PS

d

1 5 0.5 0 0.34552 0.35321
2 11 0.5 0 0.32775 0.34657
3 11 0.5 0.5 0.19556 0.20573
4 11 0.8 0.5 0.17497 0.20073

of squeezing, may accelerate the decay of these sub-Planck
structures. Furthermore, sub-Planck structures in the PA
cases degrade faster in the thermal channel than in the
PS situations.

D. Approximating temporal thresholds

Here, we roughly estimate the time at which the height
of the central sub-Planck structure of our compasslike states
reaches its minor, i.e., | f (τd)| ≈ 0, where τd is the infor-
mation of the corresponding times and, for convenience, we
denote τ PA

d and τ PS
d as the temporal threshold values for the

PA and PS situations, respectively. We obtain these tem-
poral thresholds for each of the examples given in Fig. 4
and then provide this numerical data in Table I with i =
1, 2, 3, 4, corresponding to Figs. 4(a)–4(d), respectively. In
the following, we compare these temporal thresholds for two
comparable PA (or PS) versus PA (or PS) examples, de-
noted simply as PA-PA (or PS-PS). To make this comparison
more qualitative, we measure the relative change [80] be-
tween two comparable situations using � = (τ i+1

d −τ i
d )/|τ i

d|, with
τ i

d representing the reference value of the temporal thresh-
old times at specific i in Table I, while τ i+1

d indicates the
next value of the temporal threshold in the same column.
The relative change estimates the variations from one num-
ber to another and expresses the change as an increase (for
� > 0) or decrease (for � < 0). In our case, using this ra-
tio, we can roughly estimate how much faster one temporal
threshold is than the other, and now we analyze each case in
the following.

First, let us examine the scenario shown in Fig. 4(a) with
m = 5, n̄ = 0, and r = 0.5, for which we approximate the
corresponding temporal thresholds presented in Table I across
i = 1. For the case presented in Fig. 4(b) with m = 11, n̄ = 0,
and r = 0.5, the temporal thresholds for this case are shown
along i = 2 in Table I. A comparison between these two cases
shows that for a greater value of m, both τ PA

d and τ PS
d are no-

ticeably reduced. In the PA-PA comparison, increasing m = 5
to m = 11 results in a decrease in the temporal threshold of
�PA-PA = 5.14297%, while in the PS-PS situation, the de-
crease in the temporal threshold is about �PS-PS = 1.8799%.
Hence, this indicates that an increase in the number of added
or subtracted photons causes the sub-Planck structures of the
PA and PS instances of the presented compasslike states to
decay more quickly.

Similarly, for the case represented in Fig. 4(c) with m =
11, n̄ = 0.5, and r = 0.5, we showed τ PA

d and τ PS
d values along

i = 3 in Table I, and then for the case shown in Fig. 4(d) with
m = 11, n̄ = 0.5, and r = 0.8, we have τ PA

d and τ PS
d along

i = 4. Here, the comparable situations shown along i = 2 and
i = 3 are compared first, and we observe that the correspond-
ing temporal thresholds are decreased. For these scenarios,
we measure the relative decrease in these temporal threshold
values as �PA-PA = 40.3326% and �PS-PS = 40.6383%. This
implies that the sub-Planck structures of both the PA and PS
cases significantly degrade when the average thermal photon
number of the thermal reservoir rises. Again, we observe a
decrease in the values of τ PA

d and τ PS
d for the cases presented

along i = 3 and i = 4 in Table I with different values of r,
and the relative decrease in the temporal threshold values are
measured as �PA-PA = 10.5287% and �PS-PS = 2.43037%,
indicating that the corresponding sub-Planck structures of
our compasslike states decay more quickly as the squeezing
parameter increases.

Finally, consider two identical PA and PS situations pre-
sented in Table I from i = 1 to i = 4 (see, also, Fig. 4). The
numerical values shown in Table I clearly indicate that τ PA

d <

τ PS
d for each presented case. Furthermore, this is also clearly

visible in Fig. 4, and hence compared to their counterparts
in the PS cases, we may claim that the sub-Planck structures
associated with the PA cases of our compasslike states decay
faster in thermal channels.

In summary, we presented qualitative research to corrob-
orate the findings provided in Sec. III C. In the following
part, we will provide a high-level description of the physical
explanations for our findings.

IV. HIGHLIGHTS AND REMARKS

In this section, we provide the key findings of the present
work and their extensive physical explanations. Let us first
highlight the crucial parts of our investigations. The Wigner
functions of superposed photon-added and photon-subtracted
SVSs may exhibit sub-Planck phase-space structures similar
to the original compass states, and the PA and PS cases of
these compasslike states are the main constituents of this
work. In particular, here, we investigated the interaction of
these compasslike states with a thermal reservoir. The sub-
Planck structures contained by the Wigner functions of these
states (see Fig. 1) were the main concern of the present
analysis, and we particularly observed the effect of ther-
mal reservoir on these features (see Figs. 2–4). It is found
that environmental decoherence aroused by the interaction of
these states with the thermal reservoir results in a washout
of the associated sub-Planck structures and an increase in
the quantity of the photons involved in PA and PS, or the
squeezing parameter, or the average thermal photon num-
ber contained by the reservoir may lead to the faster decay
of these tiny features. Comparatively, the sub-Planck struc-
tures of the PA case of these compasslike states are found
to be more susceptible to environmental decoherence. How-
ever, the sub-Planck structures of these compasslike states
can be preserved in the thermal reservoir for comparatively
higher values of the added or subtracted photons if we
set the average thermal photon number of the reservoir to
nearly zero.

Now we provide a brief physical interpretation of these
findings by comparing them with the previous results; we
start with the well-known coherent-state superpositions that
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are comparable to the states of the present work. Here, we
explain how changing the parameters of a cat state affects
its susceptibility to decoherence. For example, in the case
of macroscopic superposition of coherent states, particularly
cat states [81], higher separation between two coherent states
causes enhancement of the nonclassical phase-space attributes
of such states [81,82]. It has been found that the deformation
of a cat state in a thermal reservoir also depends on the sepa-
ration between the component states; that is, higher values of
the macroscopic parameter may enhance the fragility of such
states against environmental decoherence [50]. Moreover, the
macroscopic parameter of a cat state is directly correlated
with its average photon number and the nonclassical nature
[81,82]; that is, an increase in this parameter directly in-
creases these two quantities. This means that a cat state with
a greater macroscopic parameter holds a greater nonclassical
nature and a higher average photon number, hence being
more susceptible to external decoherence [50]. This concept
directly applies to our quantum states, which we discuss in the
following.

Now consider the compasslike states of the present work.
These compasslike states significantly differ from cat states
in the way that now the number of added or subtracted pho-
tons plays the role of the macroscopic parameter; that is,
when photons are added or removed from SVSs, the non-
classical phase-space features and average photon number
of these states are boosted in a manner similar to cat states
[67,68]. Interestingly, for the same number of photons added
(or subtracted) to SVSs, the resulting quantum states hold
different nonclassical properties and average photon num-

ber; that is, photon-added cases are always richer in these
two quantities [67,68]. This difference between these two
states also has an impact on their phase-space structures;
that is, the sub-Planck structures of the photon-added case
are smaller than their equivalent in the photon-subtracted
case, and hence the photon-added case appears to be more
useful for metrological applications [18]. Holding these dif-
ferences, the photon-added and photon-subtracted SVSs of
the present work also behave differently in the thermal
reservoir; that is, the photon-added case is highly fragile
against decoherence as compared to the photon-subtracted
case.

Finally, we remark that our findings may be useful for
researchers interested in the generation of such states in
cavities, and perhaps our observations may also help in the
development of a technique to protect such states in noisy
channels. Protecting quantum states from the environment has
always been an important topic [54,55]. How to preserve the
specified quantum states of this study in a noisy environment
is an open question that can be addressed in future research.
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APPENDIX: MULTITUDE OF MATHEMATICS

In the following, we present a number of the substitutions employed in Sec. III A.

ζ̄± = ζ cosh(r) ∓ ζ ∗ sinh(r), A± = 4e−2κt

T
2 {e−2τ + 2T [cosh(2r)]±1 + T

2
e2τ }, B±

1 = 8e−4τ

T
3 (|ζ |2 + T e2τ |ζ̄∓|2), (A1)

C±
1 = 8ie−3τ

√±2 coth r

T
2 (ζ̄±∗ + T e2τ ζ̄∓∗), D±

1 = −8ie−3τ
√±2 coth(r)

T
2 (ζ̄± + T e2τ ζ̄∓), (A2)

E1 = 16e−2τ cosh2(r)

T
, G±

1 = ±16 coth r

(
1 + e−2τ cosh(2r)

T

)
, χ1 = E1 − A+, �1 = 1

2
√

A+χ1
, (A3)

�± = ±2sech (2r)|ζ |2 + (ζ 2 − ζ ∗2) tanh(2r), B±
2 = e−4τ

T
3 (8|ζ |2 ± 4T e2τ�±), (A4)

C2 = −8ie−3τ	

T
2 (ζ̄+∗ + T e2τ ζ̄−∗), D2 = 8e−3τ	

T
2 (ζ̄− + T e2τ ζ̄+), E2 = 4e−2τ	2 sinh(2r)

T
, (A5)

G2 = −8i	2

T
[e−2τ + T cosh(2r)], χ2 = E2 − A−, �2 = 1

2
√

A−χ2
, (A6)

C±
3 = 8ie−3τ

√±2 tanh(r)

T
2 (ζ̄±∗ + T e2τ ζ̄∓∗), D±

3 = −8ie−3τ
√±2 tanh(r)

T
2 (ζ̄± + T e2τ ζ̄∓), (A7)

E3 = 16e−2τ sinh2(r)

T
, G±

3 = ±16 tanh(r)

(
1 + e−2τ cosh(2r)

T

)
, χ3 = E3 − A+, �3 = 1

2
√

A+χ3
, (A8)

C4 = −8ie−3τω

T
2 (ζ̄−∗ + T e2τ ζ̄+∗), D4 = 8e−3τω

T
2 (ζ̄+ + T e2τ ζ̄−), E4 = 4e−2τω2 sinh(2r)

T
, (A9)
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G4 = −8iω2

T
[e−2τ + T cosh(2r)], χ4 = E4 − A−, �4 = 1

2
√

A−χ4
. (A10)

As additional information, we now give a few of the important identities for solving mathematical problems involving the
temporal evolution of the Wigner functions in the present case. To remove the eγ st terms from our complex exponential, we
apply the following sum series:

exp(γ1s + γ2t + γ3st ) =
∞∑

l=0

γ l
3

l!

∂2l

∂γ l
1∂γ l

2

[exp (γ1s + γ2t )]. (A11)

Notice the generating function of the Hermite polynomial and its recursive relation; we have

Hn(x) = ∂n

∂sn
exp(2xs − s2)|s=0,

dl

dxl
Hn(x) = 2l n!

(n − l )!
Hn−l (x). (A12)

The following integral formula is mainly used:∫ ∞

−∞
d2β exp [A|β|2 + Bβ + Cβ∗ + Dβ2 + Eβ∗2] = π√

A2 − 4DE
exp

[−ABC + B2E + C2D

A2 − 4DE

]
. (A13)
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