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Parametric model for high-order harmonic generation with quantized fields
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A quantum optical model for high-order harmonic generation is presented in which both the exciting field
and the high-order harmonic modes are quantized, while the target material appears only via parameters. As a
consequence, the model is independent of the excited material system to a large extent and allows us to focus on
the properties of the electromagnetic fields. Technically, the Hamiltonian known for parametric down-conversion
is adopted, where photons in the nth harmonic mode are created during the annihilation of n photons from the
fundamental mode. In our treatment, initially, the fundamental mode is in a coherent state corresponding to large
photon numbers, while the high-order harmonic modes are in vacuum state. Due to the interaction, the latter
modes get populated while the fundamental one loses photons. Analytical approximations are presented for the
time evolution that are verified by numerically exact calculations. For multimode, finite-bandwidth excitation,
the time dependence of the high-order harmonic radiation is also given.
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I. INTRODUCTION

Optical generation of high-order harmonics (HHs) [1,2] is
a key process for the generation of ultrashort electromagnetic
pulses [3]. It is a strong-field phenomenon, in which the
nonlinear material response leads to the emission of radiation
with frequencies close to integer multiples of the central
frequency of the excitation. The effect has been demonstrated
using various material samples [1,2,4–7], and although
the details are different, the exciting field is always orders
of magnitude stronger than the harmonics. Therefore,
besides the traditional models [8,9] for high-order harmonic
generation (HHG), the quantized description (photon picture)
is also of interest. Interestingly, observable signatures of the
back-action of the HH modes on the photon statistics of the
fundamental one were recently demonstrated experimentally
[10,11]. This underlines the significance of field quantization
during the process of HHG.

Considering the quantized description of strong-field ef-
fects, early theoretical models date back to the 1980s [12,13].
In this framework, Ref. [12] provided the first nonperturba-
tive treatment of HHG in the nonlinear Compton process.
For HHG with atomic samples, Volkov states and transi-
tions between them have also been considered [14,15]. More
recently, theoretical models in Refs. [11,16] provided a back-
ground for the corresponding experimental findings reported
in Refs. [10,11]. The emergence of HHG spectra as the ex-
pectation value of the photon numbers in HH modes was

demonstrated in [17–20], and a phase-space description of the
problem was given in Ref. [21]. Explicitly nonclassical fea-
tures of the HH emission have also been predicted for realistic
systems [22], and the consequences of excitation with quan-
tum light have also been investigated [23]. Reference [24]
reported the generation of genuinely quantum states of light—
Scrödinger-cat states. Entanglement and quantum-mechanical
measurement were investigated in Ref. [25], which led to
the concept of intense laser-driven processes as a platform
for quantum information processing. For a recent tutorial on
strong-field quantum electrodynamics, see Ref. [26].

The complete problem, i.e., considering both the excitation
and the HH modes on the quantized level (with the mate-
rial sample obviously treated quantum mechanically), raises
numerical challenges. With reasonable approximations, either
the HH modes [17] or the excitation [21] can be considered
to be quantized, but it is demanding to solve a model which
assumes that both fields are quantized. In order to focus on
the most important quantum-mechanical properties for both
of these fields, we have to use a model in which the number of
different degrees of freedom is systematically decreased. That
is exactly the aim of the current paper, in which, in a rather
general way, the target material appears only via parameters
that can be fitted to the given material system in subsequent,
more specific calculations. In other words, by focusing solely
on the properties of the quantized fields, our work is comple-
mentary to the models [22–24,26] that consider the material
system explicitly.
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II. MODEL

The essence of high-order harmonic generation on the level
of quantized fields is the creation of photons in the HH modes
at the expense of decreasing the number of photons in the
exciting (fundamental) modes. Clearly, in order to obtain a
Hermitian Hamiltonian, we have to take the opposite process
into account as well. That is, by denoting the fundamental
frequency by ω, we can write

H = h̄ω

(
A†A + 1

2

)
+ h̄ω

∑
n

n

(
a†

nan + 1

2

)

+ h̄
∑

n

χn[a†
nAn + an(A†)n], (1)

where an (a†
n) is the annihilation (creation) operator of a mode

with frequency nω while A and A† belong to the fundamental
mode. The coefficients χn are real numbers. The magnitude of
these parameters is to be determined so that experimental re-
sults are reproduced (see the next section and the Appendix).

The model proposed in Eq. (1) is clearly a simplifica-
tion from various points of view. Obviously, the excitation
is generally multimode and has a finite duration. Similarly,
the spectral widths of the high-order harmonics are also finite,
and the HH peaks may not be positioned exactly at integer
multiples of ω. (Specifically, for most samples, harmonics
corresponding to even values of n are missing, as we shall
assume in the following.) Moreover, the dynamics of the elec-
tromagnetic modes (which can be obtained by “tracing out”
the degrees of freedom corresponding to the target material)
can be more complex than the unitary time evolution induced
by the Hamiltonian (1). Additionally, within the framework of
this approximation, the coefficients χn can generally be time
dependent. We will return to this point in the next section.

However, Eq. (1), besides being instructive, clearly cap-
tures the most important features of the HHG process.
Additionally, when only a single harmonic corresponding to
n = 2 is taken into account, (1) is identical to the Hamiltonian
that is used for the description of parametric down-conversion
(when the process 2ω → ω is of interest [27]). That is, Eq. (1)
with appropriate initial conditions is closely related to the
description of fundamental experiments related to photon pair
creation [28,29].

The natural initial condition for HHG is that the state of the
fundamental mode (the mode that corresponds to an intense,
practically classical radiation) is a coherent state, while the
HH modes are in a vacuum state:

|�〉 = |α0〉 ⊗ |0〉n1 ⊗ |0〉n2 ⊗ · · · ⊗ |0〉N , (2)

where N denotes the order of the highest harmonic that we
take into account. In the following all the indices ni are
considered to be odd, and we focus on the plateau region
where the heights of the harmonic peaks are practically the
same. This region is present for both gaseous and solid-state
target materials. In the power spectra, peaks that correspond
to different harmonic frequencies but have equal heights mean
that the same amount of energy is irradiated in the narrow
spectral regions around the different frequencies niω. In order
to reproduce this effect in our model, the expectation values
h̄niω〈a†

ni
ani〉 should be independent of ni. This can be achieved

by choosing appropriate ratios of the parameters χi, as we
shall see in the next section.

III. PARAMETRIC APPROXIMATION

Since the intensity of the HH radiation is known to be
orders of magnitude lower than that of the excitation, we
can assume that the back-action of the HH modes on the
fundamental one is weak. Therefore, as a first approximation,
we can take the expectation value of Eq. (1) in the state
|α(t )〉 = |α0 exp(−iωt )〉, which would be the result of the
free time evolution of the fundamental mode [induced by the
Hamiltonian h̄ω(A†A)]. Using 〈α(t )|α(t )〉 = 1 and the eigen-
value equation A|α(t )〉 = α(t )|α(t )〉, we obtain the following
Hamiltonian in the parametric approximation:

Hp =
∑

n

h̄ωn(a†
nan) + h̄χn

[
a†

nα
n
0e−inωt + an(α∗

0 )neinωt
]
,

(3)

where irrelevant additive constants have been omitted. (Note
that this approximation is common for describing down-
conversion [30]; its generalization to cases in which the
pump mode is not necessarily a coherent state can be found
in Ref. [31].) Additionally, a similar Hamiltonian can be
obtained following, e.g., the approximations introduced in
Ref. [26], but in that case the coefficients χn are time depen-
dent. Along this line, let us note that the calculations that will
be presented in this section are also valid for the χn = χn(t )
case.

As we can see, Hp is a sum of independent terms, each of
which can be treated separately. Thus, dropping the index n
for the moment, we consider the single-mode Hamiltonian

Hp,s = h̄�(a†a) + h̄[a†β(t ) + aβ∗(t )], (4)

where � = nω and β(t ) = χnα
n
0e−inωt .

The time evolution induced by (4) can be solved in a
systematic, standard way [32,33]. However, it can be instruc-
tive to perform a direct calculation. To this end, we use the
Heisenberg picture. The commutator [a, a†] = 1 leads to the
following dynamical equation for the annihilation operator:

ih̄ȧH = h̄�aH + h̄β(t )I, (5)

where I denotes the identity operator and the index H refers
to the Heisenberg picture. This equation can be solved as
follows:

aH (t ) = aH (0)e−i�t − itβ(t )I. (6)

Now let us use the time-evolution operator U, for which, with
any initial state |φ(0)〉, we have U (t )|φ(0)〉 = |φ(t )〉. Clearly,
a = aS = U (t )aH (t )U †(t ), where the explicit notation of the
Schrödinger picture (the index S) has been introduced for
clarity. Since aH (0)|0〉 = 0, we have

aH (t )|0〉 = −itβ(t )|0〉. (7)

Returning to the Schrödinger picture and using U (t )U †(t ) =
I, we can write

U (t )aH (t )U †(t )U (t )|0〉 = −itβ(t )U (t )|0〉. (8)

That is, the time evolution starting from the vacuum state |0〉
[which is the initial condition; see Eq. (2)] leads to a state that
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is an eigenstate of aS:

aSU (t )|0〉 = −itβ(t )U (t )|0〉. (9)

This means that the state U (t )|0〉 is a coherent state with the
parameter −itβ(t ), that is,

|φ(t )〉 = U (t )|0〉 = | − itβ(t )〉. (10)

Before analyzing this result, let us emphasize an important
aspect that has experimental relevance as well. It is related to
the phases of the various harmonics, which have to be locked
relative to each other [3] so that their superposition can lead
to an isolated attosecond pulse or a pulse train [34,35]. Obvi-
ously, the phases of the coherent states (10) corresponding to
different harmonics are linked via the common exciting state
|α0〉, and consequently, the same characteristic holds for the
related electromagnetic field. Although at this point it can be
seen to be a consequence of the parametric approximation, our
numerically exact calculations show that the relative phases of
the different harmonics are practically constants at the initial
stage of the time evolution.

According to the remark after Eq. (3), the calculations
above hold for arbitrary, time-dependent functions χn(t ).
However, for the sake of simplicity and definiteness, from
now on, we will consider effective, constant parameters χn.
As Eq. (10) implies, the photon-number expectation value in
the parametric approximation is given by

〈a†
SaS〉(t ) = t2|β(t )|2; (11)

i.e., it is quadratic in t . Clearly, it cannot hold for infinitely
long times, which is a direct consequence of the approx-
imation that the photon-number expectation value of the
fundamental mode is constant [36] (and the coefficients χn

do not vanish after a certain interaction time). As we shall see
in the next section, for physically realistic interaction times,
this approximation is numerically proven to be acceptable.
Additionally, Eq. (11) allows us to estimate the coefficients
χn that lead to peaks in the power spectra with equal heights.
The corresponding requirement is that h̄�〈a†a〉 is the same
for all HH modes (see the end of the previous section). Rein-
troducing the mode indices and using Eq. (11), we see that

χn

χn′
=

√
n′|α0|n′

√
n|α0|n

(12)

describes the ratio between the χ parameters that correspond
to two different HH modes (n and n′) in the plateau region. In
view of this, the parameter

p = χn
√

n|α0|n (13)

will be kept constant (independent of n) in the following in
order to account for the plateau part of the spectrum. (A dif-
ferent choice for the parameters χn that corresponds to actual
experimental data will be given in Sec. A 2.)

Note that the plateau condition that led to Eq. (13) can be
too strong in the sense that it is based on an approximation,
and the exact time evolution can be slightly different (see
the next section). Additionally, for pulsed excitation, the HH
photons are collected during the whole process, and the con-
dition of having HH peaks with equal heights will be fulfilled

only at the end of the process. Fitting the parameters to differ-
ent target materials may also slightly modify condition (13).
However, at the general level of the current work, this is a
reasonable approximation.

The results in the following will be presented using the
Schrödinger picture without explicit notation (there will be
no index S from now on). Before turning to the numerical
results, let us consider the case of multimode excitation within
the framework above. We assume a pulselike excitation, and
for the sake of simplicity we consider discrete frequencies.
As before, we restrict ourselves to the linearly polarized case.
This means that we assume a (large) quantization volume V,

in which the electromagnetic field with the given polarization
direction can be written as a sum of the contributions of modes
with discrete frequencies. In Eq. (1) we took only a very
limited number of modes into account, but in order to describe
a pulselike excitation, even in free space, we need all the
modes within the spectral range [ωmin, ωmax] of the excitation.
Let us consider the multimode exciting coherent state

|α0〉 = 	⊗
m |α0,m〉, (14)

where the frequencies corresponding to |α0,m〉, which will
be denoted by ωm, fall in the range [ωmin, ωmax]. If we
know, e.g., the experimentally available “wave form” E (t )
of the exciting electric field, the complex parameters α0,m

can be chosen such that without any interaction, the expecta-
tion value of the quantum-mechanical electric-field operator,
〈E〉(t ) ∝ i

∑
m[〈Am〉(t ) − 〈A†

m〉(t )], is the same as E (t ).
In more detail, considering H0 = h̄ωA†

mAm alone (“free
space”), we have |αm〉(t ) = |α0,m exp(−iωmt )〉; thus, the ex-
pectation value 〈Am〉(t ) is given by α0,m exp(−iωmt ), and
consequently, we essentially need to determine the Fourier
components of E (t ) to obtain the required α0,m values. Alter-
natively, working in the velocity gauge, the coefficients α0,m

can be chosen so that the time evolution of the classical vector
potential is reproduced by its quantum-mechanical expecta-
tion value, ensuring that it holds for both the electric and
magnetic fields.

Let us note that the mode expansion is usually consider-
ably more complex than the one given—quite formally—by
Eq. (14), even for a given polarization direction. For example,
the transversal structure of the modes and the mode density
should also be taken into account for a detailed description.
However, in order to see the approximate time evolution of the
HH electric fields, we can consider Eq. (14) to be the initial
state for the modes corresponding to the exciting pulse. Using
the free-space time evolution of the coherent states, we have

E (t ) = 〈E〉(t ) = i
∑

m

E (ωm)[〈Am〉(t ) − 〈A†
m〉(t )]

= i
∑

m

E (ωm)[α0,me−iωmt − α∗
0,meiωmt ], (15)

where the distribution of the frequencies ωm is peaked around

the fundamental one, i.e., ω, and E (ν) =
√

h̄ν
2ε0V (recall that V

denotes the quantization volume). Now, we use an additional
approximation; namely, we assume that each harmonic state
in the expansion (14) populates the corresponding HH modes
(i.e., ωm → nωm) independently. (Clearly, depending on the
mode density, it can be a strong simplification; thus, the fol-

053717-3
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lowing results should be considered in the qualitative sense.)
According to Eq. (10), for the nth harmonic we can write

〈En〉(t ) = i
∑

m

E (nωm)[〈an,m〉(t ) − 〈a†
n,m〉(t )]

= tχn

∑
m

E (nωm)
[
αn

0,me−inωmt + c.c.
]
, (16)

where an,m and a†
n,m correspond to the mode with frequency

nωm and, for the sake of simplicity, χn is considered to be
constant in the frequency range [ωmin, ωmax].

It is instructive to consider an example. For a pulse with
a Gaussian envelope, E (t ) = E0 exp(−t2/τ 2) sin ωt, we have
α0,m ∝ exp[−τ 2/4(ω + ωm)2]. Since E (nωm)/E (ωm) = √

n,

independent of m, by using Eq. (16), we find that the time de-
pendence of 〈En〉 is proportional to t exp(−nt2/τ 2) cos(nωt ),
where the change in the carrier-envelope phase (CEP)
[sin(ωt ) → cos(nωt )] is a result of the factor i in the coherent
state | − itβ(t )〉.

When 〈En〉(t ) is compared to 〈E〉(t ), we see that there
are obvious changes like replacing ω with nω and the n
times decrease of the pulse duration. The change in the CEP
and the multiplicative factor of t are, however, less trivial.
It is important to emphasize that 〈En〉(t ) does not diverge
in the long-time limit as a consequence of the presence of
the Gaussian envelope, 〈En〉(t ) → 0 as t → ∞. That is, in
the framework of the parametric approximation, a pulselike
excitation leads to pulselike HH radiation, but the wave forms
corresponding to the HH modes are not simply scaled copies
of the exciting pulse.

IV. NUMERICAL RESULTS

It convenient to rewrite the time-dependent Schrödinger
equation using dimensionless time τ = ωt as

i
d

dτ
|�(t )〉 = 1

h̄ω
H |�(t )〉, (17)

where the Hamiltonian H is given by Eq. (1) and no addi-
tional approximations are used. Equation (17) tells us that
the independent parameters are χn/ω. Additionally, since the
“weighted photon-number operator”

N = A†A +
∑

n

na†
nan (18)

commutes with H, the problem is finite-dimensional.
More precisely, working in the photon-number eigen-
basis |n0, n1, . . . nN 〉 (for which A†A|n0, n1, . . . nN 〉 =
n0|n0, n1, . . . nN 〉 and a†

kak|n0, n1, . . . nN 〉 =
nk|n0, n1, . . . nN 〉), we see that for an initial state
|�(0)〉 = |M, 0, 0, . . . 0〉, M is the maximal index for the
fundamental mode, and the photon numbers cannot exceed
M/n for the nth harmonic mode either. As a consequence, for
the physically interesting initial state given by Eq. (2), the
only truncation in the photon-number eigenbasis is related
to the representation of the initial coherent state |α0〉. [For
nonzero α0, the inner product 〈n|α0〉 is never zero exactly,
but the photon-number distribution is peaked around |α0|2
(see, e.g., [30]), and the state can be estimated using a finite
number of photon eigenstates with arbitrary precision.]

However, the difficulty of the numerical problem rapidly
increases as we increase the number of modes that we take
into account. The compromise between computation time and
the requirement of accounting for different HH modes led
us to consider two HH modes at a time, which allowed us
to take a few thousand exciting photons into account (i.e.,
|α0| ≈ √

1000). Clearly, there are questions that can be an-
swered only qualitatively by considering no more than a few
modes. The complex structure of the multimode entanglement
that builds up during the process of HHG is definitely one of
these questions. On the other hand, as we shall see, e.g., the
dynamics of the average exciting-mode photon numbers are
less sensitive to this approximation.

Clearly, the photon-number operators A†A and a†
nan com-

mute with the interaction-free Hamiltonian of the system
H0 = h̄ωN . Therefore, when we calculate the time evolution
of the photon-number expectation values, it is only the inter-
action term

HI = h̄
∑

n

χn[a†
nAn + an(A†)n] (19)

that has to be considered, e.g.,

i
d

dτ
〈A†A〉 = 1

h̄ω
〈[A†A, HI ]〉. (20)

This means that it is only the relative magnitudes of the
parameters that are essential. (In particular, if we take only
a single HH mode, n1, into account, the change χn1 → γχn1

does not change the time evolution of 〈A†A〉 in a fundamental
way; it only rescales the time variable τ → τ/γ .) Since, in
order to reproduce the plateau region, the ratio of parameters
χn is fixed [see Eq. (12)], the same scaling property applies
to the general case. However, in order to be specific, in the
following we will use τ ; that is, the unit of time will be
1/ω = T/2π (with T denoting the exciting-mode optical pe-
riod). The parameter p that is defined by Eq. (13) will also be
given for the figures.

A. The initial stage of the time evolution

In the following, we present results obtained by solving
the time-dependent Schrödinger equation (17) numerically.
The initial condition is given by Eq. (2), and we consider
two HH modes. In order to see the behavior of significantly
different modes, we chose n1 = 3 and n2 = 15. The ratio
χ3/χ15 is determined by Eq. (12). In this section we focus
on the initial stage of the time evolution, in which (accord-
ing to the previous section) condition (12) should mean that
3〈a†

3a3〉(t ) = 15〈a†
15a15〉 within a good approximation. As we

can see in Fig. 1, indeed, this condition holds for small values
of τ, and even at the end of the considered time interval, the
relative difference is below 20%. Clearly, this difference is a
consequence of the decreasing number of photons in the excit-
ing mode, which corresponds to the gradual loss of the validity
of the parametric approximation. Since the parameter of the
coherent state corresponding to the nth harmonic contains the
nth power of α0, higher orders are more sensitive to this effect.

The decrease of the exciting intensity can also be seen in
Fig. 2, where the numerically exact probability 	n of having
n photons in a given mode (the photon statistics) is shown.
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FIG. 1. The expectation values of the weighted photon-number
operators, i.e., A†A for the exciting (fundamental) mode (red circles
corresponding to the left vertical axis) and na†

nan for two HH modes
(n = 3: blue open circles corresponding to the right vertical axes;
n = 15: black open squares). The solid black line is a quadratic fit
for the n = 3 case using the interval τ = [0, 4]. Parameters are α0 =√

1500 and p = 0.2.

As we can see, the photon statistics are close to those of
coherent states, especially considering the HH modes. (The
deviation from the Poissonian statistics of a coherent state can
be quantitatively analyzed using the Mandel parameter; see
the next section.) More precisely, the probability 	n, e.g., for
the fundamental mode, is given by

	(0)
n (t ) = 〈�(t )|n〉〈n| ⊗ I ⊗ · · · ⊗ I|�(t )〉. (21)

At this point it is not necessary, but later, it will be useful to
introduce the reduced density matrices. For the nth mode, it

FIG. 2. The photon statistics of the modes indicated by the leg-
end at the end of the time evolution shown in Fig. 1 (τ = 18). The
parameters are the same as in Fig. 1. The left panel shows the HH
modes, while the right one considers the exciting mode, where the
photon statistics of the initial state (α0 = √

1500) is also shown.
Circles denote numerical results; lines corresponding to coherent
states serve as references.

is the trace of the projector |�〉〈�| over the modes different
from n. For example, for n = 0,

ρ (0)(t ) =
∑

ni,i �=0

〈n1, n2, . . . , nN |�(t )〉〈�(t )|n1, n2, . . . , nN 〉.

(22)

Using this notation, 	(0)
n (t ) = Tr(ρ (0)(t )|n〉〈n|).

Focusing on a single mode, the time evolution is often
best visualized in the phase space [37]. First, we can use the
expectation values of the Hermitian quadrature operators,

X = a† + a

2
, Y = i

a† − a

2
, (23)

which, for localized states, coincide well with the motion of
the center of the wave packet. [For example, for a coher-
ent state |α〉, we can easily see that the expectation value
of X (Y ) is the real (imaginary) part of α.] However, in
the general case these expectation values do not contain
the complete quantum-mechanical information that is avail-
able in a (reduced) density operator ρ. On the contrary, the
Wigner function W (α) is in one-to-one correspondence with
ρ. Using the photon-number eigenstate expansion, W is con-
veniently calculated as the expectation value of the Wigner
operator [38,39]:

Ŵ (α) = 1

h̄π
D(α)PD†(α), (24)

where D(α) = exp(αa† − α∗a) is the displacement oper-
ator and P denotes the parity. The function W (α) is
obtained by utilizing the identities PD(α) = D(−α)P and
P|n〉 = (−1)n|n〉 together with the fact that 〈n′|D(α)|n〉
can be expressed using an associated Laguerre function
Ln−n′

n (|α|2) [30].
Figure 3 summarizes the initial stage of the time evolution

in phase space. (Note that in the context of parametric
amplification [40,41], a similar figure with P functions
appeared previously in Ref. [40].) In order to maintain the
clarity of Fig. 3, we set α0 = √

500. For the third harmonic,
the curve (〈X (t )〉, 〈Y (t )〉) is a spiral which is well described
by the real and imaginary parts of the complex number
−itβ(t ) = −itχ3α

3
0e−i3ωt . This supports the approximation

that at this stage of the time evolution, the states of the HH
modes are essentially the coherent states given by Eq. (10).
The corresponding Wigner function is also very close to
the Gaussian that corresponds to | − itβ(t )〉. This holds in
spite of the fact that the exciting mode is not exactly the
coherent state |α0e−iωt 〉, which is a direct consequence of
losing photons that are up-converted to the HH mode.

However, the Wigner function that can be calculated using
ρ (0) is still very close to a Gaussian. That is, in this stage of the
time evolution the state of the exciting mode can be described
well by a coherent state with an index whose magnitude is
decreasing.

B. The complete dynamics

Considering the efficiency and typical duration of the HHG
process, the relative number of exciting-mode photons that are
transferred to one of the HH modes is low; i.e., the photon-
number expectation value for the exciting mode is almost
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FIG. 3. The initial stage of the time evolution in phase space.
Lines correspond to the expectation values of the quadrature oper-
ators X and Y for the fundamental mode (inward-oriented spiral),
and the third harmonic mode [spiral with increasing amplitude in
accordance with Eq. (10)]. The initial points of the trajectories
(τ = 0) are denoted by black triangles. The Wigner functions W (α)
corresponding to the final states (at τ = 4π ) are also shown. (Note
that for a coherent state |α〉, the expectation values of X and Y are
Re α and Im α, respectively.)

constant during the process. However, in order to complete
the physical picture, it is instructive to investigate the time
evolution on a considerably longer timescale.

Figures 4(a) and 4(b) show the photon-number distribution
of the exciting mode and a single (the 15th) HH mode as
a function of time. As we can see, first, the initially nar-
row (Poissonian) distribution gets structured, multiple peaks
appear, and then these peaks become less pronounced, even-
tually approaching a wide distribution. Correspondingly, the
expectation value of the photon-number operators (solid white
line in Fig. 4) converges to constant values. Note that the
initial quadratic increase of 〈a†

15a15〉 is hardly visible in Fig. 4,
and similarly, 〈A†A〉 decreases approximately linearly until it
reaches its minimum, and then a slow convergence towards a
constant value starts. Clearly, since the expectation value of N
given by Eq. (18) is a constant of motion, 〈a†

15a15〉 is a (scaled)
“mirror image” of 〈A†A〉. The positions and actual values
of the extrema depend on which HH mode is investigated.
Figure 4(c) considers the case when two HH modes (n =
13, 15) are coupled to the fundamental one. The expecta-
tion values of the (weighted) photon-number operators as a
function of time show qualitatively the same behavior as in
Figs. 4(a) and 4(b). Quantitatively, since 〈N〉 is still constant,
the decrease of 〈A†A〉 is compensated by the increase of the
sum 13〈a†

13a13〉 + 15〈a†
15a15〉 in this case. This indicates

that for sufficiently large values of |α0|, the dynamics of the
photon-number expectation values (especially that of 〈A†A〉)
do not depend strongly on the number of modes that are
included in an actual calculation.

Explaining all the details of the complex dynamics shown
in Fig. 4 requires a thorough analysis. Considering the qualita-
tive behavior, the time evolution can be divided into two parts.
The initial stage (to τ ≈ 10) is quite intuitive; the photon
distribution of the states remains localized (although super-

FIG. 4. (a) The photon-number distribution 	(15)
n for the 15th HH

mode as a function of time. (b) 	(0)
n as a function of time. The solid

white lines show the photon-number expectation values (which are
also the means of the respective distributions) in both panels. Pa-
rameters are α0 = √

1000 and p = 20.0. (c) The expectation values
of the weighted photon-number operators, i.e., A†A for the exciting
mode and na†

nan for two HH modes (n = 13, 15) as a function of
time. α0 = √

500 in this panel.

Poissonian), and the dominant effect is the up-conversion of
exciting-mode photons. However, since the number of these
photons is finite, this process cannot last forever, and on the
long timescale the flow of energy between the modes will
be bidirectional. Thus, the time evolution is analogous to the
physical background of the “collapse-and-revival” phenom-
ena that are often investigated in the context of a two-level
atom that exchanges energy with an exciting field which is
initially in a coherent state [30]. In view of this, the fringes
that can be seen in Fig. 4 correspond to the phenomenon
of collapse when the eigenstates of the complete system
gradually lose the relative phases that initially led to local-
ized photon-number distributions. Note that the result of this
dephasing will also be apparent in Fig. 6. Our numerical
calculations also show that the discrete frequencies that cor-
respond to the time evolution of the eigenstates can later
rephase again (not shown in the picture). A similar revival pro-
cess was shown to appear during parametric down-conversion
in Ref. [42].

The difference of a photon-number distribution from the
Poissonian statistics is conveniently quantified using the
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FIG. 5. Top: The Mandel parameter (25) as a function of time for
the two modes indicated in the legend. Bottom: Trρ2 for the same two
modes. Parameters are α0 = √

1500 and p = 10.0.

Mandel parameter:

Qn = 〈(a†
nan)2〉 − 〈a†

nan〉2

〈a†
nan〉

− 1. (25)

For a coherent state, Q = 0, while Q > 0 (Q < 0) corre-
sponds to super-Poissonian (sub-Poissonian) distribution. The
top panel of Fig. 5 shows a typical example with the funda-
mental and fifth HH modes. As we can see in the inset, at
the initial stage of the time evolution, Q < 0 for both modes
(indications to this effect can be seen already in Fig. 2), but
later on, the variance of the photon numbers increases (in
agreement with Fig. 4), resulting in large positive values for Q.

Note that both Figs. 5 and 4 suggest that the departure from
the initial coherent state is faster for the fundamental mode
than for the HH modes. This can be proven by a formal series
expansion (see the Appendix), showing that for short times,
Q is a quadratic function of time for the fundamental mode,
while its first nontrivial order is only τ 4 for the HH modes.
This behavior can be used for further analytic approximations.

Finally, we discuss quantum entanglement between the
field modes. Entanglement in strong-field and attosecond
physics has received increasing attention in recent years [43],
including electron-ion [44,45] and electron-electron entangle-
ment [46]. The entanglement between our field modes is weak
at the initial stage of the time evolution since the state of the
system is appropriately estimated by the tensor product of co-
herent states. This is visualized in the bottom panel of Fig. 5,
in which Tr(ρ (0) )2 and Tr(ρ (5) )2 are plotted as a function of
time. [Note that since in this case there are only two modes,
we should have Tr(ρ (0) )2 = Tr(ρ (5) )2, which, as Fig. 5 shows,
is true also in our numerical calculation.] As we can see, at
the beginning of the time evolution Tr(ρ (0) )2 = Tr(ρ (5) )2 is
close to unity, indicating a tensor product state. However, later
this quantity decreases considerably; i.e., strong entanglement
builds up in the long-time limit.

The broadening of the photon-number distribution has ef-
fects in the phase space as well. Figure 6 shows the Wigner
function corresponding to the 15th HH mode in the long-time
limit. As we can see, this is not a localized wave packet; W (α)

FIG. 6. The Wigner function corresponding to the 15th HH mode
at the end of the time evolution (τ = 200) shown in Fig. 4(a). Note
that the (radial) FWHM of a Gaussian Wigner function correspond-
ing to a coherent state is

√
2 ln 2 (see Fig. 3). The parameters are the

same as for Fig. 4.

rather has circular symmetry. This indicates the loss of phase
information during the time evolution (resulting in quadrature
expectation values close to zero, which is not shown). Al-
though, according to Fig. 5, ρ (15) corresponding to Fig. 6 is not
a pure state, weak negative fringes around α = 0 still indicate
quantum-mechanical interference and a nonclassical state.

That is, the time evolution of the system can be summa-
rized as follows: At the initial stage, the state of the system
is close to a tensor product of coherent states. The magni-
tude of the labels for the HH mode coherent states increases
linearly, while for the fundamental mode it decreases such
that the weighted photon number [Eq. (18)] is a constant of
motion. When the photon-number expectation value of the ex-
citing mode becomes considerable lower than its initial value,
this picture qualitatively changes; mode-mode entanglement
builds up, and all photon-number distributions get broader.
Also in the phase space, the Wigner functions become less
localized. In terms of the eigenstates of the system, their ini-
tial superpositions lead to localized phase-space distributions,
but later on, as the phases of the eigenfunctions evolve, the
distributions broaden. Since the problem is finite-dimensional
with a discrete spectrum, the eigenstates can rephase, leading
to partial revivals.

V. SUMMARY

In the current paper we have introduced a model for high-
order harmonic generation in which both the exciting and
harmonic modes are treated as quantized fields. We adapted
the Hamiltonian used for describing the process of paramet-
ric down-conversion to this problem by considering several
HH modes. For an initial state which is the product of a
coherent state (excitation) and vacuum states (HH modes),
it was shown analytically that at the initial stage of the time
evolution all fields are in coherent states. The parameters of
these coherent states were explicitly given and verified by
numerical calculations. For longer times, numerical results
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indicated a deviation from this behavior. The photon-number
distributions get broader, and as shown by Wigner functions,
localization in the phase space becomes less pronounced.
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APPENDIX

1. On the photon-number statistics

In this Appendix we shall study the time evolution of the
photon-number statistics for each mode. From this perspective
it is crucial that the weighted photon-number operator (18)
and the interaction term (22) commute, so the evolution oper-
ator associated with the Hamiltonian (1) factorizes as

U (t ) = e−iωtN e− i
h̄ tHI . (A1)

To proceed further, let Pn denote the parity operator of the HH
mode n. Upon introducing their product,

P =
∏

n

Pn, (A2)

a moment of reflection reveals that

NP = PN, HIP = −PHI , (A3)

from which we find at once that

U (t )P = Pe−2iωtNU (−t ). (A4)

Turning to the photon-number operators, clearly,

[A†A,P] = 0, [a†
nan,P] = 0. (A5)

Consequently, the relationship (A4) means that for all non-
negative integers r we have

P†U (t )†(A†A)rU (t )P = U (−t )†(A†A)rU (−t ), (A6)

and an analogous formula holds for each HH mode, too,
simply by replacing A with an.

Now, our investigation hinges on the fact that the initial
state (2) is compatible with P in the sense that

P|�〉 = |�〉. (A7)

Therefore, by exploiting (A6), along the time evolution of
|�〉 for the rth moment of the photon-number statistics in the
fundamental mode we get

〈�|U (t )†(A†A)rU (t )|�〉 = 〈�|P†U (t )†(A†A)rU (t )P|�〉
= 〈�|U (−t )†(A†A)rU (−t )|�〉.

(A8)

That is, the upshot of our symmetry argument is that each
moment of the photon-number statistics in the fundamental
mode is an even function of time t . Of course, the same
argument applies to the HH modes as well. Glancing at (25),
it readily follows that the time dependence of the Mandel Q
parameter is also even. In particular, around t = 0, the power
series expansions of the moments and the Mandel parameters
contain only terms of even degree.

Keeping in mind the above observations, in the rest of this
Appendix we examine the short-time behavior of the Mandel
parameter for each mode. We perform the calculations in
the Heisenberg picture, but for simplicity we omit the usual
H subscript from the time-dependent operators. With this
proviso, from (1) it is plain that the time evolution of the
annihilation operators is governed by the following system of
differential equations:

Ȧ(t ) = −iωA(t ) − i
∑

n

nχn(A(t )†)n−1an(t ), (A9)

ȧn(t ) = −inωan(t ) − iχnA(t )n. (A10)

Note that, in terms of the auxiliary operators

B(t ) = eiωt A(t ), bn(t ) = einωt an(t ), (A11)

the dynamics takes the somewhat simpler form

Ḃ(t ) = −i
∑

n

nχn[B(t )†]n−1bn(t ), (A12)

ḃn(t ) = −iχnB(t )n. (A13)

Furthermore, for the first two moments of the photon-number
statistics in the fundamental mode we can write

〈A(t )†A(t )〉 = 〈B(t )†B(t )〉, (A14)

〈[A(t )†A(t )]2〉 = 〈[B(t )2]†B(t )2〉 + 〈B(t )†B(t )〉. (A15)

Of course, analogous formulas hold for the HH modes as well.
Since the system displayed in (A12) and (A13) is highly

nonlinear, we do not expect that its solution is expressible in
closed form. Nevertheless, in order to capture the short-time
behavior of the photon-number statistics, it is enough to work
out the first few coefficients of the power series

B(t ) =
∞∑

k=0

t kB(k), bn(t ) =
∞∑

k=0

t kb(k)
n . (A16)

Starting with the study of the fundamental mode, elementary
calculations lead to the formulas

B(0) = A, B(1) = −i
∑

n

nχn(An−1)†an, (A17)

whereas for the second-order coefficient we obtain

B(2) = − 1

2

∑
n

nχ2
n (An−1)†An

+ 1

2

∑
n,n′

n−2∑
s=0

nn′χnχn′ (As)†An′−1(An−2−s)†a†
n′an.

(A18)

Note that on the right-hand sides of the above equations the
operators A and an refer to the annihilation operators in the
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Schrödinger picture. Since for their action on the initial state
(2) we have

A|�〉 = α0|�〉, an|�〉 = 0, (A19)

for the time evolution of the expectation value (A14) of the
photon numbers in the fundamental mode we arrive at

〈A(t )†A(t )〉 = |α0|2 − t2
∑

n

nχ2
n |α0|2n + O(t4). (A20)

Furthermore, utilizing (A15), for the second moment we find

〈[A(t )†A(t )]2〉 = |α0|4 + |α0|2

− t2
∑

n

χ2
n |α0|2n(n2 + 2n|α0|2)

+ O(t4). (A21)

Now, by plugging the above formulas into (25), for the Man-
del parameter in the fundamental mode we end up with

Q0(t ) = −t2
∑

n

(n2 − n)χ2
n |α0|2n−2 + O(t4). (A22)

We complete this Appendix by examining the photon-
number statistics in the HH modes, too. It turns out that,
contrary to the fundamental mode, the quadratic approxima-
tion in the power series (A16) is not sufficient to derive the
leading-order behavior of the Mandel parameter. Neverthe-
less, by going one stage up, for the HH mode n the cubic
approximation of the power series leads to the estimation

Qn(t ) = O(t4). (A23)

However, full control over the leading-order behavior of Qn(t )
does require even the fourth-order terms in (A16); thus, the
calculations are feasible only in the simplest special case of
the second-harmonic generation. Indeed, under the assump-
tion that there is only a single HH mode characterized by
n = 2, one can show that

Q2(t ) = − 4
3 t4χ4

2 |α0|4 + O(t6). (A24)

2. Modeling experimental results

Finally, let us consider a specific experimental example.
Figure 7 shows part of the spectrum of argon gas that was ex-
cited by a pulse with 17.2 mJ energy at λ = 834 nm (duration:
28.1 fs intensity FWHM) using the single cycle laser (SY-
LOS) system of the Extreme Light Infrastructure - Attosecond
Light Pulse Source (ELI-ALPS) [47]. The heights of the HH

FIG. 7. Part of the HHG spectrum of the argon gas (excitation:
17.2 mJ energy at λ = 834 nm; duration: 28.1 fs intensity FWHM.)
The data are normalized so that the height of the 21st HH peak is
unity. The symbols correspond to calculated expectation values of
the weighted photon-number operators n〈a†

nan〉 at time instants when
the photon-number expectation value in the exciting mode becomes
98% (circles), 95% (squares), and 90% (crosses) of its initial value
(which was 1000). For more details, see the main text.

peaks are not equal in this case, but we can choose appropriate
parameters χ19, χ21, χ23, and χ25 to reproduce these peaks.
Clearly, the parameter p given by Eq. (13) cannot be constant
in this case. Instead (according to the calculation in Sec. III),
we choose, e.g.,

χ21

χn
=

√
n|α0|n√

hn × 21|α0|21
, (A25)

where the numerical factors hn are the relative heights of
the corresponding peaks in Fig. 7 (as compared to the 21st
one.) Focusing on n = 19 and 23 (h19 = 0.71, h23 = 0.77),
we performed numerical calculations with α0 = √

1000. We
used Eq. (A25), and like before, we considered two harmonic
modes at a time; i.e., the pairs (21,19) and (21,23) were
investigated. In both cases we found that the behavior of
21〈a†

21a21〉(τ ) and n〈a†
nan〉(τ ) (n = 19, 23) is quadratic in τ

(see Fig 1), and their ratio is close to hn at the beginning of the
time evolution. More precisely, e.g., at the time instant when
the photon-number expectation value of the exciting mode
dropped to 90% of its initial value, the relative difference
between 21〈a†

21a21〉(τ )/[n〈a†
nan〉(τ )] and hn was below 10%.

These calculations indicate a direct connection between
our model and experimental results and demonstrate the flex-
ibility of the approach introduced earlier in this paper.
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