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Exceptional-point-engineered dispersive readout of a driven three-level atom weakly interacting
with coupled cavities in non-Markovian environments
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In this paper we study the dispersive readout of a driven three-level atom weakly interacting with a passive
cavity that couples to an active cavity. The system excluding the three-level atom exhibits a parity-time (PT )
symmetric phase transition at the exceptional point (EP), which originates from the balance between dissipation
of the passive cavity and gain of the active cavity. The perturbation to the passive cavity induced by the three-
level atom can be amplified near the EP, where the eigenvalues of the effective Hamiltonian have significant
differences when the three-level atom is in the excited, metastable, and ground states, respectively. Applying the
modified Laplace transformation and input-output theory near the EP, we can realize the dispersive readout of
the three-level atom weakly interacting with coupled cavities, which can be characterized through the different
distributions of the transmission spectrum of the passive cavity and the ratio of the active cavity excitation
number to the input photon number corresponding to the different levels of the three-level atom. Moreover,
we generalize the dispersive readout method to the non-Markovian regime, which is in good agreement with
that obtained by the Markovian approximation. We find that the non-Markovian effects of the environment
backacting on the system dynamics can lead to the enhancement of the dispersive readout for the three-level
atom, which is revealed by the excitation backflow generated in the interaction between the passive cavity and
environment. The dispersive readout proposed is conducive to understanding the influences of PT symmetry and
the non-Markovian effect on dispersive readout, which offers the possibility of an alternative field of possible
applications for quantum information and quantum communication.
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I. INTRODUCTION

The basic tasks in quantum information processing are
to store, manipulate, and readout the quantum states of the
quantum system [1–3]. A nondestructive measurement can
be realized in the dispersive regime for the readout of quan-
tum states of a qubit when it is strongly coupled to a cavity
system [4–15]. Owing to the interaction between the qubit
and cavity, frequency shifts depending on the states of the
qubit [4,16] occur for the cavity, which can be used to
dispersively read out the quantum states of the qubit via
probing experimentally the cavity transmission and reflec-
tion [4,17]. The frequency shifts can be obtained to infer
the states of the qubit after transforming the qubit-cavity
Hamiltonian to the dispersive frame [4], which is usually
performed within the rotating-wave approximation (RWA).
The dispersive readout has been applied to various sys-
tems, such as the quantum circuits [18–39], semiconductor
quantum dots [40–49], solid-state spin sensors [50], spin en-
sembles [51], room-temperature spin qubits [52], molecular
spin qudits [53], micromechanical resonators [54], periodi-
cally driven quantum systems [55–57], cavity-coupled atoms
[58,59], time-dependent systems [60,61], Majorana fermions
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in a cavity [62], nonlinear resonators [63–66], nanoelectronic
devices [67], superconducting quantum interference devices
[68–74], qubit readout [75–107], Majorana qubits [108,109],
superconducting artificial atoms [110–114], and multilevel
systems within the rotating-wave approximation [115,116].
Moreover, the dispersive readout has been extended to the
ultrastrong-coupling [117–120], deep strong-coupling [121],
and non-RWA regimes [56,118,122–125]. However, it is still
difficult to achieve the dispersive readout method for some
other systems remaining in the weak-coupling regimes [8,9],
such as a single electron spin coupled to a cavity.

The boundaries of application of cavity spintronics
have been developed with the realizations of the cavity-
mediated dissipative magnon-magnon coupling [126,127],
cavity-magnon coupling [128–130], and dissipative magnon-
photon [131–138] coupling in the cavity and magnon-photon
entanglement [139]. The quantum state readout of a weakly
coupled qubit has been proposed [140] by using a single
two-dimensional square superconducting cavity with a pair
of nearly resonant modes, where both cavity modes couple
to the external probe field but only one of the modes is
weakly coupled to the superconducting qubit. In circuit quan-
tum electrodynamics, the one-dimensional superconducting
cavity is more commonly used than the two-dimensional su-
perconducting cavity, which can produce a smaller effective
volume to achieve a stronger coupling strength. Moreover,
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the dissipation of the qubit is neglected in Ref. [140], but
the decay rate of the qubit is comparable to the frequency
detuning between the qubit and cavity mode in the considered
weak-coupling regime, which cannot be ignored directly. In
another way, one can measure the states of the weakly coupled
system by exploiting the balanced gain and dissipation from
two coupled cavities [16,141], which leads to the parity-time
(PT ) symmetry. The system with the PT symmetry has a
non-Hermitian Hamiltonian, but there are real energy spectra
in the PT -symmetric phase [142–145]. A phase transition
occurs in the parameter space [146–149] by varying the pa-
rameters, where the eigenfunctions and eigenvalues of the
system can be revealed [132,134,150] at the critical point, i.e.,
the exceptional point (EP). There are various interesting prop-
erties near the EP, such as the enhanced mechanical cooling
[151], spontaneous emission [152], lowering of chaos thresh-
old power [153], unidirectional invisibility [153–155], and
lasing [156–158]. In particular, the sensitivity of the dispersive
readout can be enhanced near the EP in metrology [159,160]
and microcavity sensors [161].

With the rapid development of quantum information
technology [1,162], open quantum systems [163,164] have
attracted increasing attention. In general, all the quantum sys-
tems in reality are open owing to the unavoidable coupling
with the environments [165–168]. The Markovian approxi-
mation for open systems [163,164] is only valid when the
coupling between the system and environment is weak and
the characteristic times of the system under study are ade-
quately longer than those of the bath. Otherwise we should
take the non-Markovian effects interacting with the system
dynamics [169] into account, which occur in many quantum
systems including coupled cavities [170], photonic crystals
[171], colored noises [172], cavities coupled to waveguides
[173,174], and implementation in experiment [175–182]. The
non-Markovian process proves to be useful in quantum in-
formation processing including quantum state engineering,
quantum control, and quantum channel capacity [183,184].
The non-Markovian effects of the environments backact-
ing on the system dynamics can be characterized by the
excitation backflowing between the system and its envi-
ronment [185–188], which leads to different measures of
non-Markovianity [189,190].

However, several questions naturally arise. (i) How is the
dispersive readout of the three-level atom realized in the
weak-coupling regime? (ii) Is it effective to generalize the
dispersive readout in Markovian systems to non-Markovian
ones? (iii) How can non-Markovian effects influence the
dispersive readout? To address these questions, we propose
a scheme to realize the dispersive readout of the driven
three-level atom weakly interacting with a passive cavity that
couples to an active cavity. When the dissipation of the passive
cavity can be compensated exactly by the gain from the active
cavity [159,160], the real and imaginary parts of the eigen-
values coalesce at the EP. The sensitivity of the dispersive
readout is highly enhanced near the EP, which contributes to
the dispersive readout of the excited, metastable, and ground
states of the three-level atom via the different transmissions
of the passive cavity corresponding to the different levels of
the three-level atom. Moreover, we generalize the method
to the case with the non-Markovian environment, which can

return to the Markovian results in the wideband limit. We
point out that the influence of the non-Markovian effects
reacting on the system dynamics can enhance the dispersive
readout of the three-level atom. Compared with the ground
and excited states, the metastable state of the three-level atom
can be dispersively read out when the environmental spec-
trum width is small. As the environmental spectrum width
increases, the relative heights of the two peaks of the trans-
mission spectrum of the passive cavity and the ratio of the
active cavity excitation number to the input photon num-
ber change significantly when the three-level atom is in the
excited state.

The remainder of the paper is organized as follows. In
Sec. II the model and Hamiltonian are described for dispersive
readout of the driven three-level atom weakly interacting with
a passive cavity that couples to an active cavity. In Sec. III
we discuss the influence of the existence or absence of the
EP on the dispersive readout of the three-level atom through
the different transmission spectra of the passive cavity and
the ratio of the active cavity excitation number to the input
photon number corresponding to the different levels of the
three-level atom. In Sec. IV we generalize the dispersive
readout theory to the non-Markovian regime. In Sec. V we
study the dispersive readout of the three-level atom with the
non-Markovian effects and compare it with that obtained by
the Markovian approximation. We summarize and discuss our
results in Sec. VI.

II. DISPERSIVE READOUT UNDER
THE MARKOVIAN APPROXIMATION

A. Frequency shifts of the passive cavity induced
by the three-level atom

We construct a coupled-cavity system to realize the dis-
persive readout of the three-level atom driven by a classical
driving field (strength � and frequency ωl ) between excited
state |x〉 and metastable state |e〉 in Fig. 1, where the transition
from |g〉 to |x〉 is mediated by the passive cavity with coupling
constant g. The Hamiltonian with the three-level atom and
coupled cavities reads

Ĥ = ωaâ†â + ωbb̂†b̂ + ωxσ̂xx + ωeσ̂ee + ωgσ̂gg

+ �(eiωl t σ̂ex + e−iωl t σ̂xe) + g(σ̂xgâ + σ̂gxâ†)

+ G(â†b̂ + b̂†â), (1)

where â and b̂ denote annihilation operators of the passive cav-
ity (eigenfrequency ωa) and active cavity (eigenfrequency ωb),
respectively; G represents the coupling strength between the
passive cavity and active cavity; ωx, ωe, and ωg are the energy-
level frequencies of the excited, metastable, and ground states
of the three-level atom, respectively; and σ̂ex, σ̂xe, σ̂xg, and
σ̂gx denote the transition operators of the three-level atom
[191,192], e.g., σ̂nm = |n〉〈m| describes the transition between
level |n〉 and level |m〉. In a rotating frame defined by the
unitary transformation Û = exp[−i ωl

2 â†ât − i ωl
2 (σ̂xx − σ̂ee)t]

with ωl = 2ωa, the Hamiltonian (1) becomes

Ĥ = Ĥaa + Ĥab, (2)
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FIG. 1. Illustration of the setup for the dispersive readout of
a driven three-level atom weakly interacting with a passive cavity
(eigenfrequency ωa and dissipation �a). The active cavity (eigenfre-
quency ωb and gain �b) couples to the passive cavity via coupling
strength G [159,160]. The atom weakly coupled to the passive cavity
with the coupling strength g has three relevant electronic levels, i.e.,
the excited state |x〉, metastable state |e〉, and ground state |g〉. The
transition from level |e〉 to level |x〉 is driven by the classical driving
field with strength � and frequency ωl . The ĉin and ĉout denote
the input-field and output-field operators, respectively. The passive
cavity and classical driving field are detuned from the three-level
atom and are denoted by �1 and �2, respectively. The scheme might
also be implemented by a driven three-level atom weakly interacting
with the cavity-magnon system in Appendix A.

with

Ĥaa = ω̃xσ̂xx + ω̃eσ̂ee + ωgσ̂gg + �(σ̂ex + σ̂xe)

+ g(σ̂xgâ + σ̂gxâ†),

Ĥab = �bb̂†b̂ + G(â†b̂ + b̂†â), (3)

where ω̃x = ωx − ωa, ω̃e = ωe + ωa, and �b = ωb − ωa. To
obtain the Hamiltonian under the dispersive condition, we
can perform the Schrieffer-Wolff transformation [53,58,193]
to Eq. (2) as ĤSW1 = eŝ1 Ĥe−ŝ1 = eŝ1 Ĥabe−ŝ1 + eŝ1 Ĥaae−ŝ1 =
eŝ1 Ĥabe−ŝ1 + Ĥaa + [ŝ1, Ĥaa] + 1

2 [ŝ1, [ŝ1, Ĥaa]] + · · · , with
Ĥaa = ĥ1 + v̂1 via ĥ1 = ω̃xσ̂xx + ω̃eσ̂ee + ωgσ̂gg and
v̂1 = �(σ̂ex + σ̂xe) + g(σ̂xgâ + σ̂gxâ†), where ŝ1 is the
transformation generator and has anti-Hermitian properties.
Taking

ŝ1 = g

�1
(σ̂xgâ − σ̂gxâ†) − �

�2
(σ̂ex − σ̂xe) (4)

satisfies [ĥ1, ŝ1] = v̂1, which can approximate ĤSW1 to first or-
der in g/�1 and �/�2 in the dispersive regime g � |�1| and
� � |�2| [126,194], where �1 = ω̃x − ωg = ωx − ωa − ωg

and �2 = ω̃x − ω̃e = ωx − ωe − ωl are two detunings of the
passive cavity and driving field with respect to the three-level
atom, respectively. In this case, we have ĤSW1 = eŝ1 Ĥabe−ŝ1 +
ĥ1 + 1

2 [ŝ1, v̂1] + O(g2/�2
1,�

2/�2
2), which leads to

ĤSW1 = eŝ1 Ĥabe−ŝ1 + ĥ1 + g2

�1
(σ̂xxââ† − σ̂ggâ†â)

− g�

�̄
(σ̂egâ + σ̂geâ†) + �2

�2
(σ̂xx − σ̂ee)

≡ eŝ1 Ĥabe−ŝ1 + ĥ2 + v̂2, (5)

where ĥ2 = ĥ1 + g2

�1
(σ̂xxââ† − σ̂ggâ†â) + �2

�2
(σ̂xx − σ̂ee),

v̂2 = − g�
�̄

(σ̂egâ + σ̂geâ†), and �̄ = 2�1�2/(�1 + �2). With
Eq. (5) and choosing ŝ2 = −g�(σ̂egâ − σ̂geâ†)/�̄(�1 − �2),
meeting [ĥ2, ŝ2] = v̂2 under the condition g� � |�̄(�1 −
�2)|, we get

ĤSW2 = eŝ2 ĤSW1e−ŝ2

≈ eŝ2 eŝ1 Ĥabe−ŝ1 e−ŝ2 + ĥ2 + 1
2 [ŝ2, v̂2]

+ O(g2�2/|�̄|2/|�1 − �2|2), (6)

and then

ĤSW2 = ˆ̄Hab + ˆ̄Haa, (7)

with
ˆ̄Hab = eŝ2 eŝ1 Ĥabe−ŝ1 e−ŝ2 , (8)

ˆ̄Haa =
[

g2

�1
σ̂xx + g2�2

�̄2(�1 − �2)
σ̂ee

−
(

g2

�1
+ g2�2

�̄2(�1 − �2)

)
σ̂gg

]
â†â

+
(

ω̃x + g2

�1
+ �2

�2

)
σ̂xx + ωgσ̂gg

+
(

ω̃e − �2

�2
+ g2�2

�̄2(�1 − �2)

)
σ̂ee, (9)

which are valid under the dispersive condition

g � |�1|, � � |�2|, g� � |�̄(�1 − �2)|. (10)

B. Validating the parameters by neglecting the perturbative
terms in Eq. (8)

We now study the influence of the anti-Hermitian operators
ŝ1 and ŝ2 on ˆ̄Hab in Eq. (8). Under the dispersive condition
(10), we can expand ˆ̄Hab of Eq. (8) in powers of g/�1 or
�/�2, whose first few terms are

ˆ̄Hab = Ĥab + G
g

�1
(σ̂xgb̂ + b̂†σ̂gx )

+ G
g2

2�2
1

(σ̂xx − σ̂gg)(â†b̂ + b̂†â)

− G

(
g�

�2(�1 − �2)

)
(σ̂egb̂ + b̂†σ̂ge)

− G
g�2

6�1�
2
2

(σ̂gxb̂† + σ̂xgb̂)

− G
g2�

6�2
1�2

[σ̂ex(2â†b̂ + âb̂†) + σ̂xe(2âb̂†

+ â†b̂)] − G
g3

6�3
1

[2σ̂xgâ2b̂† + 2σ̂gxâ†2b̂

+ (σ̂xgb̂ + σ̂gxb̂†)(â†â + ââ†)]

− G
g2�(�1 + �2)

2�2
1�2(�1 − �2)

(σ̂exâb̂† + σ̂xeâ†b̂) + · · · ,

(11)
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where the ellipsis denotes higher-order terms and Ĥab is given
by Eq. (3). If ˆ̄Hab in Eq. (11) can be approximated as Ĥab by
neglecting the perturbative terms, Eq. (7) becomes

ĤSW2 ≈ Ĥab + ˆ̄Haa

=
∑

n

C (n)σ̂nnâ†â + �bb̂†b̂ + G(â†b̂ + b̂†â), (12)

where n = x, e, g and the atom-induced frequency shifts of the
passive cavity [5,58,195]

C (x) = g2

�1
, C (e) = g2�2

�̄2(�1 − �2)
,

C (g) = − g2

�1
− g2�2

�̄2(�1 − �2)
. (13)

Below we discuss the validity of the approximate
Hamiltonian (12) compared to the exact Hamiltonian
(2). In a single excited subspace with excitation number
N̂ = â†â + b̂†b̂ + σ̂xx + σ̂ee conserved due to [Ĥ, N̂] = 0, we
write the state by Eq. (2) at time t as

|ϕ(t )〉 = cx(t )|x, 0, 0〉 + ce(t )|e, 0, 0〉
+ ca(t )|g, 1, 0〉 + cb(t )|g, 0, 1〉, (14)

where |g, 1, 0〉 represents the state of the atom in the ground
state |g〉 with one photon in the passive cavity and no photon
in the active cavity and ca(t ) denotes the probability amplitude
of the system being in the state |g, 1, 0〉. The other states in
Eq. (14) have similar notation. The Schrödinger equation
i|ϕ̇(t )〉 = Ĥ |ϕ(t )〉 with Eq. (2) leads to

iċx(t ) = ω̃xcx(t ) + �ce(t ) + gca(t ),

iċe(t ) = ω̃ece(t ) + �cx,

iċa(t ) = ωgca(t ) + gcx(t ) + Gcb(t ),

iċb(t ) = �bcb(t ) + Gca(t ). (15)

For the approximate Hamiltonian given by Eq. (12), the state
at time t can be written as

|ϕ̃(t )〉 = c̃a(t )|g, 1, 0〉 + c̃b(t )|g, 0, 1〉, (16)

where the probability amplitudes satisfying the Schrödinger
equation i| ˙̃ϕ(t )〉 = ĤSW2|ϕ̃(t )〉 are determined by

i ˙̃ca(t ) = C (g)c̃a(t ) + Gc̃b(t ), i ˙̃cb(t ) = �bc̃b(t ) + Gc̃a(t ).

(17)

In Fig. 2 we show that |c̃a(t )|2 and |c̃b(t )|2 given by Eq. (17)
with the approximate Hamiltonian (12) are in good agreement
with |ca(t )|2 and |cb(t )|2 obtained by Eq. (15) with the exact
Hamiltonian (2) when the parameters take values g = 0.05�a,
� = 0.1�a, �1 = �a, and �2 = −2�a [satisfying Eq. (10)].
In this case, we point out that the three-level atom remains in
its initial state due to the weak atom-cavity coupling strength
g = 0.05�a, while coupled cavities remain in the vacuum state
or exhibit periodic equal-amplitude oscillations due to the
large coupling strength G = 0.5�a between the passive cavity
and active cavity. To be specific, the probability |ca(t )|2 +
|cb(t )|2 of the three-level atom being in the ground state is
approximately 1 for the initial state |g, 1, 0〉 in Figs. 2(a) and

FIG. 2. Time evolution of the probabilities determined by
Eqs. (15) and (17), corresponding to the exact Hamiltonian (2) and
approximate Hamiltonian (12), respectively, with fixed atom-cavity
coupling strength g = 0.05�a. The initial states are (a)–(c) |g, 1, 0〉
and (d)–(f) |x, 0, 0〉. The parameters are � = 0.1�a, G = 0.5�a,
�b = 0, ω̃x = 1.2�a, ω̃e = 3.2�a, and ωg = 0.2�a, corresponding to
�1 = �a and �2 = −2�a.

2(b), while |ca(t )|2 and |cb(t )|2 in coupled cavities behave
like periodic equal-amplitude oscillations. This indicates that
Eqs. (12) and (17) are valid under the given parameters given
in Fig. 2 and the presence of the three-level atom has almost
no influence on the dynamics of coupled cavities. If the initial
state is prepared in the state |x, 0, 0〉, the three-level atom
remains in the state |x〉 due to |cx(t )|2 ≈ 1 in Fig. 2(f), which
leads to coupled cavities holding in the vacuum state |0, 0〉.

With the increase of atom-cavity coupling strength to g =
0.2�a when the other parameters are fixed, |c̃a(t )|2 and |c̃b(t )|2
in Eq. (17) obtained by the approximate Hamiltonian (12) se-
riously deviate from |ca(t )|2 and |cb(t )|2 in Eq. (15), obtained
by the exact Hamiltonian (2) in Figs. 3(a), 3(b), 3(d), and 3(e).

FIG. 3. Plots showing that the results in Eq. (17) obtained by
the approximate Hamiltonian (12) seriously deviate from those in
Eq. (15) obtained by the exact Hamiltonian (2) with the increase of
atom-cavity coupling strength to g = 0.2�a. The other parameters
are the same as those in Fig. 2.
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FIG. 4. The |cx (t )|2, |ca(t )|2, and |cb(t )|2 determined by Eq. (15),
corresponding to the exact Hamiltonian (2), vary over time t with
different atom-cavity coupling strength g, where the initial state is
|x, 0, 0〉. The other parameters are the same as those in Fig. 2.

In this case, the three-level-atom states no longer remain in
the initial state, i.e., |ca(t )|2 + |cb(t )|2 �= 1 [purple solid line
in Figs. 3(a) and 3(b)] and |cx(t )|2 �= 1 [purple solid line in
Fig. 3(f)], and the probabilities in coupled cavities do not
exhibit periodic equal-amplitude oscillations [see the purple
solid line in Figs. 3(a) and 3(b)]. This means that the presence
of the three-level atom has a large influence on the dynamics
of coupled cavities, which results in Eqs. (12) and (17) being
invalid for the given parameters in Fig. 3. Further observations
can also be found in Fig. 4 with different atom-cavity coupling
strength g when the initial state is |x, 0, 0〉.

Based on the above discussion, we use the valid parameters
in Fig. 2 to study the dispersive readout of a driven three-level
atom weakly interacting with coupled cavities in the following
sections.

C. Measuring the frequency shifts by the passive cavity
interacting with the active cavity

Considering dissipation of the passive cavity and
gain of the active cavity, the Hamiltonian in Eq. (12)
reads [159,160]

ĤM =
(∑

n

C (n)σ̂nn − i
�a

2

)
â†â + G(â†b̂ + b̂†â)

+
(

�b + i
�b

2

)
b̂†b̂, (18)

where �a and �b denote the dissipation and gain of the passive
cavity and active cavity, respectively. In the following discus-
sion, �1 and �2 of C (n) in Eq. (18) are replaced by �1 − iγ1

and �2 − iγ2 through introducing the dissipations γ1 and γ2

of the three-level atom. The corresponding eigenfrequencies
in Eq. (18) read �Ê± = 1

2 [
∑

n C (n)σ̂nn + �b − i �a
2 + i �b

2 ±√
4G2 + (

∑
n C (n)σ̂nn − �b − i �a

2 − i �b
2 )2]. By inserting the

completeness relation
∑

m |m〉〈m| = I (m = x, e, g and I

denotes the identity matrix) into �Ê±, we obtain

�Ê± =
∑

n

�E (n)
± |n〉〈n|, (19)

with the different distributions corresponding to the different
levels of the three-level atom

�E (n)
± = 1

2

[
C (n) + �b − i

�a

2
+ i

�b

2

±
√

4G2 +
(
C (n) − �b − i

�a

2
− i

�b

2

)2
]
, (20)

where the real part of �E (n)
± = E (n)

± − ωa denotes resonant
frequencies, while its imaginary part describes the dissipa-
tion of the system. The EP corresponding to the situation
where the two eigenenergies and their eigenstates coalesce
[151,161,196,197] leads to �b = 0 (see Appendix B for more
details). With the balance between dissipation of the passive
cavity and gain of the active cavity �a = �b, the two eigenfre-
quencies are reduced to

�E (n)
±

= 1

2

{
C (n) ±

√√√√(C (n) )2 + 4

[
G2 − iC (n)

�a

2
−

(
�a

2

)2
]}

.

(21)

In the absence of the three-level atom (C (n) = 0), Eq. (21)
gives �E (n)

± = ±√
G2 − �2

a/4, which indicates that the sys-
tem has PT symmetry and two real eigenvalues exist when
G > �a/2 is satisfied, while the PT -symmetry breaking leads
to two complex eigenvalues for G < �a/2. There is an inter-
esting phenomenon in which the real and imaginary parts of
�E (n)

± coalesce at G = �a/2, which results in the balanced
dissipation and gain from passive and active cavities. The
dispersive readout sensitivity of the frequency or energy split-
ting can be greatly enhanced near the EP, which motivates us
to perform dispersive readout of the weakly coupled system.
With these, the condition of the PT -symmetric phase transi-
tion is determined by

�b = 0, G = �a

2
, �a = �b, (22)

whose derivation can be found in Appendix B.

D. Input-output theory under the Markovian approximation

Here we derive the transmission coefficient of the passive
cavity and the ratio of the active cavity excitation number to
the input photon number, which can be used to realize the dis-
persive readout of the weakly coupled system. With Eq. (18),
the Heisenberg-Langevin equations under the Markovian ap-
proximation are

d

dt
â(t ) = −i

(∑
n

C (n)σ̂nn − i
�a

2

)
â(t ) − iGb̂(t ) +

√
�aĉin(t ),

(23)
d

dt
b̂(t ) = −i

(
�b + i

�b

2

)
b̂(t ) − iGâ(t ), (24)
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where σ̂nn(t ) ≡ σ̂nn is used due to [σ̂nn, ĤM] = 0 with
Eq. (18), which is a constant of motion [58]. Applying
the modified Laplace transformation Â(ω) = ∫ ∞

0 â(t )ei�ωt dt
[198–200] to Eqs. (23) and (24) with �ω = ω − ωa, we have(

�ω −
∑

n

C (n)σ̂nn + i
�a

2

)
Â(ω) − GM̂(ω)

− i
√

�aĈin(ω) = 0,(
�ω − �b − i

�b

2

)
M̂(ω) − GÂ(ω) = 0, (25)

which lead to

Â(ω) = i
√

�a
(
�ω − �b − i �b

2

)
R̂
(
�ω − �b − i �b

2

) − G2
Ĉin(ω),

M̂(ω) = iG
√

�a

R̂
(
�ω − �b − i �b

2

) − G2
Ĉin(ω), (26)

where R̂ = �ω − ∑
n C (n)σ̂nn + i�a/2. The ratio of the active

cavity excitation number to the input photon number [201] can
be obtained by

V̂ (ω) ∝ M̂†(ω)M̂(ω)

Ĉ†
in(ω)Ĉin(ω)

=
∣∣∣∣∣ iG

√
�a

R̂
(
�ω − �b − i �b

2

) − G2

∣∣∣∣∣
2

.

(27)

By inserting the completeness relation
∑

m |m〉〈m| = I into
V̂ (ω) in Eq. (27), we obtain

V̂ (ω) =
∑

n

V (n)(ω)|n〉〈n|, (28)

with the different distributions corresponding to the different
levels of the three-level atom

V (n)(ω) =
∣∣∣∣∣ iG

√
�a

rn
(
�ω − �b − i �b

2

) − G2

∣∣∣∣∣
2

, (29)

where rn = �ω − C (n) + i�a/2.
From Eq. (26), Â(ω) can be rewritten as

Â(ω) = i
√

�aĈin(ω)

�ω − ∑
n C (n)σ̂nn + i �a

2 − Z (ω)
, (30)

where the self-energy Z (ω) induced by the active cavity
is Z (ω) = G2/(�ω − �b − i�b/2). With the input-output
theory

ĉout(t ) = ĉin(t ) −
√

�aâ(t ), (31)

the intracavity field â(t ) can be connected by the input
field ĉin(t ) and output field ĉout(t ). Making the modified
Laplace transformation to Eq. (31) gives Ĉout(ω) = Ĉin(ω) −√

�aÂ(ω). With Eq. (30), we obtain the transmission coeffi-
cient of the passive cavity

T̂ (ω) = Ĉout(ω)

Ĉin(ω)
(32)

=
∑

n

T (n)(ω)|n〉〈n|, (33)

FIG. 5. Eigenfrequency difference �E ( j)
± /�a of the effective

Hamiltonian (18), as a function of the coupling strength G/�a,
solved by Eq. (35), where �b = 0 and �a = �b. The parameters are
g = 0.05�a, � = 0.1�a, �1 = �a, �2 = −2�a, and γ1 = γ2 = 3�a.

with the different distributions corresponding to the different
levels of the three-level atom

T (n)(ω) = 1 − i�a

�ω − C (n) + i �a
2 − Z (ω)

, (34)

which can be used to realize the dispersive readout of the
three-level atom in the weak-coupling regime. In the process
of deriving Eqs. (19), (28), and (33), we use σ̂nn|m〉〈m| =
δmn|n〉〈n|, where δmn represents the Kronecker delta sym-
bol, i.e., δmn = 1 for m = n while δmn = 0 for m �= n. From
Eqs. (28) and (33) we show that the distributions V (n)(ω)
and T (n)(ω) in the nth level |n〉 of the three-level atom de-
pend on the atom-induced frequency shift C (n) in Eq. (13) of
the passive cavity, which indeed can distinguish which level
of a three-level atom is located near the exceptional point.
This means that the different levels of the three-level atom
correspond to the different distributions V (n)(ω) and T (n)(ω)
in Eqs. (29) and (34), which can dispersively read out the
quantum states of the three-level atom in coupled cavities with
the dissipation and gain.

III. DISCUSSION CONSIDERING
THE MARKOVIAN APPROXIMATION

A. Influences of the coupling strength G on the dispersive
readout near the EP

To show that the perturbation to the passive cavity caused
by the three-level atom can be amplified through the EP, we
introduce two experimentally measurable quantities

�E1
± = Re(�E (e)

± ) − Re(�E (g)
± ),

�E2
± = Re(�E (x)

± ) − Re(�E (g)
± ), (35)

which describe the eigenfrequency differences of the system
when the three-level atom is in the metastable (or excited)
state and ground state, respectively, where �E (n)

± is deter-
mined by Eq. (20). In Fig. 5 we display the eigenfrequency
difference �E ( j)

± /�a ( j = 1, 2) versus the coupling strength
G/�a when the conditions �b = 0 and �a = �b are satisfied.
With the increase of G/�a from 0 to 1, �E ( j)

+ /�a reaches a
maximum at G = GEP = �a/2 in Eq. (22), where �E ( j)

− /�a

becomes the minimum, which indicates that eigenfrequency
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FIG. 6. Different distributions of the transmission spectrum |T (n)(ω)|2 corresponding to the different levels of the three-level atom, which
is calculated by Eq. (34), of the passive cavity as a function of the probe field frequency �ω (the rotating frame with ωa), for (a) G/�a = 0,
(b) G/�a = 0.0200, (c) G/�a = 0.4995, (d) G/�a = 0.5000, (e) G/�a = 0.5005, and (f) G/�a = 1.0000. The other parameters are the same
as those in Fig. 5.

differences of the system are amplified significantly near the
EP in order to realize the dispersive readout of the three-level
atom.

To intuitively investigate the dispersive readout, the influ-
ence of the coupling strength G on the transmission spectrum
|T (n)(ω)|2 is shown in Fig. 6, which varies with the probe field
frequency �ω. In the absence of the active cavity (G/�a = 0),
the lines of |T (n)(ω)|2 overlap when the three-level atom is
in different energy levels (n = x, e, g) in Fig. 6(a), which
makes it impossible to effectively distinguish between the
quantum states of the three-level atom. It is still difficult
to dispersively read out the quantum states of the atom for
G/�a �= 0 but away from GEP/�a (G/�a = 0.0200, 1.0000),
as seen in Figs. 6(b) and 6(f). Fortunately, we can easily
make a distinction among the three levels of the atom when
the coupling strength G/�a between the passive cavity and
active cavity approaches the critical value G = GEP, as found
in Figs. 6(c)–6(e), which originates from the amplification of
the energy spectra near the EP, where the different levels of
the three-level atom correspond to the different distributions
T (n)(ω) in Eq. (34). As a consequence, we can realize the dis-
persive readout of the three-level atom when the dissipation of
the system is compensated by the gain of the active cavity near
the EP. Next we discuss specifically the dispersive readout of
the three-level atom in the absence and presence of the EP in
the system.

B. Outside the EP

In this section we study the results obtained with �a �= �b

and G > �a/2, which indicates that the PT symmetry of
the system is not broken. In Fig. 7 we show the relationship
between the eigenvalue �E (e)

± and detuning �b of the active
cavity according to Eq. (20). In Fig. 7(a) the real parts of

�E (e)
± exhibit the level repulsion, while the imaginary parts of

�E (e)
± coalesce, which implies the coupling of the passive and

active cavities [128–130,137,138]. The red dashed line shows
the remarkably reduced linewidth due to the coupling between
passive and active cavities [129] in Fig. 7(b). In this case, the
black solid line denotes the detuning �b of the active cavity,
whose slope changes at the regime of the coupling bandwidth.

In order to study the dispersive readout of the three-level
atom more clearly, we discuss the transmission spectrum
|T (n)(ω)|2 of the passive cavity and the ratio of the active
cavity excitation number to the input photon number V (n)(ω)
in Fig. 8. In Figs. 8(a) and 8(b) the lines of |T (n)(ω)|2 and

FIG. 7. (a) Real and imaginary parts of the eigenvalue �E (e)
±

determined by Eq. (20) as a function of �b. (b) Real and imaginary
parts of the detuning �b of the active cavity [�b changing with �E (n)

±
can be solved by Eq. (20)] as a function of �E (e)

± . The parame-
ters are G = 1.6�a, �b = 2.6�a, g = 0.05�a, � = 0.1�a, �1 = �a,
�2 = −2�a, and γ1 = γ2 = 3�a.

053712-7



J. F. YANG AND H. Z. SHEN PHYSICAL REVIEW A 109, 053712 (2024)

FIG. 8. (a) Transmission spectrum |T (n)(ω)|2 given by Eq. (34)
of the passive cavity and (b) ratio of the active cavity excitation
number to the input photon number V (n)(ω) in Eq. (29) varying with
�ω without the EP. Here |T (e)(ω)|2 and V (e)(ω) (in units of �a)
depend on (c) �ω and (d) �b without the EP. The white lines in
(c) and (d) are the spectra in Figs. 7(a) and 7(b), respectively. Here
�b = 0 and the other parameters are the same as those in Fig. 7.

V (n)(ω) overlap when the EP is absent in the system, which
suggests that the quantum states of the three-level atom cannot
be dispersively read out. The |T (e)(ω)|2 and V (e)(ω) varying
with �ω and �b are shown in Figs. 8(c) and 8(d), respec-
tively, where there are two symmetrical peaks, which confirm
the system has PT symmetry. The |T (n)(ω)|2 and V (n)(ω)
(n = g, x) present similar phenomena. The white lines passing
through two peaks in Fig. 8(c) correspond to the energy spec-
tra in Fig. 7(a), while the white line in Fig. 8(d) characterizes
the detuning �b of the active cavity in Fig. 7(b). It is difficult
to dispersively read out the three-level atom states from the
transmission coefficient and the ratio of the active cavity exci-
tation number to the input photon number in a weak-coupling
regime without the EP.

C. Dispersive readout near the EP

Compared with the case without the EP, we discuss the
results satisfying �a = �b and G = �a/2, where the PT -
symmetry breaking leads to the existence of the EP. In
Fig. 9(a) the imaginary and real parts of �E (e)

± coalesce at
�b = 0, i.e., Re(�E (e)

± ) = Im(�E (e)
± ) = 0, which means that

the PT symmetry is broken. Moreover, the imaginary part of
�b marked by the red dashed line becomes 0 at the resonance
condition �E (e)

± = 0 due to the dissipation of the system
compensated by the gain on the active cavity [132,134] in
Fig. 9(b).

As shown in Fig. 10(a), the peaks of |T (n)(ω)|2 exhibit
separation from each other when the three-level atom is in
different quantum states near the EP. A similar observation for
V (n)(ω) is shown in Fig. 10(b), where V (n)(ω) is plotted near
the EP for different C (n). In Figs. 10(a) and 10(b) we observe
that the different levels of the three-level atom correspond to
the different distributions T (n)(ω) and V (n)(ω) in Eqs. (34)
and (29) near the EP. It is worth noting that there is only
one peak in Figs. 10(c) and 10(d), which corresponds to the
position of the EP and implies that the PT symmetry of the
system is broken. In the same way, the white lines characterize
the spectra in Figs. 9(a) and 9(b), respectively. Moreover, the

FIG. 9. (a) Real and imaginary parts of �E (e)
± as a function �b.

(b) Real and imaginary parts of �b as a function of �E (e)
± . Here G =

0.5�a and �b = �a and the other parameters and vertical ordinates
are the same as those in Fig. 7.

significant enhancements of |T (n)(ω)|2 and V (n)(ω) are real-
ized near the EP, where the perturbation differences from the
passive cavity generated by the three-level atom at different
energy levels are significantly amplified, which means that
we can easily realize the dispersive readout of the three-level
atom in the existence of the EP.

IV. NON-MARKOVIAN DISPERSIVE READOUT
OF THE THREE-LEVEL ATOM

The Markovian processes successfully describe many
physical phenomena, especially in the field of quantum optics,
but they fail when they are applied to more complex system-
environment couplings, where memory effects play dominant
roles. All realistic quantum systems are open due to the
unavoidable couplings to the environment [165–168]. Con-
sidering that the non-Markovian dynamics of open quantum
systems is essential when the coupling between the system
and environment is not weak, the characteristic times of the

FIG. 10. Different distributions (a) |T (n)(ω)|2 and (b) V (n)(ω) in
Eqs. (34) and (29) corresponding to the different levels of the three-
level atom as a function of �ω near the EP. Also shown are |T (e)(ω)|2
and V (e)(ω) (in units of �a) depending on (c) �ω and (d) �b near the
EP, where the white lines characterize the spectra in Figs. 9(a) and
9(b), respectively. Here �b = 0 and the other parameters and vertical
ordinates are the same as those in Fig. 9.
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bath are not adequately smaller than those of the system
[174,185]. To realize the dispersive readout of the three-
level atom weakly interacting with coupled cavities in the
non-Markovian regime, the Hamiltonian (18) with the non-
Markovian environment acting on the passive cavity becomes

ĤT =
∑

n

C (n)σ̂nnâ†â + G(â†b̂ + b̂†â) +
(

�b + i
�b

2

)
b̂†b̂

+
∑

k

�k ĉ†
k ĉk + i

∑
k

gk (â†ĉk − âĉ†
k ), (36)

where �k = ωk − ωa, ĉ†
k (ĉk) is the creation (annihilation)

operator of the environment with eigenfrequency ωk , and
gk denotes the coupling strength between the passive cavity
and environment. The Heisenberg-Langevin equation with
Eq. (36) gives

d

dt
â(t ) = −i

∑
n

C (n)σ̂nnâ(t ) − iGb̂(t ) +
∑

k

gkĉk (t ),

d

dt
b̂(t ) = −i

(
�b + i

�b

2

)
b̂(t ) − iGâ(t ),

d

dt
ĉk (t ) = −i�k ĉk (t ) − gkâ(t ). (37)

The non-Markovian environmental operator is obtained by
solving Eq. (37),

ĉk (t ) = ĉk (0)e−i�kt − gk

∫ t

0
â(τ )e−i�k (t−τ )dτ , (38)

where the first term denotes the free propagation of the non-
Markovian environment field and the second term describes
the non-Markovian effects of the environment feeding back
to the passive cavity. We get an integro-differential equa-
tion for the passive cavity operator by substituting Eq. (38)
into Eq. (37),

d

dt
â(t ) = − i

∑
n

C (n)σ̂nnâ(t ) − iGb̂(t ) + R̂(t )

−
∫ t

0
â(τ ) f (t − τ )dτ , (39)

where R̂(t ) = ∑
k gkĉk (0)e−i�kt = ∫ ∞

−∞ κ∗(t − τ )ĉin(τ )dτ

characterizes the coupling between the passive cavity and
input field of the non-Markovian environment with the input
field operator ĉin(t ) = 1√

2π

∑
k ĉk (0)e−i�kt . In the continuum,

the impulse response function becomes

κ (t − τ ) = 1√
2π

∫
g(ω)ei(ω−ωa )(t−τ )dω, (40)

where gk is replaced by g(ω). The correlation function plays
an important role in the interaction between the passive cavity
and environment, which can be referred to as the memory
function and is defined by

f (t − τ ) =
∫

J (ω)e−i(ω−ωa )t dω, (41)

where J (ω) = ∑
k |gk|2δ(ω − ωk ) is the spectral density of

the environment. Similarly, we get

ĉk (t ) = ĉk (t1)e−i�k (t−t1 ) + gk

∫ t1

t
â(τ )e−i�k (t−τ )dτ , (42)

with t � t1, and obtain

d

dt
â(t ) = − i

∑
n

C (n)σ̂nnâ(t ) − iGb̂(t ) + K̂ (t )

+
∫ t1

t
â(τ ) f (t − τ )dτ , (43)

where K̂ (t ) = ∑
k gkĉk (t1)e−i�k (t−t1 ) =∫ ∞

−∞ κ∗(t − τ )ĉout(τ )dτ with the output field operator
ĉout(t ) = 1√

2π

∑
k ĉk (t1)e−i�k (t−t1 ). The non-Markovian

input-output relationship is derived by comparing Eqs. (39)
and (43) (setting t1 → t) [202,203],

ĉout(t ) = ĉin(t ) −
∫ t

0
â(τ )κ (τ − t )dτ , (44)

where κ (τ − t ) is given by Eq. (40). In the case of the
Fabry-Pérot cavity [204,205], the spectral response function
is defined by

g(ω) =
√

�a

2π

λ

λ − i(ω − ωa)
, (45)

where λ denotes the non-Markovian environmental spectrum
width and �a is the cavity dissipation through the input and
output ends. The spectral density [206–208] of the environ-
ment reads

J (ω) = �a

2π

λ2

λ2 + (ω−ωa)2 , (46)

which corresponds to the Lorentzian spectral density. With
Eqs. (40) and (41), we obtain κ (τ − t ) = λ

√
�ae−λ(t−τ )θ (t −

τ ) and f (t − τ ) = 1
2λ�ae−λ|t−τ |, where θ (t − τ ) is a unit step

function, θ (t − τ ) = 1 for t − τ � 0 and θ (t − τ ) = 0 other-
wise. In particular, the memory effect of the non-Markovian
environment disappears when the spectral width λ approaches
infinity. The environmental spectral density J (ω) approaches
approximately �a

2π
or, equivalently, the non-Markovian spec-

tral response function g(ω) →
√

�a
2π

in the wideband limit
(λ → ∞), which characterizes the case under the Markovian
approximation. According to Eqs. (40) and (41), we have
κ (t ) → √

�aδ(t ) and f (t ) → �aδ(t ). Substituting the above
results into Eq. (44), the Markovian input-output relation (31)
can be obtained. With Eq. (39) and the second of Eqs. (37),
we derive

ÂNM(ω) = iκ̃ (ω)[Ĉin(ω) − Ĉin(iλ)]

X̂ − Z (ω)
,

M̂NM(ω) = iGκ̃ (ω)[Ĉin(ω) − Ĉin(iλ)]

X̂
[
�ω − �m − i

(
β − �m

2

)] − G2
,

(47)

where �ω = ω − ωa, X̂ = �ω − ∑
n C (n)σ̂nn + i f (ω),

κ̃ (ω) = ∫ 0
−∞ κ∗(t )ei�ωt dt = λ

√
�a

λ+i�ω
, f (ω) = ∫ ∞

0 f (t )ei�ωt
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dt = λ�a
2(λ−i�ω) , and Ĉin(ω) = ∫ ∞

0 ĉin(t )ei�ωt dt . We obtain the
spin voltage of the yttrium iron garnet (YIG) sphere in the
non-Markovian regime

ˆ̃VNM(ω) ∝ M̂†
NM(ω)M̂NM(ω)

Ĉ†
in(ω)Ĉin(ω)

=
∣∣∣∣∣ iGκ̃ (ω)

X̂
[
�ω − �m − i

(
β − �m

2

)] − G2

∣∣∣∣∣
2

(1 + Q),

(48)

with

Q = Ĉ†
in(iλ)Ĉin(iλ) − Ĉ†

in(ω)Ĉin(iλ) − Ĉ†
in(iλ)Ĉin(ω)

Ĉ†
in(ω)Ĉin(ω)

. (49)

We rewrite the form of the spin voltage (48) as

ˆ̃VNM(ω) =
∑

n

V (n)
NM(ω)|n〉〈n|(1 + Q), (50)

with the different distributions corresponding to the different
levels of the three-level atom

V (n)
NM(ω) =

∣∣∣∣∣ iGκ̃ (ω)

xn
[
�ω − �m − i

(
β − �m

2

)] − G2

∣∣∣∣∣
2

, (51)

where xn = �ω − C (n) + i f (ω). The term QV (n)
NM(ω) related

to Ĉin(iλ) in Eq. (50) is induced by the non-Markovian
effects and has no Markovian counterparts, which is
an inhomogeneous term depending on the specific
forms of the input field ĉin(t ). Under the Markovian
approximation, QV (n)

NM(ω) tends to zero for λ → ∞. In
order to distinguish the effects of the inhomogeneous
term, we assume the concrete form of the input field to
be ĉin(t ) = c1e−εt cos(h1t2) for ε > 0 and h1 > 0, which
corresponds to Q = {[w1(2x1 − 1) − z1(2y1 − 1)][w1(2x1 −
1) − w2(2x2 − 1) − w3(2x3 − 1) − z1(2y1 − 1) + z2(2y2 −
1) + z3(2y3 − 1)]}/{[w2(2x2 − 1) − z2(2y2 − 1)][w3(2x3 −
1) − z3(2y3 − 1)]}, with x1 = f s( ε+λ√

2πh1
), x2 = f s( ε−iω√

2πh1
),

x3 = f s( ε+iω√
2πh1

), y1 = f c( ε+λ√
2πh1

), y2 = f c( ε−iω√
2πh1

),

y3 = f c( ε+iω√
2πh1

), z1 = sin( (ε+λ)2

4h1
), z2 = sin( (ε−iω)2

4h1
),

z3 = sin( (ε+iω)2

4h1
), w1 = cos( (ε+λ)2

4h1
), w2 = cos( (ε−iω)2

4h1
),

and w3 = cos( (ε+iω)2

4h1
), where f s(z) = ∫ z

0 sin(πt2/2)dt and

f c(z) = ∫ z
0 cos(πt2/2)dt . We show that the inhomogeneous

term cannot reveal the characteristics of the system under
probe. For the concrete input field and given parameters, e.g.,
ε = 0.0001�a and h1 = 0.0001�a, we can evaluate Q ∼ 10−2

for λ = 0.6�a (non-Markovian regime) and Q ∼ 10−4 for
λ = 40�a (weak non-Markovian effect) when ω approaches
ωa. The inhomogeneous term QV (n)

NM(ω) is much smaller than
V (n)

NM(ω), which can be ignored for these parameters and leads
to Ṽ (n)

NM(ω) ∼ V (n)
NM(ω) for some special forms of input fields.

Therefore, the influence of the inhomogeneous term on the
ratio of the active cavity excitation number to the input photon
number is not considered in subsequent plots.

Moreover, we get the transmission coefficient ˆ̃TNM(ω)
by making the modified Laplace transformation to the

FIG. 11. Plots of (a) |T (n)
NM(ω)|2 calculated by Eq. (53) and

(b) V (n)
NM(ω) in Eq. (51) as a function of �ω without the EP in the

non-Markovian regime with λ = 4�a. Also shown are |T (e)
NM(ω)|2 and

V (e)
NM(ω) (in units of �a) depending on (c) �ω and (d) �b without the

EP in the non-Markovian regime with λ = 4�a. The other parameters
are the same as those in Fig. 8.

non-Markovian input-output relationship (44),

ˆ̃TNM(ω) = 1 − iκ (−ω)κ̃ (ω)

�ω − ∑
n C (n)σ̂nn + i f (ω) − Z (ω)

+ iκ (−ω)κ̃ (ω)Ĉin(iλ)/Ĉin(ω)

�ω − ∑
n C (n)σ̂nn + i f (ω) − Z (ω)

, (52)

where κ (−ω) = ∫ ∞
0 κ (−t )ei�ωt dt = λ

√
�a

λ−i�ω
. For the

concrete input field ĉin(t ) = c1e−εt cos(h1t2) with ε > 0
and h1 > 0, we obtain Ĉin(iλ)/Ĉin(ω) = [w1(2x1 −
1) − z1(2y1 − 1)]/[w2(2x2 − 1) − z2(2y2 − 1)], which
leads to Ĉin(iλ)/Ĉin(ω) ∼ 10−2 for λ = 0.6�a and
Ĉin(iλ)/Ĉin(ω) ∼ 10−4 for λ = 40�a. Similar to Eq. (50),
the third term in Eq. (52) is an inhomogeneous term induced
by the non-Markovian effects, which can be neglected.
Therefore, we can consider only the first two terms of

Eq. (52), which results in ˆ̃TNM(ω) = ∑
n T

(n)
NM(ω)|n〉〈n|, with

the different distributions corresponding to the different levels
of the three-level atom

T (n)
NM(ω) = 1 − iκ (−ω)κ̃ (ω)

�ω − C (n) + i f (ω) − Z (ω)
. (53)

In the non-Markovian limit, i.e., λ → ∞, we have κ (−ω) →√
�a, κ̃ (ω) → √

�a, and f (ω) → �a
2 , which make the results

given by Eqs. (51) and (53) able to return to those obtained
under the Markovian approximation defined by Eqs. (29)
and (34).

V. INFLUENCE OF NON-MARKOVIAN EFFECTS
ON DISPERSIVE READOUT

In this section we discuss the dispersive readout for the
three-level system weakly interacting with coupled cavities
without an EP in the non-Markovian regime. The |T (n)

NM(ω)|2
calculated by Eq. (53) and V (n)

NM(ω) in Eq. (51) as a function of
�ω are shown in Figs. 11(a) and 11(b), respectively, where the
quantum states of the three-level atom cannot be distinguished
due to the overlap of the lines. In Figs. 11(c) and 11(d) the two
symmetric peaks appear, which leads to a conclusion similar
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FIG. 12. Different distributions (a) |T (n)
NM(ω)|2 and (b) V (n)

NM(ω) in
Eqs. (53) and (51), corresponding to the different levels of the three-
level atom near the EP, plotted to realize the dispersive readout in the
non-Markovian regime with λ = 4�a. Also shown are |T (e)

NM(ω)|2 and
V (e)

NM(ω) (in units of �a) as a function of (c) �ω and (d) �b near the
EP in the non-Markovian regime for λ = 4�a. The other parameters
are the same as those in Fig. 10.

to the Markovian case that the states of the three-level atom
are difficult to dispersively read out when the PT symme-
try of the system still exists. However, we can realize the
dispersive readout when the PT symmetry is broken, which
means the system is near the EP between the PT -symmetric
and PT -symmetry-broken regimes in Figs. 12(a) and 12(b),
where the different levels of the three-level atom correspond to
the different distributions |T (n)

NM(ω)|2 and V (n)
NM(ω) in Eqs. (53)

and (51). Figure 12(c) shows the only peak of |T (e)
NM(ω)|2

varying with �ω and �b, which implies the PT symmetry
of the system is broken. A similar observation is made for
V (e)

NM(ω) in Fig. 12(d), which points out that the dispersive
readout of the three-level atom can be realized near the EP.

We specifically study the influence of the non-Markovian
environment spectral width λ on the dispersive readout for
three-level atom near the EP. First, we consider |T (n)

NM(ω)|2 and
V (n)

NM(ω) varying with �ω when the spectral width λ is very
small in Figs. 13 and 14, respectively. As the spectral width λ

FIG. 13. Different distributions |T (n)
NM(ω)|2 corresponding to the

different levels of the three-level atom as a function of �ω near the
EP are solved by Eq. (53) in the non-Markovian regime, where the
environmental spectrum width λ varies from 0.26�a to 3�a. The pa-
rameters are �b = 0, G = 0.5�a, �b = �a, g = 0.05�a, � = 0.1�a,
�1 = �a, �2 = −2�a, and γ1 = γ2 = 3�a.

FIG. 14. Different distributions V (n)
NM(ω) given by Eq. (51) corre-

sponding to the different levels of the three-level atom versus �ω

near the EP shown in the non-Markovian regime. The parameters
chosen the same as those in Fig. 13.

increases from 0.26�a to 3�a, the distributions |T (n)
NM(ω)|2 and

V (n)
NM(ω) are obviously different when the three-level atom is

in the level |e〉 compared with the case of the other two levels,
i.e., |x〉 and |g〉. In other words, it is convenient to dispersively
read out the metastable state |e〉 of the three-level atom by
adjusting the spectral width λ when the non-Markovian effects
become strong, which originates from the strong excitation
backflow obtained by the interaction between the system and
environment.

With the increase of the spectral width λ varying from
8�a to 400�a, the relative heights of the two peaks undergo
a significant change, where the left peak of the double peak
gradually transfers to the right peak when the atom is in the
excited state |x〉, as seen in Fig. 15, while the lines in the case
of the ground state |g〉 and metastable state |e〉 overlap for the
different spectral widths in Figs. 16 and 17, respectively. The
similar observation in Fig. 18 for V (x)

NM(ω) can be explained by
the excitation backflow originating from the non-Markovian
effects of the environment. This indicates that the feedback
effect of the non-Markovian environment acting on the system
dynamics can enhance the dispersive readout for the excited

FIG. 15. Plot of |T (x)
NM(ω)|2, determined by Eq. (53), as a function

of �ω near the EP in the non-Markovian regime, where the spectral
width λ increases from 8�a to 400�a. The non-Markovian dispersive
readout is consistent with that obtained by the Markovian approx-
imation in the wideband limit (λ → ∞). The other parameters are
the same as those in Fig. 13.
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FIG. 16. Plot of (a) |T (g)
NM(ω)|2 and (b) |T (e)

NM(ω)|2 versus �ω near
the EP in the non-Markovian regime. The parameters are the same as
those in Fig. 15.

state |x〉 in the three-level atom. In particular, |T (x)
NM(ω)|2 and

V (x)
NM(ω) in the non-Markovian case are highly consistent with

those under the Markovian approximation (λ → ∞) when the
spectral width λ is large enough (λ = 400�a). In this case,
the impulse response function (40) and correlation function
(41) tend to

√
�aδ(t ) and �aδ(t ), respectively, in the wide-

band limit, i.e., the detuning width λ approaches infinity,
which leads to Eqs. (39) and (44) with the non-Markovian
limit returning to Eqs. (23) and (31) under the Markovian
approximation. Therefore, we can achieve enhancement of the
dispersive readout for any interaction strength λ in the non-
Markovian environment by adjusting the model parameters of
the system.

VI. CONCLUSION

In summary, we have studied the dispersive readout of
the driven three-level atom weakly interacting with a passive
cavity that couples to an active cavity. The conditions for the
existence of the PT -symmetric phase transition in the quan-
tum system were derived by examining the eigenvalues of
the effective Hamiltonian, which reflects that the perturbation
to the passive cavity caused by the three-level atom can be
prominently amplified near the EP. We realized the dispersive
readout of the excited, metastable, and ground states for the

FIG. 17. Plot of V (n)
NM(ω) (n = g, e) calculated by Eq. (51) as

a function of �ω near the EP in the non-Markovian regime. The
parameters are the same as those in Fig. 15.

FIG. 18. Plot of V (x)
NM(ω) as a function of �ω near the EP in

the non-Markovian regime. As the spectral width λ increases, the
non-Markovian dispersive readout gradually tends to the case of the
Markovian approximation (λ → ∞). The parameters are the same
as those in Fig. 15.

three-level atom in the weak-coupling regime via comparing
the different characteristics of the transmission spectrum of
the passive cavity and the ratio of the active cavity excitation
number to the input photon number obtained by using the
modified Laplace transform and input-output theory whether
the EP exists in the system or not. Compared with the dis-
persive readout method in the strong-coupling regime, the
proposed dispersive readout scheme involves only the weak-
coupling regime, which can suppress unwanted backaction
[5,6] of the dispersive readout on the three-level atom.

Moreover, we have extended the dispersive readout of the
three-level atom to the non-Markovian regime, where the
results obtained under the Markovian approximation were
found to be consistent with those in the non-Markovian
regime in the wideband limit. The environmental spectral
width in the non-Markovian regime can effectively enhance
the dispersive readout of the three-level atom due to the
excitation backflow induced by the coupling between the pas-
sive cavity and environment. The dispersive readout proposed
can deepen the understanding of the relationship between
PT symmetry plus non-Markovian effects and dispersive
readout.

As an outlook, it would be interesting to inves-
tigate the total excitation number of nonconserving
systems beyond the rotating-wave approximation,
e.g., the non-rotating-wave interaction between the
passive cavity and environment

∑
k Jk (â + â†)(ĉk + ĉ†

k )
[122,209,210], anisotropic non-rotating-wave interaction∑

k ζk (ĉk â† + ĉ†
k â) + ξk (ĉk â + ĉ†

k â†) [211–217], and
many-body models [218–223]. More generally, the total
systems containing the external environment beyond the RWA
deserve future explorations that are not limited to the cases
of the anisotropic non-rotating-wave approximation, i.e., all
the couplings between different subsystems might be of the
form

∑
n,k (Gn,kŶnẐ†

k + G∗
n,kŶ

†
n Ẑk + Jn,kŶnẐk + J∗

n,kŶ
†

n Ẑ†
k ),

where Ŷ †
n (Ŷn) and Ẑ†

k (Ẑk) are the creation (annihilation)
operators for the total systems (including the three-level
atom, coupled cavities, the classical driving field, and the
environment), while Gn,k and Jn,k denote the coupling
strengths of the rotating-wave and non-rotating-wave
interactions, respectively.
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FIG. 19. The dispersive readout of the driven three-level atom
might also be realized in the cavity-magnon system [128–130]. The
atom weakly interacting with the cavity (eigenfrequency ωa) with
the coupling strength g has three relevant electronic levels, i.e., the
excited state |x〉, metastable state |e〉, and ground state |g〉. The tran-
sition from level |e〉 to level |x〉 is driven by the classical driving field
with strength � and frequency ωl . The YIG sphere coupled to the
cavity with the coupling strength G is located at the maximum mag-
netic field of the cavity perpendicular to the uniform bias magnetic
field with strength B in the direction of the z axis. The ĉin and ĉout

denote the input-field and output-field operators, respectively. The
cavity and the classical driving field are detuned from the three-level
atom and are denoted by �1 and �2, respectively.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China under Grant No. 12274064, Scien-
tific Research Project for Department of Education of Jilin
Province under Grant No. JJKH20241410KJ, and Natural
Science Foundation of Jilin Province (subject arrangement
project) under Grant No. 20210101406JC.

APPENDIX A: WEAK COUPLING OF A CAVITY-MAGNON
SYSTEM TO A DRIVEN THREE-LEVEL ATOM

The system in our scheme might also consist of a driven
three-level atom weakly coupled to the cavity, which interacts

with the YIG sphere by the strong-coupling strength G due
to the characteristics of the YIG sphere in Fig. 19. A uniform
bias magnetic field in the direction of the z axis is exerted
on the YIG sphere situated at the maximum magnetic field of
the cavity mode, which is perpendicular to the bias magnetic
field [224–243]. In order to ignore the Heisenberg exchange
effects, we choose the YIG sphere of the paramagnetic
material [244].

When the dissipation of the system can be compensated
exactly by the gain from the torque [134,245–247] exerted on
the YIG sphere, the real and imaginary parts of the eigenval-
ues coalesce at the EP [the condition of the PT -symmetric
phase transition is similar to Eq. (22)] by varying the torque.
The sensitivity of dispersive readout can be enhanced near the
EP [248–250], which contributes to the dispersive readout of
the excited, metastable, and ground states of the three-level
atom via the transmission of the cavity [251–254] and spin
voltage of the YIG sphere [255].

APPENDIX B: DERIVATION OF EQ. (22)

The exceptional point corresponding to two
eigenenergies and their eigenstates coalescing, i.e.,
4G2 + (�b + i�a/2 + i�b/2)2 = 0 in Eq. (20), gives
4G2 + (�b + iη)2 = 0 with η = �a/2 + �b/2 (when we
study the exceptional point, the atom is not considered, i.e.,
C (n) = 0) or 4G2 + �2

b + 2�bηi − η2 = 0, which leads to

�bη = 0, (B1)

4G2 + �2
b − η2 = 0. (B2)

With Eqs. (B1) and (B2), two possible cases should be con-
sidered. (i) In the first case, we assume �b = 0 for Eq. (B1),
which results in G = η/2. For the balanced dissipation and
gain from passive and active cavities, i.e., �a = �b, we have
G = �a/2 and obtain Eq. (22). (ii) For �b �= 0 and η = 0, we
arrive at G = 0 and �b = 0 from Eq. (B2), which is not con-
sistent with the assumption �b �= 0 and should be discarded.
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