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Theory of cascade correlated emission from atom arrays
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We present a theory of cascade emission from an array of N fixed, “three-level” atoms. The total angular
momentum of the ground state of each atom is J = 0, that of the intermediate state is J = 1, and that of the
upper state is J = 0. The atoms are prepared in a spatially phased superposition of their ground and upper
states, collectively sharing a single excitation. We calculate the time-integrated, joint probability distribution
for radiation to be emitted in a given direction with a given polarization on each transition and use this joint
probability distribution to calculate the time-integrated intensity emitted on each transition. The dipole-dipole
interaction between the atoms is taken into account. Analytic expressions are obtained for two atoms and the
calculation is then extended formally to an ensemble of N atoms at arbitrary positions. As expected, the radiation
emitted on the upper transition is unpolarized and isotropic. However, somewhat surprisingly, we find that for ex-
citation by counterpropagating fields and for nearly equal ground to intermediate and intermediate to upper level
transition frequencies, the radiation on the lower transition is also isotropic and unpolarized, provided the atoms
are prepared in a fully symmetric state. We also establish conditions for which there can be a phase-matched en-
hancement of the joint probability density for specific directions of emissions on the upper and lower transitions.

DOI: 10.1103/PhysRevA.109.053714

I. INTRODUCTION

The realization of efficient quantum light-matter interfaces
represents an important step in the development of scalable
quantum communication networks [1,2]. In particular, cou-
pling telecommunication-wavelength light to matter qubits is
needed for optical-fiber implementations of such networks.
This can be achieved by using hosts such as optical crystals
[3], waveguides [4], or fibers [5] doped with erbium ions,
which possess suitable telecommunication transitions from
the ground state. Neutral atoms such as rubidium and ce-
sium do not possess telecom transitions originating in the
ground atomic state. However, cascade (ladder) level config-
urations exist with suitable C-band telecom transitions [6].
Using optical storage and retrieval pulses to drive these tran-
sitions, efficient and noiseless generation of telecom light
has been realized [7] in a cold rubidium vapor and ex-
tended to entanglement of telecom-wavelength light with
atomic qubits trapped in a state-insensitive optical lattice
[8]. Recently, a broadband quantum memory for telecom
light has been demonstrated using a ladder level scheme
in a hot [9] rubidium vapor. Extending these approaches
to Rydberg-array-based memories would allow one to in-
corporate neutral-atom quantum processors into distributed
quantum networks. The same cascade level scheme in Rb
or Cs has been used for entanglement generation between
telecom and near-IR fields based on both ultracold [6] or hot
[10] vapors. Memory-light entanglement can be subsequently
created by either mapping the near-IR field into an atomic
memory or by entanglement swapping with a Raman-type
atom-field entangled state.

Given the scope of these applications, it is important to
have first-principle calculations of cascade emission in which
the magnetic state degeneracy is taken into account. In a

recent article [11], we studied cascade emission from an en-
semble of “three-level” atoms in the limit that the probability
to have more than one excitation in the ensemble was negligi-
ble. Interactions between the atoms were included implicitly
within the framework of an approximation made by Rehler
and Eberly (RE) [12] in their study of superradiance. It was
pointed out that, although the RE model provides good agree-
ment with the exact solution, it can lead to some physical
inconsistencies. For example, when applied to cascade decay,
it can result in a prediction that the emission on the upper
transition is anisotropic and polarized, whereas, in actuality,
the radiation emitted on this transition is unpolarized and
isotropic. It was stated that a consistent solution would re-
quire that the dipole-dipole interactions between the atoms be
treated exactly.

In this paper, we provide such an exact solution. In other
words, we do not make the RE approximation as in our pre-
vious paper. Moreover, we consider arrays of atoms at fixed
positions, whereas the limit of a continuous atom density
was taken in our previous work. We calculate the time-
integrated, joint probability distribution for radiation to be
emitted in a given direction and polarization on each tran-
sition and use this joint probability distribution to calculate
the time-integrated intensity emitted on each transition. As
in our previous calculation, we consider a cascade scheme
in which the total angular momentum of the ground state is
J = 0, that of the intermediate state is J = 1, and that of the
upper state is J = 0 (see Fig. 1). The qualitative nature of
the results will be the same for other values of the angular
momenta. To introduce the concepts that are involved and
the notation, we first analyze the radiation pattern for two
atoms, for which analytic solutions can be obtained. We find
that the radiation emitted on the upper transition is unpolar-
ized and isotropic, as could have been predicted based on
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FIG. 1. Atomic energy level diagram of each atom in the en-
semble. Levels 1 and 3 have total angular momentum J = 0, while
level 2 has total angular momentum J = 1. Pulsed fields create a
coherence between levels 1 and 3. The fields can be co- or counter-
propagating. In the case of counterpropagating fields, it is assumed
that kL1 ≈ kL2 ≈ ω32/c ≈ ω21/c.

simple physical arguments. One of our principle goals is to
show that, somewhat surprisingly, the radiation on the lower
transition can also be isotropic and unpolarized, provided
that the excitation fields are counterpropagating and that the
ground-to-intermediate and intermediate-to-upper-level tran-
sition frequencies are nearly equal. The calculation is then
extended formally to an ensemble of N fixed atoms at arbitrary
positions. We determine conditions for which there can be a

phase-matched enhancement of the joint probability density
for specific directions of emission on the upper and lower
transitions.

The N-atom formalism is used to obtain the emission
pattern for an array of 20 atoms. It is shown that the RE
approximation leads to very good agreement with the exact
results for the joint probability density. Moreover, we show
that the fraction of radiation emitted in the phase-matched
directions by the array is similar to that of a medium charac-
terized by a uniform atomic density, but there is an important
difference. With copropagating excitation fields, the superra-
diant emission from a uniform density medium is confined to
the forward direction (i.e., the same direction as the excitation
fields), but the emission from an array can also occur for an-
gles corresponding to Bragg resonances. We should note that
the role of magnetic degeneracy on phase-matched cascade
emission from a three-dimensional atomic array was consid-
ered by Miroshnychenko et al. [13], but in their case the upper
transition was driven by a classical laser field. They showed
that directional superradiant emission could be emitted by the
sample on the lower transition.

II. TWO ATOMS

In an interaction representation, the Hamiltonian for the
atom-vacuum field interaction for our system of two J =
0 − 1 − 0 three-level atoms is

H (t ) = −i

(
h̄ω32

2ε0V

)1/2 ∑
k,λ

2∑
j=1

1∑
m=−1

μ3m · ε
(λ)
k σ

( j)
3m akλ

eik·R j e−i(ωk−ω32 )t

− i

(
h̄ω21

2ε0V

)1/2 ∑
k,λ

2∑
j=1

1∑
m=−1

μm1 · ε
(λ)
k σ

( j)
m1 akλ

eik·R j e−i(ωk−ω21 )t + adjoint, (1)

where μ3m is a dipole moment matrix element between states
|3〉 and |2m〉, μm1 is a dipole moment matrix element between
states |2m〉 and |1〉, σ

( j)
3m and σ

( j)
m1 are atomic raising opera-

tors, akλ
is a field annihilation operator for a photon having

propagation vector k and polarization λ = (θ̂, φ̂), R j is the
position of atom j, ωk = kc, ω32 and ω21 are the upper and
lower transition frequencies, respectively,

θ̂ = ε
(θ )
k = cos θk cos φk x̂ + cos θk sin φk ŷ − sin θk ẑ, (2)

φ̂ = ε
(φ)
k = − sin φk x̂ + cos φk ŷ, (3)

k̂ = sin θk cos φk x̂ + sin θk sin φk ŷ + cos θk ẑ, (4)

θk and φk spherical coordinates, V is the quantization volume,
and we have evaluated the radiated field frequencies at the
atomic transition frequencies.

Each atom is assumed to have been prepared in a superpo-
sition of levels 1 and 3. We consider an initial state vector for
which there is a phased, single excitation in the ensemble,

|ψ (0)〉 = c31(0)|31〉eiκ·R1 + c13(0)|13〉eiκ·R2 , (5)

where κ = kL1 + kL2; kL1 and kL2 are propagation vectors of
the two laser fields used to generate the initial state; |31〉 is
the state in which atom 1 is in state 3, atom 2 is in state
1, and the radiation field in its vacuum state; |13〉 is the
state in which atom 1 is in state 1, atom 2 is in state 3, and
the radiation field in its vacuum state; and c31(0) and c13(0)
are the corresponding initial state amplitudes satisfying

|c31(0)|2 + |c13(0)|2 = 1. (6)

For a symmetric phased state,

csym
31 (0) = csym

13 (0) = 1/
√

2. (7)

To further simplify matters, we shall assume that the exci-
tation fields are either co- or counterpropagating along the z
axis,

κ = kL1 + kL2 = (kL1 ± kL2)ẑ; (8)

that the fields are in two-photon resonance with the 1 − 3
transition,

ωL1 + ωL2 = ω32 + ω21 = ω31; (9)

and that both c31(0) and c13(0) are real. We set R1 = 0ẑ and
R2 = Z0ẑ, with Z0 > 0.
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For the initial state vector given in Eq. (5), we can write the
state vector at any time as

|ψ (t )〉 = c31(t )|31〉e−iω31t + c13(t )|13〉e−iω31t

+
∑
kλ

A

cm1;kλ
A
(t )

∣∣m1; kλ
A

〉
e−i(ω21+ωkA )t

+
∑
kλ

A

c1m;kλ
A
(t )

∣∣1m; kλ
A

〉
e−i(ω21+ωkA )t

+
∑

kλ
A,kλ′

B

ckλ
A,kλ′

B
(t )

∣∣kλ
A, kλ′

B

〉
e−i(ωkB +ωkA )t , (10)

where |1m; kλ
A〉 is the ket corresponding to atom 1 in state

1, atom 2 in sublevel m of level 2, and a photon kλ
A in the

radiation field; |m1; kλ
A〉 is the ket corresponding to atom 1

in sublevel m of level 2, atom 2 in state 1, and a photon
kλ

A in the radiation field; |kλ
A, kλ′

B 〉 is the ket corresponding to
both atoms in state 1 and photons kλ

A and kλ′
B in the radiation

field; and kA = ωkA/c ≈ ω32/c = k32, kB = ωkB/c ≈ ω21/c =
k21. The superscript λ refers to the polarization of the field.
Using the Hamiltonian given in Eq. (1), we can obtain evolu-
tion equations for the state amplitudes. Following the standard
approach used in theories of spontaneous emission involving
two atoms [14], it is then possible to write the evolution
equations for the state amplitudes as

ċ31 = −γ3

2
c31; ċ13 = −γ3

2
c13, (11a)

ċm1;kλ
A

= −
(γ2

2

)
cm1;kλ

A
− γ2(pm + iqm)

2
c1m;kλ

A

+
(

1

ih̄

)
H (1)

mkλ
A,3

e−i(ω32−ωkA )t c31, (11b)

ċ1m;kλ
A

= −
(γ2

2

)
c1m;kλ

A
− γ2(pm + iqm)

2
cm1;kλ

A

+
(

1

ih̄

)
H (2)

mkλ
A,3

e−i(ω32−ωkA )t c13, (11c)

ċkλ
A,kλ′

B
= 1

ih̄

[
H (1)

1kλ′
B ,m

cm1;kλ
A
+ H (2)

1kλ′
B ,m

c1m;kλ
A

]
e−i(ω21−ωkB )t ,

(11d)

where

p±1(ξ ) = 3

2

{
sin ξ

ξ
+

(
cos ξ

ξ 2
− sin ξ

ξ 3

)}
, (12a)

q±1(ξ ) = 3

2

{
−cos ξ

ξ
+

(
sin ξ

ξ 2
+ cos ξ

ξ 3

)}
, (12b)

p0(ξ ) = −3

(
cos ξ

ξ 2
− sin ξ

ξ 3

)
, (13a)

q0(ξ ) = −3

(
sin ξ

ξ 2
+ cos ξ

ξ 3

)
, (13b)

the free space decay rates are

γ3 = ω3
32|〈2‖μ‖3〉|2

3πε0h̄c3
, (14)

γ2 = ω3
21|〈1‖μ‖2〉|2

9πε0h̄c3
, (15)

〈2‖μ‖3〉 and 〈1‖μ‖2〉 are reduced matrix elements of the
dipole moment operator, and

ξ = k21Z0.

We assume that k̂A is characterized by spherical coordi-
nates �A = (θA, φA) and k̂B by spherical coordinates �B =
(θB, φB). In that case, the matrix elements appearing in
Eqs. (11) are

H ( j)
mkλ

A,3
= i

(
h̄ω32

2ε0V

)1/2

〈2‖μ‖3〉Hλ
Am(�A)e−ikA·R j , (16a)

H ( j)
1kλ

B,m
= i

(
h̄ω21

2ε0V

)1/2

〈1‖μ‖2〉Hλ
Bm(�B)e−ikB·R j , (16b)

where values for Hλ
Am(�A) and Hλ

Bm(�B) are listed in Ap-
pendix A.

The solution of Eq. (11a) is

c31(t ) = c31(0)e−γ3t/2, c13(t ) = c13(0)e−γ3t/2eiκZ0 , (17)

which, when substituted into Eqs. (11), allows us to calculate

c1m;kλ
A
(t ) =

(
1

2ih̄

)[
H (1)

mkλ
A,3

Am(t )c31(0)

+ H (2)
mkλ

A,3
Bm(t )eiκZ0 c13(0)

]
, (18a)

cm1;kλ
A
(t ) =

(
1

2ih̄

)[
H (2)

mkλ
A,3

Am(t )eiκZ0 c13(0)

+ H (1)
mkλ

A,3
Bm(t )c31(0)

]
, (18b)

ckλ
A,kλ′

B
(∞) = 1

ih̄

∫ ∞

0
dt

[
H (1)

1kλ′
B ,m

cm1;kλ
A
(t ) + H (2)

1kλ′
B ,m

c1m;kλ
A
(t )

]
× e−i(ω21−ωkB )t , (18c)

where

Am(t ) =
∫ t

0
dt ′e−i(ω32−ωkA )t ′

e−γ3t ′/2

× [
e−(γ2+γm )(t−t ′ )/2 + e−(γ2−γm )(t−t ′ )/2], (19a)

Bm(t ) =
∫ t

0
dt ′e−i(ω32−ωkA )t ′

e−γ3t ′/2

× [
e−(γ2+γm )(t−t ′ )/2 − e−(γ2−γm )(t−t ′ )/2]. (19b)

The joint probability per unit solid angle squared,
P(αA,αB; �A,�B), to emit [a photon on the upper transition
having polar coordinates �A = (θA, φA) and polarization
αA = θ̂A, φ̂A] + [a photon on the lower transition having polar
coordinates �B = (θB, φB) and polarization αB = θ̂B, φ̂B] is
given by

P(αA,αB; �A,�B) ≈ Vω2
21
ω2

32

h̄4(2πc)6

×
∫ ∞

0
dωkB

∫ ∞

0
dωkA

∣∣ckαA
A ,kαB

B
(∞)

∣∣2
,

(20)
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where

θ̂α = cos θα cos φα x̂ + cos θα sin φα ŷ − sin θα ẑ, (21)

φ̂α = − sin φα x̂ + cos φα ŷ, (22)

for α = A, B. There is now a lot of algebra involved to obtain
the final expressions for ckλ

A,kλ′
B

(∞) and P(αA,αB; �A,�B).
Within the Weisskopf-Wigner approximation (evaluating fre-
quencies appearing as factors in Eq. (20) at the atomic
transition frequencies, and extending the integrals over ωkB

and ωkA to −∞), we find

P(αA,αB; �A,�B) = 3

64π2

[
F1JαA,αB + F2KαA,αB + F3LαA,αB

+ F4MαA,αα

]
, (23)

where expressions for F , J , K , L, and M are given in Ap-
pendix A.

With the equations given in Appendix A, it can be shown
explicitly that probability is conserved,∑

αA,αB

∫
d�A

∫
d�BP(αA,αB; �A,�B) = 1, (24)

and that the probability distribution PA(αA,�A) for emission
having polarization αA on the upper transition is isotropic and
unpolarized,

PA(αA,�A) =
∑
αB

∫
d�BP(αA,αB; �A,�B) = 1

8π
. (25)

The fact that the radiation emitted on the upper transition
is unpolarized and isotropic can be given a simple physical
interpretation. Suppose atom 1 was in level 3 and atom 2 in
level 2. As a result of the dipole-dipole interaction between the
atoms induced by the vacuum field, the atoms could exchange
their excitation, with atom 1 ending up in level 2 and atom 2
in level 3. However, with a single excitation in the system it
is impossible to have one atom in level 2 and one in level 3.
As a consequence, dipole-dipole interactions play no role in
the emission process on the upper transition, and the radiation
pattern on the upper transition is totally independent of any
excitation exchange between the atoms that occurs on the
lower transition. The radiation pattern on the upper transition
is identical to that for a single atom, which is isotropic and
unpolarized since level 3 has J = 0.

The probability distribution PB(αB,�B) for emission on the
lower transition is given by

PB(αB,�B) =
∑
αA

∫
d�AP(αA,αB; �A,�B) = PB(αB, θB);

(26)
that is, PB(αB,�B) is a function of θB only, owing to the
overall cylindrical symmetry of the excitation fields and atom
geometry. In general, the radiation on the lower transition
is polarized and anisotropic. There is one limit, however, in
which the radiation emitted on the lower transition is unpo-
larized and isotropic. For k21 = k32, κ = 0, c31(0) = c13(0) =
1/

√
2, we shall see that it is possible to prove that the radiation

patterns on the upper and lower transitions are identical. Since
the radiation pattern on the upper transition is isotropic and

unpolarized, it follows that the radiation pattern on the lower
transition is also isotropic and unpolarized .

A. Examples

To reduce the number of free parameters in the following
examples, we shall take k21Z0 = k32Z0 = ξ = 8, and κZ0 =
2ξ (copropagating excitation fields), or κZ0 = 0 (counter-
propagating excitation fields). In general, for this value of ξ ,
there will be a number of Bragg-like resonances for various
values of �A and �B. For comparison’s sake, it will be helpful
to recall that, for a single atom,

P(s)(αA,αB; �A,�B) = 3

64π2
�αA,αB (�A,�B), (27)

where

�θ̂A,θ̂B
(�A,�B) = [cos θA cos θB cos (φA − φB)

+ sin θA sin θB]2, (28a)

�θ̂A,φ̂B
(�A,�B) = cos2 θA sin2 (φA − φB), (28b)

�φ̂A,θ̂B
(�A,�B) = cos2 θB sin2 (φA − φB), (28c)

�φ̂A,φ̂B
(�A,�B) = cos2 (φA − φB). (28d)

1. Copropagating excitation fields

For copropagating fields, we expect that P(αA,αB;
�A,�B) has a constructive interference maximum when θA =
θB = 0. For a single excitation in an ensemble of N atoms
and ξ 	 1, constructive interference can result in an N-fold
increase in the probabilities over the single-atom result (it
is not an N2 increase, since the probability is multiplied by
the initial state probabilities, which vary as 1/N). This fea-
ture is seen in Figs. 2(a) and 2(b), where P(θ̂A, θ̂B; �A,�B)
and P(φ̂A, φ̂B; �A,�B) are plotted as a function of θB for
�A = (0, 0), �B = (θB, 0), and c31(0) = c13(0) = 1/

√
2. The

dashed curves in these figures are the corresponding single-
atom results. Note the ratio of the two probabilities at �A =
�B = (0, 0) is approximately equal to 2.

In Figs. 2(c) and 2(d), we plot P(θ̂A, θ̂B; �A,�B) and
P(φ̂A, φ̂B; �A,�B) as a function of θB for �A = (π/2, 0),
�B = (θB, 0), and c31(0) = c13(0) = 1/

√
2. There is no

longer correlated phase-matched emission in the forward di-
rection, but it is possible to get constructive interference for
those values of θB corresponding to Bragg resonances.

In Fig. 3 we plot the probability densities PB(θ̂B; θB)
and PB(φ̂B; θB) for the radiation pattern on the lower tran-
sition. As can be seen, the emission is both polarized and
anisotropic.

2. Counterpropagating excitation fields

For counterpropagating fields with kB ≈ kA and κ = 0,
P(θ̂A, θ̂B; �A,�B) has a constructive interference maximum
when θB = π − θA. That is, in contrast to the copropagating
case, the constructive interference maximum occurs for any
value �A. This feature is seen in Figs. 4(a) and 4(b), where
P(θ̂A, θ̂B; �A,�B) and P(φ̂A, φ̂B; �A,�B) are plotted as a
function of θB for �A = (0, 0), �B = (θB, 0), and c31(0) =
c13(0) = 1/

√
2. The dashed curves in these figures are the
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FIG. 2. Joint probability density P(θ̂A, θ̂B; �A, �B ) for copropagating excitation fields as a function of θB for ξ = 8, �B = (θB, 0), and
c31(0) = c13(0) = 1/

√
2. (a) αA = θ̂A, αB = θ̂B, �A = (0, 0); (b) αA = φ̂A, αB = φ̂B, �A = (0, 0); (c) αA = θ̂A, αB = θ̂B, �A = (π/2, 0);

(d) αA = φ̂A, αB = φ̂B, �A = (π/2, 0). The dashed curves are the single-atom result.

corresponding single-atom results. Note that the ratio of the
two probabilities at �B = (π, 0) is approximately equal to 2
and that there are additional Bragg resonances that also occur.

In Figs. 4(c) and 4(d) we plot P(θ̂A, θ̂B; �A,�B) and
P(φ̂A, φ̂B; �A,�B) as a function of θB for �A = (π/2, 0),
�B = (θB, 0), and c31(0) = c13(0) = 1/

√
2. Now, the major

constructive interference occurs for θB = π − θA = π/2, in
addition to other Bragg resonances.

The probability densities PB(θ̂B; θB) and PB(φ̂B; θB) for the
radiation pattern on the lower transition are both equal to 1/8π

if c31(0) = c13(0) = 1/
√

2; that is, the emission is isotropic
and unpolarized. In contrast, if we take as our initial condition
c31(0) = 1 and c13(0) = 0, the symmetry is broken and the
radiation pattern becomes polarized and anisotropic. This is
seen in Fig. 5, where we plot PB(θ̂B; θB) and PB(φ̂B; θB) as a
function of θ for c31(0) = 1, c13(0) = 0.

FIG. 3. Lower transition probability densities PB(θ̂B; θB ) and
PB(φ̂B; θB ) for copropagating excitation fields as a function of θB

for ξ = 8 and c31(0) = c13(0) = 1/
√

2. The dotted line is the single-
atom result.

III. N ATOMS

The calculation can be extended, at least formally, to an
ensemble of N fixed atoms. In an interaction representation,
the Hamiltonian for N atoms is given by Eq. (1), with the
sum over j extended from 2 to N . Each atom is assumed to
have been prepared in a superposition of levels 1 and 3. We
consider an initial state vector for which there is a phased,
single excitation in the ensemble,

|ψ (0)〉 =
N∑

j=−1

c j3(0)eiκ·R j |3 j〉, (29)

where |3 j〉 is the state in which atom j is in state 3 and all the
other atoms are in their ground state, c j3(0) is the initial state
amplitude for atom j to be in level 3, and

N∑
j=1

|c j3(0)|2 = 1. (30)

For a symmetric phased state,

csym
j3 (0) = 1/

√
N . (31)

For this initial state vector, we can write the state vector at
any time as

|ψ (t )〉 =
N∑

j=1

c j3(t )|3 j〉e−iω31t

+
1∑

m=−1

N∑
j=1

∑
kλ

A

c jm;kλ
A
(t )

∣∣mj ; kλ
A

〉
e−i(ωB+ωkA )t

+
N∑

j=1

∑
kλ

A,kλ′
B

ckλ
A,kλ′

B
(t )

∣∣kλ
A, kλ′

B

〉
e−i(ωkB +ωkA )t , (32)
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FIG. 4. Joint probability density P(θ̂A, θ̂B; �A, �B ) for counterpropagating excitation fields as a function of θB for ξ = 8, �B = (θB, 0),
and c31(0) = c13(0) = 1/

√
2. (a) αA = θ̂A, αB = θ̂B, �A = (0, 0); (b) αA = φ̂A, αB = φ̂B, �A = (0, 0); (c) αA = θ̂A, αB = θ̂B, �A = (π/2, 0);

(d) αA = φ̂A, αB = φ̂B, �A = (π/2, 0). The dashed curves are the single-atom result.

where |mj ; kλ
A〉 is a ket for atom j to be in sublevel m of level

2 and to have a photon emitted having propagation vector kA

and polarization λ, and |kλ
A, kλ′

B 〉 is the ket corresponding to all
atoms in level 1 and photons kλ

A and kλ′
B in the radiation field.

The state amplitudes evolve as [14]

ċ j3 = −γ3

2
c j3, (33a)

ċ jm;kλ
A

= −γ2

2
c jm;kλ

A
− γ2

2

1∑
m=−1

N∑
j′=1

(1 − δ j, j′ )

× Gmm′ (R j j′ )c j′m′;kλ
A

+
(

1

ih̄

)
H ( j)

mkλ
A,3

e−i(ω32−ωkA )t c j3 (33b)

ċkλ
A,kλ′

B
= 1

ih̄

1∑
m=−1

N∑
j=1

H ( j)

1kλ′
B ,m

c jm;kλ
A
e−i(ω21−ωkB )t , (33c)

FIG. 5. Lower transition probability densities PB(θ̂B; θB ) and
PB(φ̂B; θB ) for counterpropagating excitation fields as a function of
θB for ξ = 8 and c31(0) = 1; c13(0) = 0. The dotted line is the single-
atom result.

where the propagators

Gmm′ (R j j′ ) = Gmm′ (R j′ j ) (34)

are listed in Appendix A and the H matrix elements are given
by Eqs. (16).

We now define a 3N × 3N matrix G having matrix ele-
ments

Gjm; j′m′ = Gmm′ (R j j′ )(1 − δ j, j′ ), (35)

an intermediate state column vector c2(t ) having matrix ele-
ments c jm;kλ

A
(t ), and an initial state column vector c0(t ) having

matrix elements ( 1
ih̄ )H ( j)

mkλ
A,3

e−i(ωA−ωkA )t eiκ·R j c j3(0). The solu-

tion of Eq. (33b) is then

c2(t ) =
∫ t

0
dt ′V(t − t ′)e−γ3t ′/2c0(t ′), (36)

where

V(t ) = e−γ2t/2e−γ2Gt/2, (37)

having matrix elements Vjm, j′m′ . The formal solution for
ckλ

A,kλ′
B

(∞) is

ckλ
A,kλ′

B
(∞) = 1

ih̄

1∑
m=−1

N∑
j=1

H ( j)

1kλ′
B ,m

×
∫ ∞

0
c jm;kλ

A
(t )e−i(ω21−ωkB )t dt . (38)
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In forming
∫ ∞

0 dωkB

∫ ∞
0 dωkA |ckλ

A,kλ′
B

(∞)|2, we encounter terms of the type

∫ ∞

0
dωkB

∫ ∞

0
dωkA

∫ ∞

0
dte−i(ω21−ωkB )t

∫ t

0
dt ′Vim, jm′ (t − t ′)e−i(ω32−ωkA )t ′

e−γ3t ′/2

×
∫ ∞

0
dt ′′ei(ω21−ωkB )t ′′

∫ t ′′

0
dt ′′′[Vi′m̄, j′m̄′ (t ′′ − t ′′′)]∗ei(ω32−ωkA )t ′′′

e−γ3t ′′′/2.

If the frequency integrals are extended to −∞, this expression reduces to

4π2
∫ ∞

0
dt

∫ ∞

0
dt ′′

∫ t

0
dt ′

∫ t ′′

0
dt ′′′Vim, jm′ (t − t ′)

[
Vi′m̄, j′m̄′ (t ′′ − t ′′′)

]∗

× e−γ3t ′/2e−γ3t ′′′/2δ(t − t ′′)δ(t ′ − t ′′′) = 4π2Vim, jm′;i′m̄, j′m̄′ , (39)

where

V (im, jm′; i′m̄, j′m̄′) = γ2γ3

∫ ∞

0
dt

∫ t

0
dt ′Vim, jm′ (t − t ′)[Vi′m̄, j′m̄′ (t − t ′)]∗e−γ3t ′

=
∫ ∞

0
dxVim, jm′

(
x

γ2

)[
Vi′m̄, j′m̄′

(
x

γ2

)]∗
. (40)

Combining Eqs. (36)–(40), we obtain

P(αA,αB; �A,�B) = 27

64π2
H (αA,αB,�A,�B, m, m′, m̄, m̄′)V (im, jm′; i′m̄, j′m̄′)

× F (k32, k21, κ,�A,�B, i, j, i′, j′)c j3(0)[c j′3(0)]∗, (41)

where

H (αA,αB,�A,�B, m, m′, m̄, m̄′) = HαB
Bm(�B)HαA

Am′ (�A)
[
HαB

Bm̄(�B)HαA
Am̄′ (�A)

]∗
, (42)

F (k32, k21, κ,�A,�B, i, j, i′, j′) = eiκZ j j′ e−ik21k̂B·Rii′ e−ik32k̂A·R j j′ , (43)

and

R j j′ = R j′ − R j . (44)

A summation convention is used in Eq. (41), where all repeated indices are summed with the sums over m, m′, m̄, m̄′ going
from -1 to 1 and the sums over i, j, i′, j′ going from 1 to N . It turns out that, for kRj j′ 	 1, the major contributions to
P(αA,αB; �A,�B) originate from terms having {i = j, i′ = j′, m = m′, m̄ = m̄′}. In other words, the dominant contribution is
from cascade emission in the same atom through the same magnetic sublevel (modified by dipole-dipole interactions).

The spatial phase factor defined in Eq. (43) is equal to unity when i = j and i′ = j′ for copropagating excitation fields if θA =
θB = 0 and for counterpropagating excitation fields if (θB = π − θA, φB = φA + π ). In summing over i, j, i′, j′ in Eq. (41), this
can lead to an enhancement factor of N in the probability density over the single-atom result for a completely phased symmetric
initial state, c j3(0) = 1/

√
N . In other words, the maximum constructive interference we can expect for P(αA,αB; �A,�B) is N

times the single-atom result.
Computationally, it becomes time consuming to evaluate Eq. (40) for even three atoms placed at arbitrary positions since it

involves the diagonalization of a 9 × 9 matrix for each value of x. On the other hand, we might ask if there are any symmetry
relations that can be used to determine whether or not the emission on the lower transition remains isotropic and unpolarized
when k21 = k32 = k, κ = 0, c j3(0) = 1/

√
N . For example, from symmetry considerations, it follows that

H (αA,αB,�A,�B, m, m′, m̄, m̄′) = (−1)(m+m′+m̄+m̄′ )H (αA,αB,�B,�A,−m′,−m,−m̄′,−m̄), (45a)

F (k, k, 0,�A,�B, i, j, i′, j′) = F (k, k, 0,�B,�A, j, i, j′, i′), (45b)

Gjm; j′m′ = (−1)(m+m′ )Gj,−m′; j′,−m (45c)

V (im, jm′; i′m̄, j′m̄′) = (−1)(m+m′+m̄+m̄′ )V ( j,−m′, i,−m; j′,−m̄′, i′,−m̄). (45d)

When these expressions are used in Eq. (41), we find that

P(αA,αB; �A,�B) = P(αB,αA; �B,�A), (46)

053714-7



P. R. BERMAN AND A. KUZMICH PHYSICAL REVIEW A 109, 053714 (2024)

which, in turn, implies that

PA(θ̂,�) =
∫

d�′[P(θ̂, θ̂
′
; �,�′) + P(θ̂, φ̂

′
; �,�′)]

=
∫

d�′[P(θ̂
′
, θ̂, ; �′,�) + P(φ̂

′
, θ̂; �′,�)] = PB(θ̂,�), (47a)

PA(φ̂,�) =
∫

d�′[P(φ̂, θ̂
′
; �,�′) + P(φ̂, φ̂

′
; �,�′)]

=
∫

d�′[P(θ̂
′
, φ̂; �′,�) + P(φ̂

′
, φ̂; �′,�)] = PB(φ̂,�); (47b)

that is, the polarizations and angular distributions on both
transitions are identical. Since the upper state transition radia-
tion is unpolarized and isotropic, it then follows that the lower
transition radiation is also unpolarized and isotropic when
k21 = k32 = k, κ = 0, c j3(0) = 1/

√
N . In Appendix B, we

present a direct calculation of PB(φ̂,�) for large interatomic
separations in order to illustrate how the signal becomes un-
polarized and isotropic in these limits.

A. Example

We can test to see if the superradiant directional emission
found by Miroshnychenko et al. [13] also occurs for our level
scheme. To do so, we consider an array of fixed atoms that are
equally spaced in the x, y, and z directions. That is, atom j is
specified by {nx, ny, nz, d} with

R j = d[(nx − 1)x̂ + (ny − 1)ŷ + (nz − 1)ẑ] (48)

and 1 � nq � Nq (q = x, y, z). The total number of atoms in
the array is given by N = NxNyNz. To simplify matters, we
restrict the discussion to c j3(0) = 1/

√
N and k21 = k32 = k.

Let us neglect interactions for the moment. In that case,

V (im, jm′; i′m̄, j′m̄′) = δi, jδm,m′δi′ j′δm̄,m̄′ (49)

and Eq. (41) reduces to

P0(αA,αB, ; �A,�B)

= 3

64Nπ2
�αA,αB (�A,�B)F (k, κ,�A,�B), (50)

where

F (k, κ,�A,�B)

= sin2
[Nxkd

2 (sin θA cos φA + sin θB cos φB)
]

sin2
[

kd
2 (sin θA cos φA + sin θB cos φB)

]

×
sin2

[
Nykd

2 (sin θA sin φA + sin θB sin φB)
]

sin2
[

kd
2 (sin θA sin φA + sin θB sin φB)

]
× sin2

[Nzkd
2 (cos θA + cos θB − κ/k)

]
sin2

[
kd
2 (cos θA + cos θB − κ/k)

] (51)

and the �αA,αB (�A,�B) are given in Eqs. (28). Most of the
directional properties of the emission are determined by the
factor F (k, κ,�A,�B). We note immediately that, for coun-
terpropagating fields (κ = 0), the principal resonance occurs
only for θB = π − θA, φB = φA + π . That is, in contrast to

the two-atom case (or for N atoms on a line) where con-
structive interference occurs for any value of φ provided that
θB = π − θA, the principal resonance for a three-dimensional
array with k21 = k32 occurs only if the fields radiated
on the upper and lower transitions propagate in opposite
directions.

To illustrate the physics, we now consider only copropagat-
ing fields (κ = 2k) and calculate the joint probability density
as a function of �B when �A = (0, 0). In that limit,

F (k, 2k, 0,�B) = sin2
[Nxkd

2 sin θB cos φB
]

sin2
[

kd
2 sin θB cos φB

]

×
sin2

[
Nykd

2 sin θB sin φB

]
sin2

[
kd
2 sin θB sin φB

]

× sin2
[Nzkd

2 (1 − cos θB)
]

sin2
[

kd
2 (1 − cos θB)

] . (52)

We can understand the qualitative nature of the result if we
set φB = 0. The principle phase-matched emission occurs for
θB = 0, resulting in F = N2. Secondary Bragg resonances
can occur if either or both of kd

2 sin θB or kd
2 (1 − cos θB) is

an integral multiple of π , but, in general, their amplitude is
less than that of the principal resonance. If both are integral
multiples of π , as could be the case if kd is an integral multiple
of 2π and θB = π/2 or π , then F = N2, the same amplitude
as that of the principle phase-matched signal.

The expression given in Eq. (50) is essentially the RE
approximation, when divided by a normalization constant

W (�A) = �2(�A)/γ2 = 4π
∑
αA,αB

∫
d�BP0(αA,αB; �A,�B),

(53)

where �2(�A) is some effective decay constant for the ar-
ray that depends on the direction of observation of the first
photon. For example, with Nx = 2, Ny = 2, Nz = 5 (N = 20),
and kd = 5, �2[�A = (0, 0)]/γ2 = 1.19, a decay rate that is
somewhat superradiant.

We now look at the corresponding exact result, including
interactions, for the same parameters. If kRj j′ � 5, it be-
comes computationally efficient to replace the exponential in
Eq. (37) with its series expansion. It is then possible to carry
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FIG. 6. Joint probability density P(φ̂A, φ̂B; �A, �B ) for an array
of 20 atoms (2 × 2 × 5) for copropagating excitation fields as a
function of θB for kd = 5, �A = (0, 0), �B = (θB, 0), and c j3(0) =
1/

√
20. The dashed line is the Rehler-Eberly approximation, given

by Eq. (55).

out the integration over time in Eq. (40) to arrive at

V (im, jm′; i′m̄, j′m̄′)

= γ2γ3

∫ ∞

0
dt

∫ t

0
dt ′Vim, jm′ (t − t ′)[Vi′m̄, j′m̄′ (t − t ′)]∗e−γ3t ′

=
pmax∑
p=0

p∑
q=0

(
p

q

)(γ2

2

)q
(V q)im, jm′ (V p−q)i′m̄, j′m̄′ , (54)

where
(p

q

)
is a binomial coefficient and pmax is chosen to

assure convergence. In Fig. 6, the solid red curve is a plot
P(θ̂A, θ̂B; �A,�B) as a function of θB for Nx = 2, Ny = 2,
Nz = 5, kd = 5, and c j3(0) = 1/

√
20 with pmax = 8. The

principle phase-matched resonance at θB = 0 is seen, as is the
Bragg resonance that occurs for

kd

2
(1 − cos θB) = 5

2
(1 − cos θB) = π,

or θB ≈ 1.83. The fraction of correlated radiation emitted in
the forward, phase-matched direction is 0.455 and the frac-
tion of energy in the Bragg peak is 0.484. The fraction of
energy in both peaks is about 0.94. That is, most of the signal
originates from the phase-matched contributions, even if the
emission is only slightly superradiant (�2[�A = (0, 0)]/γ2 =
1.19). In other words, we must distinguish between spa-
tial superradiance and temporal superradiance. For example,
in typical phase-matched coherent transients there is spatial
superradiance since the signal is proportional to N2 in the
phase-matched direction, but there is essentially no temporal
superradiance since the excitation decay rate is approximately
that of a single atom.

In Fig. 6, the dashed curve is the normalized joint proba-
bility density,

P̃0(φA,φB; 0, 0; θB, 0) = P0(φA,φB; 0, 0; θB, 0)/1.19. (55)

As can be seen, the RE approximation provides a very good
approximation to the exact result for the joint probability
density. As such, one can get a good idea of the features of
the joint probability distribution without carrying out exten-
sive calculations. However, if we were to calculate the upper
state probability density PA(αA,�) given by Eq. (25) using

P̃0(αA; �A), we would find that it incorrectly leads to a signal
that is polarized and anisotropic, whereas the exact result
PA(αA; �A) leads to a signal that is isotropic and unpolarized.
Moreover, if we were to calculate the radiation pattern for
emission on the lower transition for counterpropagating exci-
tation fields with k21 = k32 = k, κ = 0, and c j3(0) = 1/

√
N ,

we would find that it is unpolarized, but anisotropic, whereas
the exact radiation pattern is both unpolarized and isotropic.

The RE approximation can be used to get a good idea of the
emission pattern when the number of atoms in each direction
is much greater than unity. As an example, consider

P̃0(φA,φB; 0, 0; θB, 0) = 3

64NxNzπ2

sin2
[Nxkd

2 sin θB
]

sin2
[

kd
2 sin θB

]
× sin2

[Nzkd
2 (1 − cos θB)

]
sin2

[
kd
2 (1 − cos θB)

] ,

when both Nx and Nz are much greater than unity. In this limit,
the value of P̃0(φA,φB; 0, 0; θB, 0) is negligibly small, except
at positions of the resonances. In other words, the correlated
signal is confined to the phase-matched peaks. Moreover, if
kd is not a multiple of 2π , the amplitude of the principal
resonance at θB = 0 is Nx or Nz times larger than that of the
Bragg resonances. However, unless Nz 	 N2

x , the principal
resonance will contain only about 50% of the signal, since
the width of the Bragg resonance is larger than that of the
principal resonance. For example, when Nx = 8, Nz = 20,
and kd = 10, the principal resonance contains about 47% of
the signal. On the other hand, when Nx = 8, Nz = 200, and
kd = 10, it contains about 90% of the signal and the emission
is temporally superradiant (�2[�A = (0, 0)]/γ2 = 6.65)

B. N Atoms on a line

The problem simplifies considerably when all the atoms
are located on the z axis. In that case, excitation exchange
occurs only between magnetic sublevels of different atoms
having the same magnetic quantum number. As a con-
sequence, the Gjm, j′m′ are proportional to δm,m′ and the
V (im, jm′; i′m̄, j′m̄′) to δm,m′δm̄,m̄′ . As a consequence, Eq. (41)
reduces to

P(αA,αB; �A,�B)

= 27

64π2
H (αA,αB,�A,�B, m, m, m′, m′)

× V (im, jm; i′m′, j′m′)

× F (k32, k21, κ,�A,�B, i, j, i′, j′)c j3(0)[c j′3(0)]∗,
(56)

with

F (k32, k21, κ,�A,�B, i, j, i′, j′)

= eiκZ j j′ e−ik21Zii′ cos θB e−ik32Z j j′ cos θA . (57)

In the examples below, we set k21 = k32 = k, and κ = 2k (co-
propagating excitation fields), or κ = 0 (counterpropagating
excitation fields). We limit the calculation to an array of N
atoms equally spaced along the z axis, with a separation d
between adjacent atoms, and define ξ = kd . The initial state
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FIG. 7. Joint probability density P̃0(αA, αB; x) for copropagating excitation fields as a function of x = cos θB for �A = (0, 0), �B = (θB, 0),
ξ = 20, N = 20, and c3 j (0) = 1/

√
20. (a) Copropagating, (αA, αB ) = (θ̂A, θ̂B ); (b) copropagating, (αA, αB ) = (φ̂A, φ̂B ); (c) counterpropagat-

ing, (αA,αB ) = (θ̂A, θ̂B ); and (d) counterpropagating, (αA, αB ) = (φ̂A, φ̂B ). The dashed curves are the single-atom result.

is taken to be a fully symmetric phased state, with c j3(0) =
1/

√
N .

We restrict the discussion to the limit in which N and ξ are
much greater than unity. If ξ 	 1, the radiation emitted on the
lower transition is approximately uniform and unpolarized.
Moreover, the RE approximation can be expected to provide
an excellent approximation to the exact results for the joint
probability density. For this geometry, the RE approximation
is

P̃0(αA,αB; �A,�B)

= 3

64Nπ2W (�A)
�αA,αB (�A,�B)F (k, κ,�A,�B), (58)

where

F (k, κ,�A,�B) = sin2
[

Nkd
2 (cos θA + cos θB − κ/k)

]
sin2

[
kd
2 (cos θA + cos θB − κ/k)

] ;

(59)
the �αA,αB (�A,�B) are given in Eqs. (28) and W (�A) by
Eq. (53). If ξ 	 1, W (�A) ≈ 1.

1. Copropagating excitation fields

For copropagating excitation fields, we set κ = 2k and
�A = (0, 0). In that limit

P̃0(θ̂A, θ̂B; x) = 3

64Nπ2W (0)
cos2 θB cos2 φBF (ξ, x), (60a)

P̃0(θ̂A, φ̂B; x) = 3

64Nπ2W (0)
sin2 φBF (ξ, x), (60b)

P̃0(φ̂A, θ̂B; x) = 3

64Nπ2W (0)
cos2 θB sin2 φBF (ξ, x), (60c)

P̃0(φ̂A, φ̂B; x) = 3

64Nπ2W (0)
cos2 φBF (ξ, x), (60d)

where

F (ξ, x) = sin2
[Nξ

2 (1 − x)
]

sin2
[

ξ

2 (1 − x)
] , (61)

and x = cos θB. The principal resonance occurs for x = 1
(θB = 0), and additional Bragg resonances when

xq = 1 − 2qπ

ξ
; q = 1, 2....Int

(
ξ

π

)
,

where Int (y) is the integer part of y. In other words, there
is a total of [1 + Int(ξ/π )] resonances. If N and ξ are much
greater than unity, the resonances are resolved, since the width
of each Bragg resonance is �x = 4π/Nξ (the width of the
principal resonance is 2π/Nξ ) and adjacent resonances are
separated by xq+1 − xq = 2π/ξ .

In Figs. 7(a) and 7(b), P̃0(θ̂A, θ̂B; �A,�B) and P̃0(φ̂A,

φ̂B; �A,�B) are plotted as a function of x = cos θB for ξ =
20, N = 20, W (0) = 1.03, �B = (θB, 0), �A = (0, 0), and
c3 j (0) = 1/

√
20. The dashed curves in these figures are the

corresponding single-atom results. The maximum ratio of the
two probabilities at the resonance positions, x = x j, is approx-
imately equal to 20, as expected for maximum constructive
interference. The fraction of the signal in the forward peak is
0.071. However, the fraction of the signal contained in all the
resonances is 0.905 for P̃0(φ̂A, φ̂B) and 0.908 for P̃0(θ̂A, θ̂B),
which are a general result when N and ξ are much greater than
unity. In other words, although each resonance contains a frac-
tion of the signal that is proportional to 1/ξ , the total number
of resonances scales with ξ , so that the fraction of the signal in
all the resonance becomes independent of ξ for ξ 	 1. Note
that, even though the signal is confined to the phase-matched
peaks, the emission is not temporally superradiant, W (0) ≈ 1.
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2. Counterpropagating excitation fields

For counterpropagating excitation fields, we set κ = 0 and
�A = (π/2, 0). In that limit,

P̃cp
0 (θ̂A, θ̂B; x) = 3

64Nπ2W (0)
sin2 θBF cp(ξ, x), (62a)

P̃cp
0 (θ̂A, φ̂B; x) = 0, (62b)

P̃cp
0 (φ̂A, θ̂B; x) = 3

64Nπ2W (0)
cos2 θB sin2 φBF cp(ξ, x),

(62c)

P̃cp
0 (φ̂A, φ̂B; x) = 3

64Nπ2W (0)
cos2 φBF cp(ξ, x), (62d)

where

F cp(ξ, x) = sin2 [Nξx/2]

sin2 [ξx/2]
. (63)

There is the principal resonance when x = 0 (θB = π/2) and
additional Bragg resonances when

xq = ±2qπ

ξ
; q = 1, 2....Int

(
ξ

2π

)
.

As for copropagating excitation fields, there is a total of [1 +
Int(ξ/π )] resonances.

In Figs. 7(c) and 7(d), P̃0(θ̂A, θ̂B; �A,�B) and P̃0(φ̂A, φ̂B;
�A,�B) are plotted as a function of x for �A = (π/2, 0), ξ =
20, N = 20, W (0) = 1.03, �A = (π/2, 0), �B = (θB, 0), and
c3 j (0) = 1/

√
20. The dashed curves in these figures are the

corresponding single-atom results. The maximum ratio of the
two probabilities at the resonance positions, x = x j , is approx-
imately equal to 20, as expected for maximum constructive
interference. The fraction of the signal contained in all the
resonances is 0.975 for P̃0(φ̂A, φ̂B) and 0.908 for P̃0(θ̂A, θ̂B).

IV. DISCUSSION

We have studied cascade emission from an ensemble of
N fixed atoms having a J = 0 − 1 − 0 level scheme. The
atoms are prepared in a spatially phased superposition of their
ground and upper states, and they share a single excitation.
The time-integrated radiation pattern can be characterized by
two distinct, but related, probability densities. First, there is
the conditional joint probability density P(αA,αB; �A,�B)
that [a photon is emitted on the upper transition having po-
larization αA and direction k̂A = �A = (θA, φA)] + [a photon
is emitted on the lower transition having polarization αB

and direction k̂B = �B = (θB, φB)]. In addition, there are the
individual probability densities PA(α̂A; �A) and PB(α̂B; �B)
that a photon is emitted on the upper or lower transition, re-
spectively, having polarization α̂ and direction �α = (θα, φα ).
We have seen that the Rehler-Eberly approximation leads to
good agreement with the exact results for the joint probabil-
ity density, even if it can lead to unphysical results for the
radiation patterns emitted on the upper and lower transitions
separately.

The conditional joint probability density is characterized
by two components. First, there is a contribution that cor-
responds to a superposition from individual atoms in which
the emission on the upper and lower transitions originates

from the same atoms. This contribution can be phase matched,
with P(αA,αB; �A,�B) proportional to N for the principal
phase-matched signal. For copropagating excitation fields,
the principal phase-matched signal occurs when the radia-
tion on both transitions is emitted in the direction of the
incident fields, even if k21 and k32 differ. In the case
of counterpropagating excitation fields, the principal phase-
matched signal occurs only if k21 ≈ k32 and k̂B ≈ −k̂A for
a three-dimensional atomic ensemble. In contrast to the co-
propagating case, phase matching can occur for any direction
of emission of the radiation on the upper transition. For the
phase-matched emission to be optimal with either co- or
counterpropagating excitation fields, the atoms must be pre-
pared in a symmetric phased state. In addition to the principle
phase-matched signals, there can be secondary phase-matched
signals at angles for which the Bragg condition is satisfied. It
should be noted that the phase-matched component, although
arising from emission on the upper and lower transitions from
the same atoms, is still affected by excitation exchange be-
tween the atoms.

The second contribution to the conditional joint probabil-
ity density is a sum of terms in which radiation is emitted
on the upper transition in one atom, taking that atom to its
intermediate state, followed by a transfer of this interme-
diate state excitation to another atom via the dipole-dipole
interaction which, in turn, radiates on the lower transition.
This term is generally much smaller than the first contribu-
tion for interatomic separations that are much larger than a
wavelength.

The radiation on the upper transition is isotropic and un-
polarized, whereas the radiation on the lower transition can
be polarized and anisotropic. However, the radiation on the
lower transition becomes isotropic and unpolarized if k21 ≈
k32, k̂B ≈ −k̂A, κ = 0, and c3 j (0) = 1/

√
N (fully symmetric

initial state). One can use angular momentum conservation to
understand why the radiation on the lower transition must be
isotropic if it is unpolarized. Initially, the atomic angular mo-
mentum of the atoms is equal to zero. Thus, the total angular
momentum (spin plus orbital) of the radiated fields must also
vanish. The emission on the upper transition is both isotropic
and unpolarized—the angular momentum associated with this
radiation vanishes. As a consequence, the angular momentum
of the emission of the lower transition must also vanish. If the
radiation is isotropic, it has zero orbital angular momentum,
so it must also have zero spin angular momentum—it is un-
polarized. When any of the conditions k21 ≈ k32, k̂B ≈ −k̂A,
κ = 0, and c3 j (0) = 1/

√
N are violated, the overall symmetry

is broken and the radiation emitted on the lower transi-
tion is both unpolarized and anisotropic in just the manner
needed to ensure that the total angular momentum of the field
vanishes.

Our results are applicable in settings involving cascade
emission in atomic arrays, with potential applications in quan-
tum information protocols. For example, we have shown that
phase-matched emission into the largest possible solid angle, a
desirable feature for a wave-vector-multiplexed protocol such
as the one discussed in Ref. [15], is achieved using coun-
terpropagating excitation fields on transitions having nearly
equal frequencies (e.g., the 780–776-nm ladder scheme in
rubidium). More generally, we have provided a framework
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that fully incorporates both the magnetic state substructure of
the relevant transitions and the polarizations of the radiated
fields.
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APPENDIX A: VALUES OF Hλ
Am(�A), Hλ

Bm(�B), Fj , JαA,αB , KαA,αB , LαA,αB , MαA,αB , AND Gi j (R)

The values for Hλ
Am(�A) and Hλ

Bm(�B) are given by

H θ
Am(�A) = −e−iφA cos θA√

6
δm,1 + eiφA cos θA√

6
δm,−1 − sin θA√

3
δm,0, (A1a)

Hφ
Am(�A) = i

e−iφA

√
6

δm,1 + i
eiφA

√
6

δm,−1 + 0δm,0, (A1b)

H θ
Bm(�B) = eiφB cos θB√

6
δm,1 − e−iφB cos θB√

6
δm,−1 + sin θB√

3
δm,0, (A1c)

Hφ
Bm(�B) = i

eiφB

√
6

δm,1 + i
e−iφB

√
6

δm,−1 + 0δm,0. (A1d)

Note that

Hλ
Bm(�B) = −[

Hλ
Am(�B)

]∗
.

The values of F , J , K , L, and M are given by [14]

F1 = ([c13(0)]2 + [c31(0)]2) + 2c13(0)c31(0) cos [(κ − k32 cos θA − k21 cos θB)Z0], (A2a)

F2 = ([c13(0)]2 + [c31(0)]2) + 2c13(0)c31(0) cos [(κ − k32 cos θA + k21 cos θB)Z0], (A2b)

F3 = 2([c13(0)]2 + [c31(0)]2) cos (k21Z0 cos θB) + 4c13(0)c31(0) cos (κZ0 − k32Z0 cos θA), (A2c)

F4 = −2([c31(0)]2 − [c13(0)]2) cos (k21Z0 cos θB), (A2d)

and

Jθ̂A,θ̂B
= cos2 θA cos2 θB cos2 (φA − φB)(

1 − p2
1

)(
1 + q2

1

) (
2 − p2

1 + q2
1

)

+ sin2 θA sin2 θB(
1 − p2

0

)(
1 + q2

0

)(
2 − p2

0 + q2
0

)

+4 cos (φA − φB) sin (2θA) sin (2θB) Re

[
4 − (p0 + iq0)2 − (p1 − iq1)2

D

]
, (A3a)

Kθ̂A,θ̂B
=

[(
p2

1 + q2
1

)cos2 θA cos2 θB cos2 (φA − φB)(
1 − p2

1

)(
1 + q2

1

) + (
p2

0 + q2
0

) sin2 θA sin2 θB(
1 − p2

0

)(
1 + q2

0

)
]

+8 cos (φA − φB) sin (2θA) sin (2θB) Re

[
(p0 + iq0)(p1 − iq1)

D

]
, (A3b)

Lθ̂A,θ̂B
= −p1

cos2 θA cos2 θB cos2 (φA − φB)

1 − p2
1

− p0
sin2 θA sin2 θB

1 − p2
0

+ (p1 + p0)
[−4 + (p1 + p0)2 + (q1 − q0)2

]
cos (φA − φB) sin (2θA) sin (2θB)[

(2 + p1 + p0)2 + (q1 − q0)2
][

(2 − p1 − p0)2 + (q1 − q0)2
] , (A3c)

Mθ̂A,θ̂B
= q1

cos2 θA cos2 θB cos2 (φA − φB)

1 + q2
1

+ q0
sin2 θA sin2 θB

1 + q2
0

+ (q1 + q0) cos (φA − φB) sin (2θA) sin (2θB)

2
[
(2 − p1 + p0)2 + (q1 + q0)2

][
(2 + p1 − p0)2 + (q1 + q0)2

] , (A3d)
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where

D = [−2 + p1 + p0 − i(q1 − q0)][2 + p1 + p0 − i(q1 − q0)]

× [2 − p1 + p0 + i(q1 + q0)][−2 − p1 + p0 + i(q1 + q0)]. (A4)

For αA,αB �= θ̂A, θ̂B

JαA,αB =
(
2 − p2

1 + q2
1

)
(
1 − p2

1

)(
1 + q2

1

)XαA,αB ; KαA,αB =
(
p2

1 + q2
1

)
(
1 − p2

1

)(
1 + q2

1

)XαA,αB , (A5)

LαA,αB = − p1

1 − p2
1

XαA,αB ; MαA,αB = q1

1 + q2
1

XαA,αB , (A6)

with

Xθ̂A,φ̂B
= cos2 θA sin2 (φA − φB), (A7a)

X
φ̂A,θ̂B

= cos2 θ2 sin2 (φA − φB), (A7b)

Xφ̂A,φ̂B
= cos2 (φA − φB). (A7c)

The values of the propagators Gmm′ (R) are given by

G11(R) =
√

4πh0(kBR)Y0,0(R̂) − 1

2

√
4π

5
h2(kBR)Y2,0(R̂), (A8a)

G00(R) =
√

4πh0(kBR)Y0,0(R̂) +
√

4π

5
h2(kBR)Y2,0(R̂), (A8b)

G1,−1(R) = −3

2

√
8π

15
h2(kBR)Y2,2(R̂), (A8c)

G−1,1(R) = −3

2

√
8π

15
h2(kBR)Y2,−2(R̂), (A8d)

G1,0(R) = 3

2

√
4π

15
h2(kBR)Y2,1(R̂), (A8e)

G−1,0(R) = 3

2

√
4π

15
h2(kBR)Y2,−1(R̂), (A8f)

where h� is a spherical Hankel function and Y�,m(R̂) is a spherical harmonic. The remaining Gmj ,m′
s
s are obtained using G−1,−1 =

G11, G0,−1 = −G1,0, and G0,1 = −G−1,0 . Note that Gmm′ (R) = Gmm′ (−R).

APPENDIX B: PERTURBATION SOLUTION

To explore how the emission on the lower transition is isotropic and unpolarized when k21 = k32 = k, κ = 0, c j3(0) = 1/
√

N ,
we consider the limit in which all the interatomic separations are large, ξ j j′ = kRj j′ 	 1 for j �= j′. We set κ = 0, but for the
moment do not set k21 = k32, in order to show why this condition is necessary. We will obtain a solution for the φ̂B component of
the radiation on the lower transition to lowest order in 1/ξ j j′ . An analogous calculation could be carried out for the θ̂ component.

The φ̂ component is given by

PB(φ̂B,�B) = 1

8π
+ 27

64Nπ2

∑
m,m′,m̄,m̄′

∑
i,i′, j, j′

∫
d�A

[
H (θ̂A, φ̂B,�A,�B, m, m′, m̄, m̄′)
+H (φ̂A, φ̂B,�A,�B, m, m′, m̄, m̄′)

]

× V (im, jm′; i′m̄, j′m̄′)e−ik21k̂B·Rii′ e−ik32k̂A·R j j′ . (B1)

In the limit that ξ j j′ 	 1, we can use Eqs. (B1) and (42) to obtain

V (im, jm′; i′m̄, j′m̄′) ≈ [δi, jδm,m′ − (1 − δi, j )Gmm′ (k21, Ri j )/2][δi′ j′δm̄,m̄′ − (1 − δi′, j′ )G
∗
m̄,m̄′ (k21, Ri′ j′ )/2]

≈ δi, jδm,m′δi′ j′δm̄,m̄′ − δi′ j′δm̄,m̄′ (1 − δi, j )Gmm′ (k21, Ri j )/2 − δi, jδm,m′ (1 − δi′, j′ )G
∗
m̄,m̄′ (k21, Ri′ j′ )/2, (B2)
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where the explicit dependence of G on k21 has been indicated. We expand

e−ik32k̂A·R j j′ = 4π

∞∑
�=0

i�Y�m(�A)Y ∗
�m(−R̂ j j′ ) j�(k32Rj j′ ), (B3)

where j� is a spherical Bessel function. Keeping terms to lowest order in 1/ξ j j′ , we then find

PB(φ̂B,�B) ≈ 1

8π
+ 27

64Nπ2

∑
m,m′,m̄,m̄′

∑
i,i′, j, j′

∫
d�A

[
H (θ̂A, φ̂B,�A,�B, m, m′, m̄, m̄′)
+H (φ̂A, φ̂B,�A,�B, m, m′, m̄, m̄′)

]
e−ik21k̂B·Rii′ e−ik32k̂A·R j j′

× {δi, jδm,m′δi′ j′δm̄,m̄′ − δi′ j′δm̄,m̄′ (1 − δi, j )Gmm′ (kB, Ri j )/2 − δi, jδm,m′ (1 − δi′, j′ )G
∗
m̄,m̄′ (kB, Ri′ j′ )/2}. (B4)

In carrying out the integral over �A, only terms with � = 0 and � = 2 contribute,

PB(φ̂B,�B) ≈ 1

8π
+ 1

8Nπ

∑
j, j′

(1 − δ j, j′ )e
−ik21k̂B·Rii′

⎧⎪⎨
⎪⎩

j0(k32Rj j′ )

− 3
32 j2(k32Rj j′ ) sin2 θ j j′ cos[2(φB − φ j j′ )]

− 1
27 j2(k32Rj j′ )[1 + 3 cos(2θ j j′ )]

⎫⎪⎬
⎪⎭

− 1

16Nπ

∑
i, j

(1 − δi, j )e
−ik21k̂B·Rii′

⎧⎪⎨
⎪⎩

h0(k21Ri j )

− 3
32 h2(k21Ri j ) sin2 θi j cos[2(φB − φi j )]

− 1
27 h2(k21Ri j )[1 + 3 cos(2θ j j′ )]

⎫⎪⎬
⎪⎭

− 1

16Nπ

∑
i′, j′

(1 − δi′, j′ )e
−ik21k̂B·Rii′

⎧⎪⎨
⎪⎩

h∗
0

(
k21Ri′, j′

)
− 3

32 h∗
2(k21Ri′ j′ ) sin2 θi′, j′ cos[2(φB − φi′, j′ )]

− 1
27 h∗

2(k21Ri′ j′ )[1 + 3 cos(2θ j j′ )]

⎫⎪⎬
⎪⎭, (B5)

where (θ j j′ , φ j j′ ) are the spherical angle of R̂ j j′ and h� is a spherical Hankel function. If k21 �= k32, there is no cancellation of
these terms. However, when k21 = k32 = k, the summation terms cancel and we find

PB(φ̂B,�B) ≈ 1

8π
. (B6)

In going to higher order, we would find that terms varying as Gn−1e−ik32k̂A·R j j′ will be canceled by terms varying as
Gne−ik32k̂A·R j j′ δ j, j′ .
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