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Absorption and gain processes are fundamental to any light-matter interaction and a precise measurement of
these parameters is important for various scientific and technological applications. Quantum probes, specifically
the squeezed states, have proved very successful, particularly in the applications that deal with phase shift and
force measurements. In this paper, we focus on improving the sensitivity of the estimation of the photon-loss
coefficient of a weakly absorbing medium as well as the estimation of the gain parameter using a two-mode bright
squeezed state. The generation of this state combines the advantage of a coherent beam for its large photon
number with the quantum properties of the two-mode squeezing operation in an optical parametric amplifier.
We present two measurement schemes: balanced photodetection and time-reversed metrology, both utilizing
two-mode bright squeezed light. The maximum quantum advantage we can achieve using two-mode bright
squeezed light is 3.7 times for the absorption parameter α = 0.05 and 8.4 times for α = 0.01 as compared to
using only the coherent state. Similarly, the maximum quantum advantage for the estimation of optical gain is
found around 2.95 times for the gain coefficient G = 1.05 and around 6.35 times for G = 1.01. We discuss the
significance of using one measurement scheme over the other under different squeezing conditions. We compare
our results with the Cramér-Rao bound for a two-mode bright squeezed state to assess the quality of the proposed
methodologies.
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I. INTRODUCTION

Quantum sensing and metrology is one of the emerging
fields that demonstrates the practical utility of quantum me-
chanical probes in various scenarios. The sensitivity of the
optical systems using the coherent states of light is limited
by the standard quantum limit (SQL). In the region where
classical states of light are deemed insufficient to improve the
measurement sensitivity, quantum states step in to push the
boundaries [1,2]. The benefits of using quantum probes such
as single-mode and two-mode squeezed states, and entangled
states that surpass the SQL, have been shown in phase shift
measurements [3–6], force measurements [7,8], spectroscopy
and imaging [9–13], and magnetometry [14], to mention a
few.

The standard optical interferometers such as the Mach-
Zehnder interferometer play a crucial role in advancing
quantum sensing capabilities by adding quantum probes as
input to the interferometer [15–17], as originally suggested
by Caves [5]. An important goal of such studies with differ-
ent quantum probes was to find when the Heisenberg limit
can be reached. Yurke et al. [18–20] introduced the SU(1,1)
interferometer by replacing the beam splitters in the Mach-
Zehnder interferometer with optical parametric amplifiers
(OPAs) and demonstrated the first possibility of reaching the
Heisenberg limit of phase sensitivity. This was an important
step forward in quantum metrology and led to consider-
able experimental and theoretical work. A recent experiment
[6] reports Heisenberg limited measurement of phase us-
ing an SU(1,1) interferometer. More recently, time-reversed

metrology is finding widespread applications with both
single- and two-mode squeezed vacuum states of light and
even matter [21–26].

The work of Yurke et al. was generalized to add a seed
beam to the OPA of Plick et al. [15]. This addition takes
advantage of both the coherent component and the squeezed
component in metrology. It leads to what is called the bright
squeezed light and has been extensively used in studies of
the quantum metrology of phase [3,27–30]. It also turned out
that the SU(1,1) interferometer is more loss tolerant and thus
advantageous in applications [31–37].

While much of the work on sensing with quantum probes
has been devoted to investigations of operations characterized
by unitary transformations, studies of the parameters of the
open systems are beginning to appear. The squeezed vacuum
states have been shown to be especially useful [38–44]. The
two-mode squeezed vacuum states are optimum for the mea-
surement of the absorption and gain parameters. While this
is very important, it is so far difficult to produce squeezed
vacuum states with a large number of photons and hence it
is desirable to add a seed to obtain a large number of photons.
This is the object of the present study. As mentioned in the
Abstract, absorption and gain are the fundamental processes in
which their study yields a wealth of information on the molec-
ular densities, transition matrix elements, molecular structure,
etc. Thus, absorption and gain spectroscopy techniques are
very common tools and the sensitivities of such techniques
can be considerably improved by using quantum light.

Here we explore a readily implementable entangled Gaus-
sian state known as the two-mode bright squeezed state
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(TMBSS), where the squeezing operation is performed by
a nonlinear process in an optical parametric amplifier. This
state combines the advantages of a coherent beam, with its
high photon count, together with the noise reduction achieved
through two-mode squeezing. It is to be noted that the goal
of this study is to find the level of sensitivity using a good
quantum resource, rather than finding when the estimate of
the parameter is optimum. In this study, we present results for
quantum advantage in the measurements of both absorption
and gain using TMBSS. The paper is structured as follows: In
Sec. II, we introduce the characteristics of TMBSS. Section III
delves into studying the Cramér-Rao bound of absorption
estimation with TMBSS. In Sec. IV, we present measurement
approaches for estimating the absorption parameter using
TMBSS. Section V demonstrates the advantages of these
methods by comparing them with the traditional approach
employing a coherent light source. Our analysis encompasses
the benefits provided by intensity differences measurement
and the SU(1,1) interferometer under various squeezing con-
ditions. Furthermore, we compare sensitivity results with the
Cramér-Rao bound, derived in Sec. III. In Sec. VI, we present
a detailed investigation of the gain using the Cramer-Rao
bound and sensitivities for different types of measurements.
Finally, Sec. VII gives a comprehensive discussion of our
results.

II. TWO-MODE BRIGHT SQUEEZED LIGHT
FOR ABSORPTION MEASUREMENT

In a two-mode bright squeezed state, a coherent field and
a vacuum field interact nonlinearly to produce a quantum
state which is such that the difference in number fluctuations
is squeezed. The Hamiltonian of the squeezing process is
given by H = �a†b† + H.c., where � indicates the interaction
strength of this process. The squeezing operation is performed
by a nonlinear process in the optical parametric amplifier
(OPA), where the two input modes, a coherent state and a
vacuum state, are acted upon by the two-mode squeezing
operator given by

S(r) = er(a†b†−ab), (1)

where r is the squeezing parameter. We take the two-mode
squeezing parameter to be real since absorption estimation
does not consider any phase shifts. The resulting state, called
the two-mode bright squeezed state, is given by

|ψ〉T MBSS = S(r)|u, 0〉, (2)

where |u〉 is the coherent state such that |u|2 � cosh2 r. The
state generated by Eq. (2) is a Gaussian state.

In the scheme shown in Fig. 1, the part with the OPA
describes the generation of the TMBSS which is used to
determine the parameter α. It is more convenient to work
with Heisenberg operators in this scenario. The squeezing
transformations, a1 = S†ainS and b1 = S†binS, are given by

a1 = ain cosh r + b†
in sinh r,

b1 = bin cosh r + a†
in sinh r. (3)

In the following step, one of the beams is directed into the
sample and is called the probe, and the other beam is called

FIG. 1. The schematics of absorption measurement using a two-
mode bright squeezed state. One of the input beams is the coherent
beam and the other is the vacuum field. The two beams at the
output of the OPA constitute the two-mode bright squeezed light.
One of the beams, called the probe beam, passes through the absorp-
tion medium. Detection of the intensity difference of these beams,
〈Nout〉 = 〈a†

outaout−b†
outbout〉, forms the signal for the balanced pho-

todetection setup.

the ancilla. After passing through the sample, the probe carries
the information on the absorption coefficient transforming the
operators such that

aout = a1

√
1 − α + v

√
α,

bout = b1. (4)

The output probe field given by aout is discussed in textbooks,
e.g., Eqs. (9.94)–(9.96) of [45]. This is derived from the solu-
tion of the master equation for the absorber. Here, v stands for
the annihilation operator for the vacuum noise. Using Eqs. (3)
and (4), we can write

aout = ainc11 + b†
inc12 + v c13,

bout = a†
inc21 + binc22, (5)

where

c11 = √
1 − α cosh r, c12 = √

1 − α sinh r, c13 = √
α,

c21 = sinh r, c22 = cosh r.

Lastly, the two beams enter the photocurrent mixer to realize
the superposition of the fields, which constitutes the signal for
the measurement scheme discussed in Sec. IV A.

III. QUANTUM FISHER INFORMATION FOR TWO-MODE
BRIGHT SQUEEZED STATE

With the new emerging quantum technologies for sensing,
it is important to know how far we can push the limits of
precisely measuring a physical parameter. Quantum measure-
ment theory provides us with this limit, called the quantum
Cramér-Rao bound, which is an extension of its classical
counterpart. We drop the quantum prefix and denote it simply
as the Cramér-Rao bound for the remainder of the paper. It is
expressed in terms of the quantum Fisher information (QFI)
of the given system that describes the limit on the distin-
guishability between two infinitesimally close quantum states.
Typically, the larger the QFI, the better the distinguishability,
which implies better precision in estimating the parameter.

In the present research, the precision of the measurement
is based on this Cramér-Rao bound. We first calculate the QFI
to determine this bound. As described in the previous section,
the input fields to the OPA are Gaussian in nature. The general
approach to compute the quantum Fisher information for a
Gaussian system has been developed [46–54]. Given that the
output field maintains the Gaussian characteristics from the
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absorbing medium [55], we can apply the covariance matrix
method, which is well formulated in [54], to find the QFI
associated with the TMBSS. The calculations are to be done
using the explicit expressions for aout and bout given by Eq. (5)
and using the fact that ain and bin represent the coherent and
the vacuum field, respectively. We first write the set of the
output annihilation and the creation operators for the given
two-mode bosonic system in the form of a vector of operators
given by

A = (aout, bout, a†
out, b†

out )
T . (6)

Introducing the displacement vector dm = tr[ρAm] and its co-
variance matrix σmn = tr[ρ{�Am,�A†

n}], where �A = A −
d , and recognizing we only have one parameter to be esti-
mated (α), the QFI is given by

FQ(α) = 1

2
vec

(
∂σ

∂α

)†

M−1vec

(
∂σ

∂α

)
+ 2

∂d†

∂α
σ−1 ∂d

∂α
, (7)

where M = σ ⊗ σ − K ⊗ K and K = [
I2 0
0 −I2

]. Here the

notation σ̄ is the complex conjugate of σ , and I2 stands for
the 2 × 2 identity matrix.

The required displacement vector and the covariance ma-
trix can be calculated using Eq. (5), yielding the following
results:

d (α) =

⎛
⎜⎜⎜⎜⎜⎝

u cosh r
√

1 − α

u∗ sinh r

u∗ cosh r
√

1 − α

u sinh r

⎞
⎟⎟⎟⎟⎟⎠

(8)

and

σ (α) =

⎡
⎢⎢⎢⎢⎢⎣

σ
(α)
11 0 0 σ

(α)
14

0 σ
(α)
22 σ

(α)
23 0

0 σ
(α)
32 σ

(α)
33 0

σ
(α)
41 0 0 σ

(α)
44

⎤
⎥⎥⎥⎥⎥⎦

, (9)

where

σ
(α)
11 = σ

(α)
33 = 1 + 2(1 − α) sinh2 r,

σ
(α)
22 = σ

(α)
44 = 1 + 2 sinh2 r,

σ
(α)
14 = σ

(α)
41 = σ

(α)
23 = σ

(α)
32 = 2

√
1 − α cosh r sinh r.

Considering the limit |u|2 � cosh2 r, we can drop the first
term in Eq. (7), which leads to the simplified form given by

FQ(α) = 2
∂ (d (α) )†

∂α
(σ (α) )−1 ∂d (α)

∂α
. (10)

Thus, using Eqs. (8)–(10), the QFI of a two-mode bright
squeezed state wherein one of the modes undergoes absorp-
tion with a parameter α is expressed as follows:

FQ(α) = |u|2 cosh2 r cosh 2r

[1 + α(cosh 2r − 1)](1 − α)
, (11)

where |u|2 is the total number of photons in the input coherent
state used to generate the two-mode bright squeezed beam and
r is the squeezing parameter. The Cramér-Rao bound, which

is the lowest bound in the estimation of the given parameter,
is found by using the inequality

(�α)CR � 1√
NFQ(α)

, (12)

where FQ(α) is the quantum Fisher information given by
Eq. (11) and N is the number of independent measurements,
which we take as 1 for simplicity. Next, we discuss the
practical schemes and assess the possibility of reaching the
Cramér-Rao bound.

IV. MEASUREMENT SCHEMES

A. Balanced photodetection

The sensitivity of measuring the absorption coefficient (α)
depends not only on the state of the light, but also on the cho-
sen measurement scheme. Here we calculate the sensitivity of
the setup consisting of three main steps, namely, squeezing,
absorption, and detection, as shown in Fig. 1. In Sec. II, we
discussed the interaction between the probe beam and the
absorption sample as formulated in Eq. (4). The ancilla does
not interact with the sample and is used as a reference beam.
In the next step, both of the beams enter the balanced detector
to realize the superposition of the fields. Here, the signal is de-
fined as the intensity difference between the two beams such
that 〈Nout〉 = 〈a†

outaout−b†
outbout〉 and the associated fluctua-

tions are given by �Nout =
√

〈N2
out〉 − 〈Nout〉2. Using Eq. (5),

these quantities are found to be

〈Nout〉 = |u|2(c2
11 − c2

21

)
(13)

and

(�Nout )
2 = |u|2[c2

11

(
c2

11 + c2
12 + c2

13

) + c2
21

(
c2

21 + c2
22

)
− 2c11c21(c11c21 + c12c22)

]
. (14)

The sensitivity of the setup is calculated using

�α = �Nout

| d〈Nout〉/dα | . (15)

From Eqs. (13)–(15), the sensitivity of the balanced photode-
tection measurement scheme could be written in terms of the
squeezing parameter r and the absorption coefficient α as

(�α)BD =
√

1 + 2α2 cosh2 r sinh2 r − α cosh2 r

|u| cosh2 r
. (16)

Next, we calculate the sensitivity of another popular method,
namely, the SU(1,1) interferometer measurement scheme.

B. SU(1,1) interferometer time-reversed metrology

Here we present the SU(1,1) interferometer scheme which
further improves the signal-to-noise ratio for absorption mea-
surement at certain squeezing conditions in comparison with
the balanced photodetection scheme. Referring to Fig. 2, this
setup has one additional step before detection where the probe
beam and the ancilla both enter another OPA and undergo
the antisqueezing process. Thus, the second OPA reverses
the squeezing transformation, r → −r, giving the new output
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FIG. 2. Experimental SU(1,1) setup for bright squeezed state
time-reversal metrology. The absorption medium, which reduces the
output intensity to (1 − α) times the input intensity, is placed be-
tween two optical parametric amplifiers (OPAs), on the upper arm of
the interferometer. The first OPA generates bright squeezed light with
coherent light at one of the input modes. The second OPA reverses
the squeezing transformation. Detection of the number of outgoing
photons, 〈a†

outaout〉, leads to estimating the photon-loss coefficient α.

states as

aout = a2 cosh r − b†
1 sinh r,

bout = b1 cosh r − a†
2 sinh r. (17)

This additional step further improves the sensitivity of the
setup as discussed ahead in the results. Using Eq. (17) and
replacing aout in Eq. (4) with a2, we can write the output
operators as

aout = ain(
√

1 − α cosh2 r − sinh2 r)

− b†
in

(
1 − √

1 − α
)

sinh r cosh r

+ v cosh r
√

α,

bout = bin(cosh2 r − √
1 − α sinh2 r)

+ a†
in(1 − √

1 − α) sinh r cosh r

− v†√α sinh r. (18)

For simplicity, we write aout and bout as

aout = aind11 + b†
ind12 + vd13,

bout = a†
ind21 + bind22 + v†d23, (19)

where

d11 = √
1 − α cosh2 r − sinh2 r,

d12 = −(1 − √
1 − α) sinh r cosh r, d13 = √

α cosh r,
d21 = (1 − √

1 − α) sinh r cosh r,
d22 = cosh2 r − √

1 − α sinh2 r, d23 = −√
α sinh r.

At this point, we need to extract the information on the ab-
sorption coefficient by detecting the mean number of photons
and the corresponding variance. We first consider the case of
〈Nout 〉 = 〈a†

out aout + b†
out bout 〉, which typically constitutes the

signal for the SU(1,1) technique. The signal and the fluctua-
tions, in this case, are given by

〈Nout〉 = |u|2(d2
11 + d2

21

)
(20)

and

(�Nout )
2 = |u|2[d2

11

(
1 + 2d2

12

) + d2
21

(
d2

21 + d2
22 + d2

23

)
+ 2d11d21(d11d21 + d12d22 + d13d23)

]
, (21)

FIG. 3. Sensitivities �α/�αcoh [solid red line: balanced pho-
todetection; dashed blue line: SU(1,1)] and the Cramér-Rao bound
(�α/�αcoh )min [bottom orange line (light gray)] using two-mode
bright squeezed light, scaled by the sensitivity of using a coherent
light without the interferometer, as a function of the squeezing pa-
rameter r, for weak absorption (a) α = 0.05 and (b) α = 0.01. Note
that the red lines have their inflection points at a lower value of r. In
addition, (a) also shows �α+ (purple line with a singular point).

respectively. The sensitivity in Eq. (15) applies to both of the
measurement schemes. Thus, we get

(�α)+ =
√

U

V |u| , (22)

where

U = 4 − 4ζ − 4α cosh2 r + 2ζ cosh 4r − 2αη sinh2 4r,

V = 2 cosh2 r√
1 − α

(2 − √
1 − α cosh 2r).

We use ζ := 1 − √
1 − α and η := α/4 + √

1 − α for sim-
plicity. Notice that V in the denominator approaches zero
when r → 2 for α = 0.05 and when r → 3 for α = 0.01.
At these points U 	= 0, and thus the sensitivity ratio has a
singularity at sinh2 r =

√
1−α

2ζ
, as shown in Fig. 3(a). For small

α, sinh r ∼ 1√
α

. Note that the singularity can be avoided by
detecting the signal only from one of the ports such that
〈Nout 〉 = 〈a†

out aout 〉. In this case, we calculate the signal and
the associated fluctuations as

〈Nout〉 = |u|2d2
11, (23)

(�Nout )
2 = |u|2d2

11

(
1 + 2d2

12

)
. (24)
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TABLE I. Quantum advantage (QA = �αcoh
�α

) for the absorption
measurement using balanced photodetection (BD), SU(1,1) interfer-
ometer, and the corresponding Cramér-Rao bound (CRB). Values
displayed in italics are the best possible QA attainable using the
specified measurement technique.

α r QABD QASU (1,1) QACRB

0.05 1.99 3.32 3.36 3.42
2.35 2.81 3.77 3.85

0.01 2.82 7.39 7.53 7.63
3.17 6.26 8.41 8.59

Using Eqs. (15), (23), and (24), the sensitivity could be written
in terms of r and α as

�α =
√

(1 − α)[1 + 4(1 − √
1 − α)2 cosh2 r sinh2 r]

|u| cosh2 r
.

(25)

Now that we have calculated the sensitivities from the
measurement perspective, we can compare their quantum ad-
vantage and discuss the best possible schemes under different
squeezing conditions.

V. QUANTUM ADVANTAGE: SENSITIVITY
ENHANCEMENT IN MEASUREMENT SCHEMES

We scale the sensitivities derived using the measurement
schemes with the sensitivity using only a coherent state of
the same photon number entering the sample without the
interferometer. The ratio for the balanced photodetection (BD)
measurement scheme is expressed as
(

�α

�αcoh

)
A

=
√

(1 + 2α2 cosh2 r sinh2 r−α cosh2 r)/(1−α)

cosh r
,

(26)

and the ratio for the SU(1,1) interferometer with signal
〈a†

outaout〉 is written as
(

�α

�αcoh

)
B

=
√

1 + 4(1 − √
1 − α)2 cosh2 r sinh2 r

cosh r
, (27)

where the sensitivity using only a coherent state without an
interferometer is given by

�αcoh =
√

1 − α

|u| cosh r
. (28)

Figure 3 shows the plots of the scaled sensitivities against
the squeezing parameter r for (a) α = 0.05 and (b) α = 0.01.
Equations (26) and (27) are represented by the red line and
the blue line, respectively. The Cramer-Rao bound given by
Eq. (12) is represented by the orange line. As displayed in
Table I, both of the setups can attain a quantum advantage
(QA = �αcoh

�α
) of greater than 3 for α = 0.05 and a quan-

tum advantage of greater than 7 for α = 0.01. For α = 0.05,
the maximum advantage for the BD technique is achieved
at r = 1.99 (QA = 3.32), and for the SU(1,1) technique,
it is achieved at r = 2.35 (QA = 3.77). For α = 0.01, the
maximum advantage for the BD technique is achieved at

r = 2.82 (QA = 7.39), and for the SU(1,1) technique, it is
achieved at r = 3.17 (QA = 8.41). This result is significant in
the weak absorption domain. As we calculate the sensitivity of
the measurement, it is worthwhile to note the significance of
the large number of photons in the two-mode bright squeezed
state given the 1/

√
N dependence, where N is the total number

of photons passing through the sample at a given time. For
example, around r = 2, N is approximately 14|u|2, where |u|2
is the total number of photons in the input coherent field.

Looking at the plots in Fig. 3, we find out that the balanced
photodetection method gives a slightly greater quantum ad-
vantage relative to the SU(1,1) method just before it reaches
its maximum around r = 2 for α = 0.05 and r = 2.82 for
α = 0.01. However, using the full SU(1,1) scheme can pro-
vide a higher quantum advantage for r � 2 for α = 0.05 and
r � 2.82 for α = 0.01. Consequently, it might be advanta-
geous to use the balanced photodetection method given its
benefit of less number of optical components leading to fewer
experimental errors. However, the SU(1,1) interferometer can
prove beneficial when technological advancements allow for
the higher squeezing parameters r � 2.

Next, the scaled sensitivity of both measurement schemes
is compared to the theoretical limit given by the Cramér-Rao
bound (orange line), which is obtained by taking the ratio of
sensitivity given by Eq. (12) calculated using the quantum
Fisher information of the two-mode bright squeezed state and
that for the coherent state, again given by �αcoh =

√
1−α

|u| cosh r .
Note that the QFI of the TMBSS remains unaffected by the
antisqueezing action of the second OPA. Our results exhibit
a close correspondence with the Cramér-Rao bound, specifi-
cally in the region 1.5 � r � 2.5 for α = 0.05 and 2 � r � 3
for α = 0.01. This emphasizes the sensor’s exceptional per-
formance as measured against the theoretical lower bound for
the given system.

VI. TWO-MODE BRIGHT SQUEEZED LIGHT
FOR GAIN MEASUREMENT: CRAMÉR-RAO BOUND

AND MEASUREMENT SCHEMES

Apart from absorption, gain is another fundamental phys-
ical phenomenon that has broad applications in sensing and
imaging technology. For example, gain sensing proves valu-
able in detecting Unruh-Hawking radiation using single-mode
probes [56]. Typically, the gain parameter associated with
these processes is small, as it relies on population inversion
within the medium. Optical amplification mechanisms such
as stimulated emission in laser media, stimulated Raman
scattering (SRS), and stimulated Brillouin scattering (SBS)
are characterized by this gain parameter. The gain obtained
from SBS, for instance, serves as a signal for measuring the
viscoelastic properties of the medium in imaging and spectro-
scopic applications. Similarly, the gain from SRS is utilized to
characterize the nonlinear properties of optical fibers, which
are critical components in telecommunication systems. Like
absorption, the gain measurement is sensitive to system noise,
necessitating advanced techniques to achieve precise mea-
surement [13,57]. Nair et al. [41] have considered the optimal
measurement of gain using quantum probes. However, the ad-
vantages offered by adding a coherent seed while generating
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the two-mode squeezed state remain relatively unexplored.
Thus, here, we again consider the two-mode bright squeezed
state (TMBSS) to estimate the gain parameter. We first cal-
culate QFI for the gain measurement using the TMBSS and
provide the best possible sensitivity for the gain parameter,
which is the Cramér-Rao bound. Considering Fig. 1 but for
the gain medium, the annihilation operators, after the sample
written in terms of the input operators, are given by

aout = a1

√
G + v†

√
G − 1,

bout = b1. (29)

The derivation of Eq. (29), found in textbooks, is based on
the solution to the quantum Langevin equation for an open
system with gain, given by Eqs. (10.4) and (10.5) in [45].
It is important to note that the addition of the noise photons
given by the second term in Eq. (29) now involves the cre-
ation operator for the vacuum. The Gaussian characteristics
of the input state are preserved under the transformation in
a gain medium [55]. Thus, following the same process as
used in Sec. III, the displacement vector and the covariance
matrix are

s(G) =

⎛
⎜⎜⎜⎜⎜⎝

u
√

G cosh r

u∗ sinh r

u∗√G cosh r

u sinh r

⎞
⎟⎟⎟⎟⎟⎠

(30)

and

β (G) =

⎡
⎢⎢⎢⎢⎢⎣

β
(G)
11 0 0 β

(G)
14

0 β
(G)
22 β

(G)
23 0

0 β
(G)
32 β

(G)
33 0

β
(G)
41 0 0 β

(G)
44

⎤
⎥⎥⎥⎥⎥⎦

, (31)

where

β
(G)
11 = β

(G)
33 = 2G cosh2 r − 1,

β
(G)
22 = β

(G)
44 = 1 + 2 sinh2 r,

β
(G)
14 = β

(G)
41 = β

(G)
23 = β

(G)
32 = 2

√
G cosh r sinh r.

We obtain the QFI as

FQ(G) = |u|2 cosh2 r cosh 2r

G[G + (G − 1) cosh 2r]
, (32)

which leads to (�G)CR = [FQ(G)]−1/2. Considering the mea-
surement schemes, we perform similar calculations as done
previously to determine the sensitivity of measuring the gain
parameter using the two measurement schemes. For the bal-
anced photodetection method, the output modes are given by

aout = ainm11 + b†
inm12 + v†m13,

bout = a†
inm21 + binm22, (33)

where

m11 =
√

G cosh r, m12 =
√

G sinh r, m13 = √
G − 1,

m21 = sinh r, m22 = cosh r.

FIG. 4. Sensitivities �G/�Gcoh [top red line: balanced photode-
tection; middle purple line: SU(1,1) with intensity addition] and
the Cramér-Rao bound �GCRB/�Gcoh (bottom orange line) using
two-mode bright squeezed light, scaled by the sensitivity of using
a coherent light without the interferometer, as a function of the
squeezing parameter r, for gain G = 1.05.

Using the intensity difference Id between two beams as the
signal, we calculate the sensitivity for this setup to be

(�G)BD =
√

Id (2Id − |u|2)

|u| cosh2 r
, (34)

where Id = |u|2(G cosh2 r − sinh2 r).
For the SU(1,1) interferometer scheme with gain medium,

the final output operators are given by

aout = ain f11 + b†
in f12 + v† f13,

bout = a†
in f21 + bin f22 + v f23, (35)

where

f11 = √
G cosh2 r − sinh2 r,

f12 = (
√

G − 1) sinh r cosh r, f13 = √
G − 1 cosh r,

f21 = −(
√

G − 1) sinh r cosh r,
f22 = cosh2 r − √

G sinh2 r, f23 = −√
G − 1 sinh r.

Considering 〈Nout 〉 = 〈a†
out aout + b†

out bout 〉 as the signal and
calculating the corresponding fluctuations �Nout, we find the
sensitivity as

(�G)+ =
√

GA

B|u| , (36)

where

A = μ(7G3/2 − 3G + 5
√

G − 1)

+ 4(3
√

Gμ − ν)μν cosh 2r

+ 8μ2ν2 cosh 4r + 4μν3 cosh 6r + ν4 cosh 8r),

B = 4 cosh2 r(1 + ν cosh 2r).

We use μ := √
G + 1 and ν := √

G − 1 for simplicity.
In Fig. 4, we plot the scaled sensitivities (�G/�Gcoh) for

both of the measurement schemes along with the Cramér-Rao
bound (�G)CR/�Gcoh, where

�Gcoh =
√

G(2G − 1)

|u| cosh r
. (37)
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TABLE II. Quantum advantage for the gain measurement
schemes: balanced photodetection (BD), SU(1,1) interferometer, and
the corresponding Cramér-Rao bound (CRB).

G r QABD QASU (1,1) QACRB

1.05 2.37 1.87 2.95 4.01
1.01 3.17 3.97 6.35 8.67

Here, we find that the SU(1,1) method gives a greater quantum
advantage relative to the balanced photodetection method for
any given squeezing parameter r. The best possible quan-
tum advantages for both measurement schemes are shown in
Table II. For G = 1.05 at r = 2.37, SU(1,1) is 2.95 times and
the balanced detection is 1.87 times better, and for G = 1.01
at r = 3.17, SU(1,1) is 6.35 times and the balanced detection
is 3.97 times better than using a coherent source. We can also
see that both methods, specifically the SU(1,1) interferometer,
closely follow the Cramér-Rao bound, which is the theoretical
lower limit for the given scheme of measurements.

VII. DISCUSSION

This paper investigates the quantum advantage of using
a two-mode bright squeezed state (TMBSS) to estimate the
absorption parameter in a weakly absorbing medium as well
as the small gain parameter in any optical amplification pro-
cess. We present two setups, (A) balanced photodetection
and (B) SU(1,1) interferometer, and discuss the best possible
measurement schemes under different squeezing conditions.
The paper’s main goal is to showcase the improvement in the
sensitivity measurement of the absorption or the gain param-
eter of the sample placed in one of the beam paths generated
from an optical parametric amplifier. This study combines the
benefits of a large number of photons in a coherent state with
the quantum properties of the two-mode squeezing operation.

We first calculate the quantum Fisher information (QFI)
of the two-mode bright squeezed state, which leads us to the
theoretical limit called the Cramér-Rao bound for measuring

the absorption sensitivity. We then calculate the absorption
sensitivities of both measurement schemes. We scale both of
these sensitivities by using only the coherent source with the
same number of photons, but without the interferometer.

The results show that these setups can attain a more than
sevenfold quantum advantage (QA) for α = 0.01 and three-
fold QA for α = 0.05. This is an important result for the weak
absorption domain. Plotting the scaled sensitivities against r
reveals the significance of using one measurement scheme
over the other in different squeezing conditions. For example,
the balanced photodetection method gives a slightly greater
quantum advantage relative to the SU(1,1) method just before
it reaches its maximum around r = 2 for α = 0.05. Thus,
given the current technological limitations on the squeezing
parameter r, the balanced photodetection method is benefi-
cial because of its comparatively smaller number of optical
components, minimizing the experimental errors. However,
the SU(1,1) interferometer gives a higher quantum advantage
as we attain r � 2 beyond which the QA for balanced detec-
tion continues decreasing. Thus, the SU(1,1) interferometer
holds promise for future absorption-related applications, par-
ticularly as technological progress enables higher squeezing
parameters r.

For the gain measurement, we find out that the SU(1,1)
method shows a better quantum advantage than the balanced
photodetection method for any given squeezing parameter
r. For G = 1.05 at r = 2.37, SU(1,1) is 2.95 times and
the balanced detection is 1.87 times better than just using
the coherent source without any interferometer. Comparing
the scaled sensitivity of both of the measurement schemes
with the Cramér-Rao bound confirms the quantum advantage
of the proposed setups in the estimation of absorption as well
as the gain parameters.
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