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Cat states are maximally entangled states with applications in metrology and fault-tolerant quantum compu-
tation. Experiments have revealed that Rydberg collective avalanche decoherence acts as a bottleneck for cat
creation with Rydberg atoms. This process initiates after the blackbody-radiation-induced decay of Rydberg
atoms and sets a strong limit on the cat creation time. These findings necessitate the exploration of new ideas to
accelerate current Rydberg cat schemes. To enhance the interaction-to-loss ratio, this paper delves into cat-state
formation in the strong-Rydberg-dressing regime, uncovering the emergence of cat states despite the presence of
complex orders of nonlinearities. This unexplored regime demonstrates the potential for rapid cat-state forma-
tion, which is particularly beneficial for operation in typical two-dimensional lattices in Rydberg laboratories.
In an extreme case, this paper demonstrates that second-order nonlinearity could be isolated under resonant
Rydberg driving if a large number of atoms are accommodated inside the blockade volume. The resonant model
significantly enhances the interaction-to-loss ratio while circumventing the adiabaticity condition, allowing fast
switching of lasers. In addition, this paper presents a method for generating multicomponent cat states, which are
superpositions of m coherent spin states (|m-CSS〉). The maximum value of m is determined by the number of
atoms within the blockade radius, where m = √

N . The states with larger m are more robust against the presence
of multiple orders of nonlinearity in the strong-dressing Hamiltonian and are accessible in a much shorter time
compared to traditional two-component cat states.
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I. INTRODUCTION

The nonlinear interaction resulting from Rydberg dressing
has potential applications in various areas, including spin
squeezing [1–5], the generation of Schrödinger’s cat states
[6–9], and the fields of many-body physics and quantum ma-
terials [10–16]. Until now, efforts to isolate the quadratic order
of nonlinearity have been confined to far-off-resonant laser
driving that weakly dresses the excited states with strongly
interacting Rydberg states, a condition known as the weak-
dressing regime. This quadratic nonlinearity was assumed to
be a coherent candidate for making cat states [7,8]. Cat states
are highly fragile, as a single decay can result in the complete
destruction of entanglement. Experimental endeavors have
encountered a significant obstacle in the form of collective
avalanche loss [16,17], necessitating any cat proposal to oper-
ate within a specific time window to keep the chance of decay
induced by blackbody radiation (BBR) below 20% [16]. How-
ever, the small interaction-to-loss ratio in the weak-dressing
regime does not facilitate the generation of even small cat
states, especially in the typical two-dimensional (2D) lattices
available in most Rydberg laboratories. To address these chal-
lenges, this paper delves into the unexplored strong-dressing
regime to enhance the interaction-to-loss ratio. Our findings
indicate that approaching resonant Rydberg driving signifi-
cantly boosts the operation speed.

*mskhazali@ut.ac.ir

Deviating from the conventional weak-dressing regime
in typical small ensembles (N � 400), the exploration of
stronger-dressing effects amplifies many-body interactions
and unlocks higher orders of nonlinearities. In the context
of employing two distinct Rydberg-dressing methodologies
for cat-state generation [7,8], previous studies have high-
lighted the susceptibility of the Lipkin-Meshkov-Glick model
to mixed nonlinearities [8]. Conversely, our investigation re-
veals that in the Yurke-Stoller framework [7,18] the impact
of higher-order nonlinear terms could be less detrimental.
Taking a different approach to this challenge, this paper
showcases the isolation of quadratic nonlinearity in an ex-
treme scenario, specifically during resonant Rydberg driving
when a substantial number of atoms (N � 400) are enclosed
within the blockade radius. This breakthrough leads to a no-
table enhancement of the interaction-to-loss ratio, marking
a significant stride towards the creation of large entangled
states.

While there are multiple measures for quantumness, an
intriguing figure of merit could be the number of superposi-
tion states that elements could possess simultaneously. Yurke
and Stoller [18] discussed the formation of two-component
cat states |2-CSS〉 under a sole even term of nonlinearity
U ∝ N2k

e . This state is equivalent to the superposition of two
coherent spin states pointing in opposite directions on the
Bloch sphere. They also highlighted the formation of four-
component cats |4-CSS〉 under an isolated odd order U ∝
N2k+1

e . This paper extends that model to create a superposition
of m coherent spin states |m-CSS〉 with m �

√
N , where N is
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the number of atoms. Our numerical study reveals that as we
move towards a strong-dressing regime, cat states with larger
m experience less fidelity reduction and have a much shorter
creation time than two-component cat states. The application
of the |m-CSS〉 state in metrology yields a signal that is pe-
riodic in the metrological phase divided by m, reducing the
inversion region of the dynamic range of the signal.

Despite the benefits of the strong-dressing regime, the ab-
sence of an analytical model describing the interaction profile
at this regime [5] has hindered mean-field studies on this
unexplored range of parameters. Appendix A investigates an
analytic form of the interaction profile involving two- and
three-body interactions, providing insights into the effects
of lattice geometry and controlling parameters on enhancing
specific orders of nonlinearities. Furthermore, it opens new
opportunities to study the dynamics of Rydberg-dressed Bose-
Einstein condensates [11,12] under a stronger-dressing regime
using mean-field theory.

This paper is structured as follows: Sec. II elucidates the
traditional concept of Rydberg dressing and explores the re-
lation between dressing strength and the order of nonlinear
terms within the Hamiltonian. In Sec. III, the formation of
|m-CSS〉 states is expounded upon. Furthermore, Sec. IV
delves into the benefits derived from transitioning from weak-
to strong-dressing techniques. The formulation of the Kerr
Hamiltonian for resonant Rydberg driving and its application
in cat-state generation are detailed in Sec. V. Last, an analysis
of many-body interactions under strong dressing is provided
in Appendix A.

II. DRESSING INTERACTION

When all atoms are accommodated within the blockade
radius, the dressing laser connects the state without Rydberg
excitation |ψ0〉 = ⊗i|φi〉 (where φ ∈ e, g) to a state where
only one atom in the |e〉 level is excited to the Rydberg state
|ψ1〉 = ∑

i |φ1 · · · ri · · · φN 〉 with a collective Rabi frequency
of

√
Ne�r and laser detuning �. Here Ne represents the

number of atoms in the excited state |e〉. During the Rydberg-
dressing process, the collective light shift experienced by the
ground dressed state can be obtained as

Hexact = �

2

⎛
⎝1 −

√
1 + N̂e�2

r

�2

⎞
⎠. (1)

This light shift can be Taylor expanded in the weak-dressing
regime ( Ne�

2

�2 � 1) as

Hw = − 1

4

N̂e�
2

�
+ 1

16

N̂2
e �4

�3
− 1

32

N̂3
e �6

�5

+ 5

256

N̂4
e �8

�7
+ O

(
N̂5

e

)
. (2)

Going to stronger dressing with larger Ne
�2

�2 activates the
higher orders of nonlinearity and raises the many-body inter-
action terms in the Hamiltonian (see Appendix A).

The binary-dressing-interaction profiles are presented by
solid lines in Fig. 1(b). They are derived from the steady state
of the master equation encountering laser couplings, dipo-
lar Rydberg interaction and spontaneous emission from the

FIG. 1. Transition from weak to strong Rydberg dressing and
resonant driving. (a) Level scheme; the spin of atoms consists of
|g〉 and |e〉 electronic states. The desired Kerr-type interaction is
generated by off-resonant laser driving of atoms in the |e〉 state to
the Rydberg level. This paper studies the Kerr-type interaction in
the transition from weak � � � to the strong-dressing regime � �
� and introduces the resonant-driving � = 0 Kerr Hamiltonian.
(b) The binary-dressing-interaction profile derived from the steady
state of the master equation. For both weak and strong dressing, the
homogeneous soft core is provided for interatomic distances below
Rb/2. The blockade radii in the weak- and strong-dressing regimes
are defined by Rb = (C6/�)1/6 and Rb = (C6/�)1/6, respectively.
The interaction is scaled by U0, which is the exact dressing inter-
action for totally blockaded atoms.

Rydberg level (see Appendix B). Dressing interaction features
a soft core within the blockade radius Rb over which the inter-
action makes the two Rydberg excitations out of resonance
with the laser and forms the effective interaction potentials of
Eq. (1). The blockade radius in the weak and strong dressing
regimes are defined by Rb = (C6/�)1/6 and Rb = (C6/�)1/6

respectively. In the extreme limit of strong dressing where
� > �, the interaction would be comparable with the Rabi
frequency around Rb and causes blockade leakage. This pop-
ulates more than one Rydberg atom featuring strong dipolar
interaction, represented by an interaction peak in the blue line
in Fig. 1(b). At further distances the 1/r6 van der Waals tail
could be recognized in both weak and strong dressing. The
dashed lines in Fig. 1(b) represent the interaction of three
atoms on an equilateral triangle with side length r.

III. MAKING SUPERPOSITION OF m-CSS

A coherent spin state (CSS) is defined as a direct product
of single-spin states [19],

|θ, φ〉 = ⊗N
i=1[cos θ |g〉i + sin θeiφ |e〉i], (3)

where all the spins are pointing in the same direction and φ

and θ are the angles on the (collective) Bloch sphere. The CSS
can also be represented as [19]

|η〉 = |θ, φ〉 = (1 + |η|2)−N/2
N∑

Ne=0

ηNe
√

C(N, Ne)|N ; Ne〉,

(4)

where η = tan(θ/2)e−iφ , C(N, Ne) ≡ ( N
Ne

), and |N ; Ne〉 =
1√

C(N,Ne )

∑N
i1<i2<···<iNe

|g1 · · · ei1 · · · eiNe · · · gN 〉 is the Dicke
state of Ne excited atoms, where |N ; Ne〉 is an alternative rep-
resentation of the |J M〉 basis with N = 2J and Ne = J + M.
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FIG. 2. The physics of multicomponent cat creation: The
quadratic interaction term leads to varying rotation speeds around Jz

for different |Ne〉 elements, spanning the range Nmax
e − Nmin

e = 2
√

N .
This causes (a) stretching of the initial CSS over the equator, (b) and
(c) constructive and destructive interferences as the squeezed state’s
head and tail meet and pass through each other, and (d) formation of
the first m-CSS superposition after a rotation difference of �φ = 4π ,
allowing for interference to spread all over the equator.

Considering the time evolution of the CSS [Eq. (4)] under
the dressing Hamiltonian [Eq. (2)], the linear term in Ne pre-
serves the CSS and generates only a rotation around Jz, while
the quadratic term χN2

e causes spin-squeezing over the Bloch
sphere, see Fig. 2. After the CSS is squeezed over the equator,
it starts to form a superposition of m-CSSs at tm = 2π

mχ
:

|m-CSS〉 = 1√
m

m∑
k=1

eiαk

∣∣∣∣θ = π/2; φ = k
2π

m
+ φ0

〉
. (5)

The values of αk are obtained numerically in Appendix D.
Continuing the interaction, the revival of the initial CSS can
be observed at t1. This revival can be used as proof of the

successful creation of a quantum superposition at tm since a
statistical mixture of CSSs at tm would evolve into another
mixture of separate peaks (see Appendix C and Fig. 6).

For the weak dressing, where the third order of nonlinearity
is negligible, the operation time tm = 2π/mχ will perfectly
match the numerical simulation used in Fig. 3. Going to strong
dressing, the operation time will be longer than tm. This is
because the third order of nonlinearity has the opposite sign
of the second order [see Eq. (2)], which makes the process
a bit slower. However, the trend remains positive in terms of
enhancing coherence.

Here we discuss the physics that determines the maximum
number m of CSSs that could be formed in a superposition
state. The population difference of Ne in the initial CSS is
given by Nmax

e − Nmin
e = 2

√
N . Hence, the quadratic term of

interaction will cause different rotation speeds around Jz for
different |Ne〉 elements of the initial CSS in Eq. (4). This will
stretch the initial CSS over the equator. After the head and
tail of the squeezed state meet and go through each other,
they form constructive and destructive interferences, which is
shown as the superposition of CSSs (see Fig. 2). Hence, the
minimum required time to form the superposition is defined
by the time that the head and tail of the squeezed state are
stretched over �φ = 4π to spread the interference all over the
Bloch sphere equator. Considering the difference in rotation
speed under the quadratic term, the minimum dressing time
that is required for the superpositions to appear will be tmin =

4π
(Nmax

e −Nmin
e )�4/16�3 = 4π

2
√

Nχ
. The |m-CSS〉 will be formed only

if its operation time tm = 2π/mχ occurs after the spread of
interference all over the equator at tmin (see Fig. 2). Hence,
the maximum number of m-CSS superpositions that can be
formed will be determined by the number of spins in the
operation m = √

N . One should note that this argument is de-
rived in the weak-dressing regime and going to strong dressing
changes the operation times.
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FIG. 3. Transition from weak to strong dressing. (a) The population loss over the |m-CSS〉 generation Pr�rtm is plotted as a function
of dressing strength. Here constant detuning �/2π = 0.02 GHz in addressing the |53P3/2, 3/2〉 state and N = 48 atoms are considered.
At very weak dressing with quadratic nonlinearity, the interaction-to-loss ratio scales by �2/4�, and hence, the loss drops by �−2. In the
intermediate regime, the counterrotation corresponding to the third order of nonlinearity slows the process down and hence reduces the loss-rate
reduction. Later, the Rydberg population in the blockade radius reaches the maximum limit of 1 while the interaction keeps enhancing ∝�

in the strong-dressing regime, leading to loss suppression scaling by �−1. (b) The Poissonian probability of not having any BBR-induced
depopulation PBBR(0) is plotted as a function of dressing strength. Going to resonance is important, especially for large-N cat states, to ensure
the operation time finishes before the collective avalanche loss starts. (c) The outcome infidelity as a function of dressing strength. States
with larger m are less sensitive to the effects of higher-order nonlinearities. The cryogenic environment with T = 77 K is considered in the
calculations in (a) and (b).
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IV. ADVANTAGE OF STRONG DRESSING

Cat states are extremely fragile with respect to deco-
herence, where a single decay leads to total destruction of
entanglement. The decoherence is the bottleneck that limits
cat states to tens of atoms in atomic systems. For constant
ensemble size N , going to strong dressing with larger �/�

is favorable for enhancing the interaction-to-loss ratio. To
make a simple argument, let us consider the weak-dressing
regime, where the dominant term of interaction in the soft
core is χN2

e = N2
e �4/16�3, while the loss rate from the

Rydberg population Pr = Ne( �
2�

)2 is given by Prγr , with γr

being the loss rate from the Rydberg levels [20]. Considering
the symmetry of states around the Bloch sphere’s equator, Ne

can be replaced by N/2 in this scaling argument. Hence, the
interaction-to-loss ratio scales by N�2

4��
. When transitioning to

strong dressing, it becomes necessary to incorporate higher
orders of expansion in Eq. (2). While the inclusion of odd
terms may cause a deviation in the scaling from the specified
interaction-to-loss ratio, the overall trend still favors moving
towards strong dressing, as demonstrated below.

Figure 3(a) plots the Rydberg depopulation over the
|m-CSS〉 generation as a function of dressing strength. For
simplicity both the spontaneous emission and BBR-induced
depopulation are considered as loss terms, which adds up to
a 4.8-ms−1 decoherence rate for |53P3/2, 3/2〉. Considering
a 2D lattice with lattice constant a = 532 nm [21], the laser
detuning of �/2π = 20 MHz accommodates N = 48 atoms
well within the soft-core area Rb/2. At very weak dressing
with quadratic nonlinearity the interaction-to-loss ratio scales
by �2/4�, and hence, the loss drops by �−2. In the inter-
mediate regime the counterrotation effects of the third order
of nonlinearity suppress the interaction and hence slow down
the rate of loss reduction. At stronger dressing, the Rydberg
population in the blockade radius reaches the maximum limit
of 1, after which the loss rate remains constant. This happens
while the interaction continues to get enhanced ∝� in the
strong-dressing regime [see Eq. (8)], leading to loss suppres-
sion that is scaled by �−1.

Other than the spontaneous emission and BBR-induced
depopulation of Rydberg states discussed above, experiments
[16,17] have observed a collective decoherence that is
triggered by the BBR-induced depopulation of the Rydberg

atoms. The BBR-induced depopulation to neighboring n′P
Rydberg states invokes a strong resonant dipolar interaction
with the targeted nS state, resulting in an anomalous
line broadening. This further enhances the depopulation
rate, leading to a collective avalanche decoherence.
Figure 3(b) plots the Poissonian probability of not losing
any Rydberg atoms due to the BBR-induced depopulation
PBBR(0) = exp(−Pr�BBRtm), where the value of �BBR can
be found in [20]. Reference [16] observed that the avalanche
decoherence starts only when PBBR(0) drops below 82%.
Figure 3(b) shows the reduction of PBBR(0) while going
towards the strong dressing. Going towards resonance would
be vital for operations with large numbers of atoms in dense
three-dimensional lattices.

While the transition to a strong-dressing regime is crucial
for preventing decay over large-scale cat creation time, the
mixed nonlinear terms lead to deviations from the targeted
state. Figure 3(c) compares the system state |ψ (t )〉 evolving
under the exact Hamiltonian from Eq. (1) with the targeted
state |m-CSS〉 defined in Eq. (5). The fidelity is determined
by optimizing the operation time and the parameters of the
targeted state using

F = max
αk ,φ0,t

∣∣∣∣∣〈ψ (t )| 1√
m

m∑
k=1

eiαk

∣∣∣∣θ = π/2; φ = 2πk

m
+ φ0

〉∣∣∣∣∣
2

.

(6)

Figure 3(c) exclusively considers the effects of mixed nonlin-
ear terms without accounting for decoherence. The states with
larger m components are more robust against the presence
of mixed nonlinearities. This is quantified for the cases of
|2-CSS〉 and |6-CSS〉 in Fig. 3(c) but could not be calcu-
lated for larger m due to the large dimension of optimization.
However, the Q function of |33-CSS〉 with N = 1000 atoms
generated under resonant driving in Fig. 4 shows a high-
fidelity outcome. Some examples of the Husimi Q function
in the weak- and strong-dressing regimes are plotted in Fig. 6
in Appendix D.

While transitioning to a stronger dressing changes the out-
come from the desired states, the sharp diving of the operation
time and dissipation that allows the generation of a cat state in
the first place outweigh the deviation from an exact |m-CSS〉
with large m. Consequently, depending on the application,

FIG. 4. Cat formation under the resonant-Rydberg-driving Hamiltonian in Eq. (7) applied on N = 1000 atoms.
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enhancing the coherence or size of the entangled state may
justify the reduction in fidelity.

V. GOING TO RESONANCE

Resonant-Rydberg-driving Kerr Hamiltonian. As ex-
plained above, approaching the resonance regime for the
Rydberg exciting laser improves the interaction-to-loss ratio.
This section discusses the cat generation under the resonant
Rydberg excitation. Accommodating all the atoms inside the

blockade radius, the effective interaction is given by

Hres =
√

N̂e�, (7)

where Ne is the number of atoms in |e〉 state. Having a large
number of atoms and initializing the CSS on the equator of the
Bloch sphere, the average number of excited atoms N̄e = N/2
is much larger than the deviation N̂e − N̄e, which is given by
the radius of CSS, i.e.,

√
N . Hence, in the regime of a large

number of atoms N/2 � √
N , the resonance Hamiltonian of

Eq. (7) can be expanded:

Ĥres = �
√

N̄e

(
1 + N̂e − N̄e

N̄e

)1/2

= �
√

N̄e

(
1 + N̂e − N̄e

2N̄e
− (N̂e − N̄e)2

8N̄2
e

+ (N̂e − N̄e)3

16N̄3
e

− · · ·
)

≈ �
√

N̄e

⎡
⎣ 5

16
+ 15

16

N̂e

N̄e
− 5

16

(
N̂e

N̄e

)2

+ 1

16

(
N̂e

N̄e

)3

− · · ·
⎤
⎦ ≈ �

[
5

16

√
N

2
+ 15

16

√
2

N
N̂e − 5

16

√
23

N3
N̂2

e + 1

16

√
25

N5
N̂3

e

]
.

(8)

As an example, the formation of a few |m-CSS〉 with
N = 1000 atoms under the resonant-driving Hamiltonian in
Eq. (7) are plotted in Fig. 4. The cat creation times obtained
from the numerics are χ res

2 × [t33, t27, t21, t14, t7, t4, t3, t2] =
[0.236, 0.289, 0.373, 0.563, 1.132, 2, 2.655, 4.061], which
are normalized by the dominant order of nonlinearity

χ res
2 = 5

16

√
( 2

N )3�. The |33-CSS〉 state is formed
17 times faster than the conventional |2-CSS〉 cat
state.

Given that the ensemble is located within the blockade
radius, the Rydberg population is fixed at 1 in the resonant-
driving model. Consequently, the loss can be calculated as
the product of the operation time and the Rydberg loss rate.
For instance, let us consider the resonant driving of N =
1000 87Rb atoms to the |80S1/2〉 state with a Rabi frequency of
�/2π = 70 MHz. In the cryogenic environment at T = 77 K,
the Rydberg decay rate is �r = 2400 s−1. Numerically, the
operation times for creating the |33-CSS〉 and |2-CSS〉 states
are found to be t33 = 0.236/χ res

2 and t2 = 4/χ res
2 , respectively.

The corresponding Poissonian probabilities of not losing any
atoms over operation times t33 and t2 are 98% and 66%,
respectively. In a scaling argument, as the principal quantum
number increases, the Rydberg decay rate is suppressed as
�r ∝ n−3, while the interaction is enhanced as C6 ∝ n11, al-
lowing for stronger laser driving and faster operation for a
constant blockade radius. Consequently, the atom loss over cat
creation scales inversely with the principal number as n−14 for
a constant atom number N .

A note on adiabaticity. Considering the off-resonant Ry-
dberg dressing as explained in Sec. II, the laser couples two
states |ψ0〉 and |ψ1〉 with collective Rabi frequency

√
Ne�r

and detuning �. The time evolution of dressed eigenstates
|ψ̃±〉 is given by

i
∂

∂t

(|ψ̃−〉
|ψ̃+〉

)
=

(
E− −iθ̇/2

iθ̇/2 E+

)(|ψ̃−〉
|ψ̃+〉

)
, (9)

where E± = �
2 (1 ±

√
1 + Ne�2

�2 ) are the energies of ground

and excited dressed states and θ̇ =
√

Ne��̇−√
Ne��̇

Ne�2+�2 . In the case
of nonzero detuning, it is important to keep the off-diagonal
terms small to minimize the population scattering to the other
eigenstate, which is quantified by θ̇2/E2

+. The scattered popu-
lation will remain in the Rydberg state after switching of the
laser, which results in the distortion of cat states. On the other
hand, the off-diagonal terms will not appear when the laser
becomes in resonance with the Rydberg level. This will bring
the advantage of fast switching of the laser in resonant driving.

VI. CONCLUSION

In the thriving field of Rydberg technology [22–30], Ryd-
berg dressing plays an important role in the implementation
of quantum matters and making large-scale entanglement.
This paper delves into the generation of multicomponent cat
states through both strong Rydberg dressing and resonant
Rydberg driving, departing from previous research that pri-
marily focused on the weak-dressing regime to isolate the
second order of nonlinearity. By approaching resonance, the
interaction-to-loss ratio is enhanced, enabling successful oper-
ation termination before the onset of BBR-induced collective
avalanche decoherences. The findings here demonstrate that
resonant Rydberg driving can effectively isolate quadratic
nonlinearity with a large number of atoms accommodated
within the blockade volume.

Moreover, this paper introduced a method to create mul-
ticomponent cat states on significantly shorter timescales
compared to traditional two-component cat states. These
states exhibit reduced sensitivity to mixed nonlinearity orders,
making them an attractive option for generating large-scale
entangled states crucial for applications in metrology and
quantum error correction. Last, Appendix A presents a per-
turbative analytic formula for strong-dressing interactions,
suggesting the optimization of lattice geometry to resonate
and enhance specific orders of nonlinearity.
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APPENDIX A: MANY-BODY INTERACTION
AT STRONG DRESSING

To investigate the strong-dressing regime in mean-field
formalism, one needs an analytic formula for the interac-
tion profile. The profile of weak-dressing interaction has
been formulated in a perturbative approach that covers up
to the two-body interaction [12]. Going to stronger dressing,
the effects of higher-order terms would be magnified. This
Appendix looks into the analytical profile of the interaction
up to the third order of nonlinearity.

Considering N atoms in an optical lattice, for each pair of
atoms excited to the Rydberg level |r〉 and separated by xi j =
xi − x j , where xi is the position of the ith atom, the binary
interaction is Vi j = C6/x6

i j . Here the quantization axis is con-
sidered to be perpendicular to the lattice plane to preserve the
isotropy of interaction. The dressing potential U (x1 · · · xNe ) of
the state |ψ (x1 · · · xNe )〉, with Ne atoms in |e〉 being dressed
with Rydberg level |r〉, is calculated under the condition of
( �

2�
)2 � 1 by applying perturbation theory:

U

�
|ψ〉 =

⎛
⎝ N∑

i=1

σ̂ i
rr + 1

�

∑
i< j

Vi j σ̂
i
rr σ̂

j
rr

⎞
⎠

+ �

2�

N∑
i=1

(
σ̂ i

re + σ̂ i
er

) |G〉, (A1)

where the first and second parentheses separate the unper-
turbed and perturbed parts of Hamiltonians.

The contributions from the second- and fourth-order per-
turbations are calculated as [12]

U (2) = − �2

4�
N,

U (4) = �4

16�3

∑
i< j

[
1(

1 + Vi j

2�

) − 1

]
, (A2)

where the former is the sum of the single-atom light shift and
the latter encounters the two-body interactions among atoms.
In the limit of strong interaction (V → ∞) these terms repro-
duce the first two terms of collective light-shift expansion in
Eq. (2).

Going to a stronger dressing regime with a non-negligible
third order of nonlinearity (Ne

�2

4�2 )3, the sixth-order perturba-
tion must be taken into account. Here different configurations
of the six photon transitions in the perturbative ladder are
plotted in Fig. 5, which includes the two-body and three-body
interactions. The sixth correction of the interaction profile is
given by

U (6) = �6

26�5

{
−2N3 +

[
N∑

k=1

(1)

] ∑
i �= j

4

2 − Vi j/�

+
∑
i �= j

2

2−Vi j/�

⎛
⎝∑

k �=i

2

2−Vik/�
+

∑
k �= j

2

2−Vjk/�

⎞
⎠×2

−
∑
i �= j

2

2 − Vi j/�

⎛
⎝∑

i

1

2 − Vi j/�
+

∑
j

1

2 − Vi j/�

⎞
⎠

−
∑

(i jk)�=

(
2

2 − Vi j/�
+ 2

2 − Vik/�
+ 2

2 − Vjk/�

)2

× 1

3 − Vi j/� − Vik/� − Vjk/�

}
. (A3)

Comparing the terms in Eqs. (A2) and (A3), one can see that
the ratio of �/V in a lattice with a given geometry could be
used as a knob to control the relative strengths of different
nonlinear terms. For example, expanding this trend to higher
orders, one can see that in a square (triangle) lattice, the fourth
(sixth) order of nonlinearity will get enhanced around � =
�. This could be instrumental in isolating the fourth order
of nonlinearity with potential applications in cat-state error-
correction codes [31].

APPENDIX B: NUMERICAL CALCULATION
OF THE INTERACTION PROFILE

The level scheme depicted in Fig. 1(a) pertains to three-
level rubidium atoms undergoing off-resonant excitation to
the highly excited Rydberg state |r〉. The laser-driving Hamil-
tonian for the ith atom is given by Hi = �

2 (σ̂ i
re + σ̂ i

er ) − �σ̂ i
rr ,

where σα,β = |α〉〈β| and � and � represent the Rabi fre-
quency and detuning of the transition, respectively. The van
der Waals interaction between Rydberg atoms, denoted as
Vi j = C6/r6

i jσ
i
rrσ

j
rr , is a function of the interatomic distance

ri j . The total multiatom dressing Hamiltonian is expressed as
Hd = ∑

i Ĥi + ∑
i< j Vi j . The dynamics of the system under

the Rydberg-dressing interaction is governed by the master
equation, which can be represented as

∂t ρ̂ = −i[Hd , ρ̂] +
∑

i

Li(ρ̂), (B1)

where the Liouvillian operator Li(ρ) = cρic† − 1/2(c†cρi +
ρic†c) in Lindblad form describes the single-particle dissipa-
tion affecting the internal state dynamics, with c = √

γr |e〉〈r|
governing the spontaneous emission from the Rydberg state.

Upon considering the steady state ρ from Eq. (B1), the
interaction can be calculated as

U = Tr[ρHd ]. (B2)

Figure 1(b) illustrates the dressing interaction profile for two
atoms separated by r (solid lines) and three atoms arranged in
an equilateral triangle with sides of length r (dashed lines) for
various dressing strengths. To present the effective interaction,
the background interaction-independent light shift U (r = ∞),
which generates only a constant phase, is subtracted. The
blockade radius is defined as Rb = (C6/�)1/6 in the weak-
dressing regime and as Rb = (C6/�)1/6 in the strong-dressing
regime. It is evident from Fig. 1(b) that in both weak and
strong dressings, as long as the atoms are within the soft core
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FIG. 5. Perturbation paths used to calculate U (6) in Eq. (A3). Indices i, j, and k label different atoms excited to the Rydberg state.

with a radius of Rb/2, the interaction becomes independent of
atomic distance and is defined by solely the collective light
shift, characterized by the number of atoms and laser-driving
parameters.

APPENDIX C: ASSESSING COHERENCE THROUGH
EVOLUTION ANALYSIS

While the Wigner representation effectively visualizes the
coherence of superposition in photonic systems through the
presence of fringes in phase space, this method cannot be di-
rectly applied to coherent spin states (CSSs) in atoms. Instead,
the Husimi Q function offers a convenient means of visualiz-
ing quantum states by projecting them onto the coherent spin
states |θ, φ〉, where the parameters span the Bloch sphere.
However, it is important to note that the Husimi Q function
alone does not inherently distinguish a cat state, representing
a coherent superposition state, from a mixed state. To assess
coherence, one can examine the retrieval of a single CSS
under the dressing interaction at t1, as discussed below.

Let us analyze the evolution of the CSS under the second-
order nonlinearity χ N̂2

e . As previously described, the initial
CSS |η〉 evolves into (e−iπ/4|η〉 + eiπ/4|−η〉)/

√
2 after dura-

tion of dressing t2 (recall tm = 2π
mχ

). Following the evolution
of the density matrix in the |η〉, |−η〉 basis, the initial
state ρ(0) = (1 0

0 0) evolves into ρ(t2) = 1/2( 1 i
−i 1). Subse-

quently, the same map transfers the state to ρ(t1) = (0 0
0 1)

after another dressing time line t2 (note t1 = 2t2). Conversely,
if the state at t2 were a mixed state ρmixed(t2) = 1/2(1 0

0 1),

it would evolve into another statistical mixture of CSSs
ρmixed(t1) = 1/2(1 0

0 1) after the same duration of dressing
time.

In conclusion, while the Husimi Q function of the cat state
ρ(t2) and a mixed state ρmixed(t2) may not be distinguishable,
the revival of a CSS at t1 provides a clear signature of coher-
ence at the earlier time (see Fig. 6). The coherent cat state
will evolve into a single CSS, whereas a statistical mixture of
CSSs at t2 will evolve into another mixture of separate peaks
at t1.

APPENDIX D: DEPICTION OF CAT STATES’ Q FUNCTION
IN WEAK AND STRONG DRESSINGS

Some examples of the Husimi Q function of simulated cat
states under the exact Hamiltonian in Eq. (1) in the weak- and
strong-dressing regimes are plotted in Fig. 6. Here a 2D lattice
with lattice constant a = 532nm [21] is considered. Dressing
atoms with the |53P3/2, 3/2〉 Rydberg state with laser detun-
ing of �/2π = 0.02 GHz accommodates N = 48 atoms well
within the soft-core region with radius Rb/2. In Fig. 6, the
first column corresponds to cases where the second order
of nonlinearity χ2 is isolated; in the second column partial
involvement of the third order χ3/χ2 = 0.06 is considered,
and in the third column, the extreme case in which all orders
of nonlinearity are involved in ascending order is applied. The
cat-formation process can be observed in the case in which all
orders of nonlinearity exist, but with reduced fidelity.

The applied |m-CSS〉 that are used to define the fidelity in
Figs. 3 and 6 are as follows:

|2-CSS〉 = [e−iπ/4|η〉 + eiπ/4|eiπη〉]/
√

2,

|3-CSS〉 = [e−iπ/3|η〉 + e−i5π/3|ei2π/3η〉 + e−i5π/3|ei4π/3η〉]/
√

3,

|3-CSS〉 = [e−i2π/3|η〉 + e−iπ/3|ei2π/3η〉 + e−iπ/3|ei4π/3η〉]/
√

3,

|3-CSS〉 = [ei2π/3|η〉 + e−i2π/3|ei2π/3η〉 + e−i2π/3|ei4π/3η〉]/
√

3,

|3-CSS〉 = [eiπ/3|η〉 + e−iπ |ei2π/3η〉 + e−iπ |ei4π/3η〉]/
√

3,

|4-CSS〉 = [e−iπ/4|η〉 + |ei2π/4η〉 + e−iπ/4|ei4π/4η〉 + e−iπ |ei6π/4η〉]/
√

4,

|5-CSS〉 = [e−i4π/5|η〉 + e−i8π/5|ei2π/5η〉 + e−i4π/5|ei4π/5η〉 + e−i2π/5|ei6π/5η〉 + e−i2π/5|ei8π/5η〉]/
√

5,
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FIG. 6. Transition from a weak- to strong-dressing regime. The revival of a single CSS at time t1 indicates the coherent superposition of
|m-CSS〉 states in both the weak- and strong-dressing regimes. The last column contains an ascending contribution of all nonlinear terms in
Eq. (2).

|5-CSS〉 = [e−i8π/5|η〉 + e−i2π/5|ei2π/5η〉 + e−i8π/5|ei4π/5η〉 + e−i6π/5|ei6π/5η〉 + e−i6π/5|ei8π/5η〉]/
√

5,

|6-CSS〉 = [|η〉 + e−i11π/6|ei2π/6η〉 + |ei4π/6η〉 + e−i3π/6|ei6π/6η〉 + e−i8π/6|ei8π/6η〉 + e−i3π/6|ei10π/6η〉]/
√
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