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Quantum routing of single photons within a specified frequency range
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The quantum routing of single photons takes the central role in an optical quantum network. The matching
between the routing probability and the selected frequency of single photons limits the robustness and universal-
ity of the quantum router. Here, we investigate how to implement the quantum routing of single photons within
bandwidth frequencies by two cavities embedding atoms acting as quantum nodes. We show that the routing
capabilities of the single photons and the range of the frequencies can be manipulated by properly designing
the chiral coupling strengths and the channel boundaries. Also, we demonstrate that the incident single photons,
within bandwidth frequencies, can be completely routed to the targeted output port. This is particularly important
to construct optical quantum networks within bandwidth frequencies in the future.
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I. INTRODUCTION

A quantum network is the physical basis of quantum in-
formation technology and possesses many functions [1–5],
which cannot be implemented in the classical network. Thus
the quantum network has been widely investigated and has
been used to explore quantum sensing, quantum communica-
tion, quantum computing, etc. [6–11]. A quantum router is the
basic element of the quantum network and it can distribute the
quantum signals from one input port to multiple output ports
[12–15].

Researching the quantum routing of single photons is quite
important for the implementation of the optical quantum net-
work. Until now, various systems have been used to research
quantum routing of single photons, such as circuit quan-
tum electrodynamics (QED) [16,17], optomechanical systems
[18–20], cavity QED [21,22], giant atom(s) [23], and mul-
tilevel atom(s) [12,24]. In these systems, the single photons
can be efficiently routed to the nonincident channels with
specific frequency, but routing probabilities will rapidly di-
minish when the frequencies of the single photons are outside
the designed region. Therefore, how to promote the quantum
routing of single photons within bandwidth frequencies is
quite important.

Photons are the best carriers of the quantum signals and
the photons propagating along the waveguide will retain the
coherence better. The chiral coupling between the photon and
the quantum emitter can determine the propagation of the
photon [25–30]. Therefore, the chiral photon-emitter inter-
action in a waveguide system can be used to implement the
desired quantum routing of single photons in optical quantum
networks [4,31–35].

In this paper, we propose an approach to implement ef-
ficient quantum routing of single photons within bandwidth
frequencies. In the waveguide quantum system, the Rabi
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splitting of the transmission spectrum will appear due to the
coupling between the cavity and atom [36]. We set two cavi-
ties embedding two-level atoms as the quantum nodes in the
proposed quantum routing system. Then we can broaden the
frequency range, corresponding the single photons routed to
the nonincident waveguide, by designing the chiral coupling
strength and phase shift. Therefore, the quantum routing of
single photons within bandwidth frequencies can be imple-
mented. Furthermore, we implement more efficient quantum
routing by using the terminated channel to control the prop-
agation of the single photons along the incident waveguide.
With these designs, the network to implement the efficient
quantum routing of single photons within bandwidth frequen-
cies is in principle possible.

The work is structured as follows. In Sec. II, we design
the quantum routing scheme by two cavities embedding two-
level atoms acting as the quantum nodes. We investigate how
to implement the quantum routing of single photons within
bandwidth frequencies and modulate the routing probability
by the chiral coupling strength and the phase shift. In Sec. III,
we further improve the routing capability by using a termi-
nated waveguide as the incident channel. We demonstrate how
to increase the routing efficiency of single photons within
bandwidth frequencies by the parameters. Finally, we sum-
marize our work and discuss the feasibility of the proposal in
Sec. IV.

II. MODULATING QUANTUM ROUTING OF SINGLE
PHOTONS WITHIN BANDWIDTH FREQUENCIES

A simplified quantum routing structure of the single pho-
tons within bandwidth frequencies is depicted in Fig. 1. The
incident single photons come from the left of the waveguide
a and are routed to different channels by the quantum nodes
located at x1 and x2. A quantum node consists of a cavity
and a two-level atom and chirally couples to both waveguides.
Usually, the dissipation caused by environment is inescapable
and it will reduce the routing probability of the photons in
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FIG. 1. Quantum routing of single photons within bandwidth
frequencies. The quantum nodes, located at x1 and x2, consist of cav-
ities and two-level atoms, and chirally couple to the single photons
propagating along the waveguides.

all directions. The influence caused by the cavity or atom is
similar and the latter has been discussed in Ref. [14]. Here, we
assume high quality cavities, then the influence will be trivial
and can be neglected, and the atomic dipole-dipole interaction
also is neglected for simplicity. Therefore, the Hamiltonian
describing the chiral quantum routing system can be written
as H = Hs + Hp + Hint with [32,33]

Hs =
∑
j=1,2

[(
ωc j − i

1

τ j

)
a†

j a j +
(

ωe j − i� j

2

)
σ+

j σ−
j

+ g j (a jσ
+
j + a†

jσ
−
j )

]
,

Hp =
∑

n=a,b

ivgn

∫ ∞

−∞
dx

[
c†

nL(x)

(
∂

∂x

)
cnL(x)

− c†
nR(x)

(
∂

∂x

)
cnR(x)

]
,

Hint =
∑

j = 1, 2
n = a, b

∫ ∞

−∞
dx δ(x − x j )[VjRc†

nR(x)a j

+ VjLc†
nL(x)a j + H.c.], (1)

where we set h̄ = 1. The first term Hs describes the cavities,
the two-level atoms, and the interactions between the cavities
and atoms. j = 1, 2 stands the jth cavity or atom. ωc j and ωe j

are the resonance frequency of the cavity mode and the atomic
transition frequency between the excited state |e〉 and the
ground state |g〉. a†

j (a j ) and σ
†
j (σ j ) are the bosonic creation

(annihilation) operator of the jth cavity mode and the raising
(lowering) operator of the jth atom, respectively. gj is the
coupling strength between the cavity and the atom at x j . 1

τ j

and � j

2 are the dissipation rates of the jth cavity and atom,
respectively. The second term Hp describes the photon propa-
gating along the waveguides with the order number n = a, b.
vgn is the group velocity of the photon propagating along
the waveguide; c†

nR(L)(x) [cnR(L)(x)] is the bosonic creation
(annihilation) operator of the photon propagating along the

waveguide n in the right(left) [R(L)] direction. The third term
Hint describes the chiral interaction between the waveguides
and the cavities. VjR(L) is the chiral coupling strength between
the jth cavity and the photon propagating along the R(L)
direction.

The single-excitation eigenstate of the quantum routing
system can be written as

|�(x)〉 =
∫ ∞

−∞
dx

∑
n=a,b

[φnR(x)c†
nR(x) + φnL(x)c†

nL(x)]|∅〉

+
∑
j=1,2

(ec ja
†
j + ea jσ

+
j )|∅〉, (2)

where |∅〉 denotes the vacuum state. φnR(L)(x) stands for
the probabilistic amplitude of the single photons propagating
along waveguide n in the R(L) direction and ec j and ea j denote
the excitation amplitudes of the cavity j and the atom j, re-
spectively. The probabilistic amplitudes of the single photons
propagating along the R(L) direction in the waveguides can be
expressed as [22]

φaR(x) = eiqx[θ (x1 − x) + t12θ (x − x1)θ (x2 − x)

+ tθ (x − x2)],

φaL(x) = e−iqx[rθ (x1 − x) + r12θ (x − x1)θ (x2 − x)],

φbR(x) = eikx[tRθ (x − x2) + tR12θ (x − x1)θ (x2 − x)], (3)

φbL(x) = e−ikx[tLθ (x1 − x) + tL12θ (x − x1)θ (x2 − x)].

Here, t12 and t are the transmitted amplitudes of the pho-
ton in these areas: x1 < x < x2 and x > x2 in the waveguide
a, respectively. Correspondingly, r and r12 stand for the re-
flected amplitudes of the photon in these areas: x < x1 and
x1 < x < x2. Meanwhile, tR(tL ) is the transferred amplitudes
in x > x2(x < x1) along waveguide b and tR12(tL12) is the right
(left) transferred amplitude in x1 < x < x2 along waveguide b.
Also, q and k are the wave vectors in waveguides and satisfy
q · vga = k · vgb = E . Here, E is the eigenfrequency of the

∆ c/γ2R

-50 -10 0 10 50
0

0.2

0.4

0.6

0.8

1

T
R=TL
TR

FIG. 2. Transmitted, reflected, and the routing probabilities
T, R, TL , and TR versus the detuning �c/γ2R with the decay
rates γ1R/γ2R = γ1L/γ2R = 100, γ2L/γ2R = 10, the coupling strength
g1/γ2R = g2/γ2R = 10, and the phase shift θ = π
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single-excitation quantum routing system and is also equal to
the frequency of the incident photons.

Here, we assume the cavity is high quality, then we can
neglect the intrinsic dissipation of the cavity for simplicity

[22]. Therefore, we can set 1
τ1

= 1
τ2

= �1
2 = �2

2 = 0 in the fol-
lowing discussion. Taking x1 = 0, k = q, and vga = vgb = vg

for simplicity, we can get the amplitudes t , r, tL, and tR by
solving the equation H |�(x)〉 = E |�(x)〉:

t =
−(

i�c1γ1L − g2
1 + �c1�e1

)(
i�c2γ2L − g2

2 + �c2�e2
) − 2�c1�c2V1RV2RV1LV2L

v2
g

e2iθ + �c1�c2γ1Rγ2R

− 4�c1�c2V1RV2RV1LV2L
v2

g
e2iθ − (

i�c1γ1R + i�c1γ1L − g2
1 + �c1�e1

)(
i�c2γ2R + i�c2γ2L − g2

2 + �c2�e2
) ,

tL = r =
i�c1V1RV1L

vg

(
i�c2γ2R + i�c2γ2L − g2

2 + �c2�e2
) − i�c2V2RV2L

vg

(
i�c1γ1R + i�c1γ1L + g2

1 − �c1�e1
)
e2iθ

− 4�c1�c2V1RV2RV1LV2L
v2

g
e2iθ − (

i�c1γ1R + i�c1γ1L − g2
1 + �c1�e1

)(
i�c2γ2R + i�c2γ2L − g2

2 + �c2�e2
) ,

tR =
i�c1γ1R

(
i�c2γ2L − g2

2 + �c2�e2
) + i�c2γ2R

(
i�c1γ1L − g2

1 + �c1�e1
) + 2�c1�c2V1RV2RV1LV2L

v2
g

e2iθ

− 4�c1�c2V1RV2RV1LV2L
v2

g
e2iθ − (

i�c1γ1R + i�c1γ1L − g2
1 + �c1�e1

)(
i�c2γ2R + i�c2γ2L − g2

2 + �c2�e2
) , (4)

where �c1/c2 = E − ωc1/c2 is the detuning between the pho-
ton and the cavity 1/2 and �e1/e2 = E − ωe1/e2 stands for
the detuning between the photon and the atom 1/2. γ jL(R) =
V 2

jL(R)/vg ( j = 1, 2) is the decay rate of the single photons
from the cavity j to the waveguides in the L(R) direc-
tion. Above, θ = q(x2 − x1) is the phase shift of the routed
single photons. Here, we consider �c1/c2 � E , γ jL(R) � E ,
θ

2π
� E

γ jL(R)
, and θ

2π
� E

�c1/c2
; then we can neglect the fluc-

tuation of the phase shift θ caused by the detunings. From
Eq. (4), we can find that the transmitted, reflected, and
transferred probabilities of the single photons satisfy the con-
servation equation T + R + TL + TR = 1, with T = |t |2, R =
|r|2, TR = |tR|2, and TL = |tL|2.

In Fig. 2, we show how to implement quantum routing
of single photons within bandwidth frequencies. Here,
we set �e1 = �e2 = �c2 = �c1 = �c for simplicity.
Meanwhile, we assume the decay rates γ1R/γ2R =
γ1L/γ2R = 100, γ2L/γ2R = 10, the coupling strengths
g1/γ2R = g2/γ2R = 10, and the phase shift θ = π . We can
see that the routing probabilities TL and TR, the transmitted
probability T , and the reflected probability R are all greater
than 0.2 within bandwidth frequencies except for �c/γ2R ∼ 0.
That means we can efficiently route the single photons to the
nonincident waveguide within bandwidth frequency range.
When the detuning |�c/γ2R| = 10, the probabilities satisfy
T = R = TL = TR = 0.25 and the routing probabilities TL and
TR reach the maximum value. However, the single photons
will mainly transmit the waveguide a with the detuning
�c/γ2R ∼ 0. This result provides a robust approach to route
the single photons within bandwidth frequencies.

In order to further investigate how to modulate the quan-
tum routing process by the chiral coupling parameters, we
first assume the coupling strengths g1/γ2R = g2/γ2R = 10,
the decay rates γ1R/γ2R = 100 and γ2L/γ2R = 10, and the
phase shift θ = π . In Fig. 3, we show that the quantum
routing probabilities TL and TR are modulated by the chiral
decay rate γ1L/γ2R and the detuning �c. From Fig. 3(a),
the distribution of routing probability TL is symmetrical on
�c = 0 and TL is 0 at �c = 0. The routing probability TL

can be stable within bandwidth frequencies and can reach the
maximum value 0.25. For a fixed detuning �c, the routing
probability TL increases with the chiral decay rate γ1L until

γ1L = γ1R = 100γ2R and then decreases with γ1L. Meanwhile,
we can find that the routing probability TL evolves fastest at
�c/γ2R = ±10. In Fig. 3(b), we can find that the distribution
of routing probability TR is also symmetrical on �c = 0, but
the maximum routing probability in the R direction TR can
reach 100%. Meanwhile, the efficient routing probability TR

within bandwidth frequencies corresponds to the chiral decay
rate γ1L < γ1R, the area of which is complementary with TL.

FIG. 3. (a) L direction routing probability TL and (b) R direc-
tion routing probability TR versus the detuning �c/γ2R and chiral
decay rate γ1L/γ2R with γ1R/γ2R = 100, γ2L/γ2R = 10, θ = π , and
g1/γ2R = g2/γ2R = 10.
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FIG. 4. Quantum routing probability TR versus the phase shift θ

and detuning �c/γ2R with coupling strength g1/γ2R = g2/γ2R = 10
and chiral decay rates γ1L/γ2R = 50, γ1R/γ2R = 100, and γ2L/γ2R =
10.

Here, TR decreases monotonically with γ1L/γ2R. Therefore,
we can also completely route the single photons within band-
width frequencies to the nonincident waveguide by taking the
chiral decay rate γ1L � γ1R. Here, the incident direction of
the photon influences the asymmetry of the maximum proba-
bilities of TL and TR. The routing probabilities can be changed
from TL to TR with the incident direction of the photon and
chiral decay rates being reversed.

The periodicity of the routing probability TR is also
investigated and shown in Fig. 4. Here, we assume the cou-
pling strength g1/γ2R = g2/γ2R = 10 and chiral decay rates
γ1L/γ2R = 50, γ1R/γ2R = 100, and γ2L/γ2R = 10. Then we
can find that the period of TR, depending on the phase shift,
is π . And the maximum value of TR is mainly at the phase
shift θ = 0, π, 2π, . . ..

III. EFFICIENT QUANTUM ROUTING OF SINGLE
PHOTONS WITHIN BANDWIDTH FREQUENCIES

In the above section, the quantum router can route the sin-
gle photons to the nonincident waveguide within bandwidth
frequencies, but the routing probability in the L direction (i.e.,
TL) is quite low. In this section, we propose a high-efficiency
quantum routing scheme, using a terminated waveguide as the
incident channel, as shown in Fig. 5. The cavities couple to
the both waveguides at x1 and x2 (x1 < x2 < 0) and the end of
the terminated waveguide is assumed to be x3 = 0. Then the
Hamiltonian of this quantum routing system can be written as
H = Hpt + Hintt + Hs + Hb. Here, Hs is the same as Eq. (1).

Hpt describes the single photons propagating in both
waveguides and can be represented as

Hpt =
∫ 0

−∞
ivgdx

[
c†

aL(x)
∂

∂x
caL(x) − c†

aR(x)
∂

∂x
caR(x)

]

+
∫ ∞

−∞
ivgdx

[
c†

bL(x)
∂

∂x
cbL(x) − c†

bR(x)
∂

∂x
cbR(x)

]
.

(5)
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FIG. 5. Efficient quantum routing of single photons within band-
width frequencies with a terminated waveguide being the incident
channel. The quantum nodes, located at x1 and x2, consist of a cavity
and a two-level atom. The end of the terminated waveguide is x3 = 0.

The interaction between the single photons and the cavities
at x1 and x2 can be written as

Hintt =
∑

j = 1, 2
m = R, L

∫ 0

−∞
dx δ(x − x j )[Vjmc†

am(x)a j + H.c.]

+
∑

j = 1, 2
m = R, L

∫ ∞

−∞
dx δ(x − x j )[Vjmc†

bm(x)a j + H.c.],

(6)

with m = R, L being the direction.
Hb describes the single photons’ action of the boundary at

x3 = 0 in the terminated waveguide and is given by [22,37]

Hb =
∫ 0+

−∞
dx δ(x − x3)[i2vgc†

aL(x)caR(x) + H.c.]. (7)

Then the single-excitation wave function of this quantum rout-
ing system can be expressed as

|�(x)〉 =
∫ 0

−∞
dx[φaR(x)c†

aR(x) + φaL(x)c†
aL(x)]|∅〉

+
∫ ∞

−∞
[φbR(x)c†

bR(x) + φbL(x)c†
bL(x)]|∅〉

+ ec1a†
1|∅〉 + ea1σ

+
1 |∅〉 + ec2a†

2|∅〉 + ea2σ
+
2 |∅〉.

(8)

The incident waveguide is terminated at x3; then the proba-
bilistic amplitudes of the single photons propagating along the
R(L) direction in the waveguides can be expressed as [22]

φaR(x) = eiqx[θ (x1 − x) + ta12θ (x − x1)θ (x2 − x)

+ ta23θ (x − x2)θ (x3 − x)],

φaL(x) = e−iqx[r2θ (x1 − x) + ra12θ (x − x1)θ (x2 − x)

+ ra23θ (x − x2)θ (x3 − x)],

φbR(x) = eiqx[tbR2θ (x − x2) + tb12θ (x − x1)θ (x2 − x)],

φbL(x) = e−iqx[tbL2θ (x1 − x) + rb12θ (x − x1)θ (x2 − x)]. (9)

Here, ta12 and ta23 are the transmitted amplitudes of the
photon in these areas: (x1, x2) and (x2, x3) in waveguide
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a, respectively. Correspondingly, r2, ra12, and ra23 stand
for the reflected amplitudes of the photon in these areas:
x < x1, (x1, x2), and (x2, x3) in waveguide a. tbR2(tbL2) and

tb12(rb12) are the transferred amplitudes in x > x2(x < x1) and
(x1, x2)[(x1, x2)] in the waveguide b.

Solving the equation H |�(x)〉 = E |�(x)〉, we can get the
amplitudes r2, tbR2, and tbL2:

A = 4�c1�c2V1RV2RV1LV2L

v2
gei2θ1

ei2θ2 + �c1V1RV1L

vgei2θ1

(
�c2γ2R + �c2γ2L − ig2

2 + i�c2�e2
)

− (
�c1γ1R + �c1γ1L + ig2

1 − i�c1�e1
)(

�c2γ2R + �c2γ2L + ig2
2 − i�c2�e2 + �c2V2RV2L

vgei2θ2

)
,

r2 =
�c1V1RV1L

vg
ei2θ1

(
�c2γ2R + �c2γ2L + �c2V2RV2L

vg
e−i2θ2 + ig2

2 − i�c2�e2
) − �c1�c2

(
γ1Rγ2R + γ1Lγ2L

)
A

+
�c2V2RV2L

vg
ei2θ2

(−�c1γ1R − �c1γ1L + �c1V1RV1L
vg

e−i2θ1 + ig2
1 − i�c1�e1

) − (−ig2
1 + i�c1�e1

)(−ig2
2 + i�c2�e2

)
A

,

tbR2 =
�c1V1RV1L

vg
e−i2θ1

(−�c2γ2L − �c2γ2R − 2�c2V2RV2L
vg

ei2θ2 + ig2
2 − i�c2�e2

) + �c1γ1R
(
�c2γ2L + ig2

2 − i�c2�e2
)

A

+
�c2V2RV2L

vg
e−i2θ2

(
�c1γ1L + �c1γ1R + ig2

1 − i�c1�e1
) + �c2γ2R

(
�c1γ1L + ig2

1 − i�c1�e1
)

A
,

tbL2 =
�c1V1RV1L

vg
ei2θ1

(
�c2γ2L + �c2γ2R + �c2V2RV2L

vg
e−i2θ2 + ig2

2 − i�c2�e2
) + �c1γ1L

(
ig2

2 − i�c2�e2
)

A

+
�c2V2RV2L

vg
ei2θ2

(−�c1γ1L − �c1γ1R − �c1V1RV1L
vg

e−i2θ1 + ig2
1 − i�c1�e1

) + �c2γ2L
(
ig2

1 − i�c1�e1
)

A
. (10)

Above, we set θ1 = q(x1 − x3) < θ2 = q(x2 − x3) < 0. The
reflected and transferred probabilities satisfy the conserva-
tion equation R2 + TbR2 + TbL2 = 1 with R2 = |r2|2, TbR2 =
|tbR2|2, and TbL2 = |tbL2|2.

How to modulate quantum routing probabilities TbR2 and
TbL2 by the chiral coupling is shown in Figs. 6(a)–6(d).
Here, we assume the detunings �e1 = �e2 = �c2 = �c1 =
�c, the coupling strength g1/γ2R = g2/γ2R = 10, and the
phases θ1 = −π , θ2 = −π/2. For the resonance incident sin-
gle photons (i.e., �c = 0), the photons will be completely
reflected (i.e., R2 = 100%). When the detuning increases to
|�c/γ2R| = 10 (i.e., |�c| = g1 = g2), the single photons will
be completely routed to the waveguide b along the L direction
(i.e., TbL2 = 100%). In Fig. 6(a), we assume the chiral decay
rates γ1L/γ2R = 150, γ1R/γ2R = 100, and γ2L/γ2R = 1 (i.e.,
γ1L > γ1R and γ2L = γ2R) and we can find that the quantum
routing is much more efficient than the previous scheme and
the quantum routing probabilities satisfy TbL2 > TbR2 with
|�c/γ2R| > 10. In Fig. 6(b), the quantum routing probabilities
become TbL2 = TbR2 with the chiral decay rates γ1L/γ2R =
γ1R/γ2R = 100 and γ2L/γ2R = 1 (i.e., γ1L = γ1R and γ2L =
γ2R). When the chiral decay rates become γ1L/γ2R = 50,
γ1R/γ2R = 100, and γ2L/γ2R = 1 (i.e., γ1L < γ1R and γ2L =
γ2R), the quantum routing probabilities become TbL2 < TbR2

as shown in Fig. 6(c). In Fig. 6(d), the chiral decay rates be-
come γ1L/γ2R = 100, γ1R/γ2R = 100, and γ2L/γ2R = 10 (i.e.,
γ1L = γ1R and γ2L > γ2R) and the routing probability in the L
direction is greater than the probability in the R direction (i.e.,
TbL2 > TbR2). These results show that this quantum routing
scheme can much more efficiently route the single photons to

the nonincident waveguide within bandwidth frequencies, the
chiral decay rates γ1L and γ1R can determine the distribution
of the quantum routing probabilities in the L and R directions
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FIG. 6. Quantum routing probabilities TbR2 and TbL2 versus the
detuning �c/γ2R for the selected detunings �e1 = �e2 = �c2 =
�c1 = �c, the coupling strength g1/γ2R = g2/γ2R = 10, and the
phases θ1 = −π , θ2 = −π/2. (a) The chiral decay rates γ1L/γ2R =
150, γ1R/γ2R = 100, and γ2L/γ2R = 1; (b) the chiral decay rates
γ1L/γ2R = γ1R/γ2R = 100 and γ2L/γ2R = 1; (c) the chiral decay rates
γ1L/γ2R = 50, γ1R/γ2R = 100, and γ2L/γ2R = 1; (d) the chiral decay
rates γ1L/γ2R = γ1R/γ2R = 100 and γ2L/γ2R = 10.
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FIG. 7. Quantum routing probabilities (a) TbR2 and (b) TbL2 versus
the detuning �c/γ2R and the chiral decay rate γ2L/γ2R with the
decay rates γ1L/γ2L = γ1R/γ2R = 100, coupling strengths g1/γ2R =
g2/γ2R = 10, and the phases θ1 = −π, θ2 = −π/2.

(i.e., TbL2/TbR2 ∝ γ1L/γ1R), and the chiral decay rates γ2L and
γ2R have a similar effect. In order to further investigate
the quantum routing scheme with the terminated waveguide,
we assume the decay rates γ1L/γ2L = γ1R/γ2R = 100, cou-
pling strengths g1/γ2R = g2/γ2R = 10, and the phases θ1 =
−π, θ2 = −π/2. In Fig. 7(a), we show how to modulate
the quantum routing probability TbR2 by the chiral decay rate
γ2L and the detuning �c. We find that the routing proba-
bility TbR2 → 100% with the chiral decay rate γ2L/γ2R < 1
and the bandwidth frequency being |�c/γ2R| < 50. Here, the
efficient quantum routing with bandwidth frequencies in the
R direction mainly corresponds to the low chiral decay rate
(e.g., γ2L/γ2R < 1). The routing probability TbR2 increases
as the chiral decay rate γ2L/γ2R corresponding to the de-
tuning �c/γ2R = 0,±10, but decreases as the chiral decay
rate γ2L/γ2R corresponding to the other detuning. The routing
probability TbL2 versus the chiral decay rate γ2L/γ2R and the
detuning �c/γ2R is shown in Fig. 7(b). Here, we find that the
routing probability TbL2 decreases as γ2L/γ2R corresponding
to the detuning �c/γ2R = 0,±10, but increases as the chi-
ral decay rate γ2L/γ2R corresponding to the other detuning,
even reaching 100% with chiral decay rate γ2L/γ2R � 15.
In Fig. 7(b), the efficient quantum routing with bandwidth
frequencies in the L direction mainly corresponds to the
large chiral decay rate (e.g., γ2L/γ2R > 1). Therefore, we can
robustly modulate the single photons being routed to targeted

FIG. 8. Quantum routing probabilities (a) TbR2 and (b) TbL2

versus the phase θ and the detuning �c/γ2R, for the decay
rates γ1R/γ2R = γ1L/γ2R = 100, γ2L = γ2R and the coupling strength
g1/γ2R = g2/γ2R = 10.

output ports with targeted probability by the chiral decay rate
γ2L and detuning �c. The phase shift between both cavities
can also influence the distribution of the routing probabilities
in the R(L) direction. Here, we consider the phase shifts
θ2 = −π/2 and θ1 = θ − π/2, with θ being the phase shift
between both cavities, and assume the decay rates γ1R/γ2R =
γ1L/γ2R = 100, γ2L = γ2R and the coupling strength g1/γ2R =
g2/γ2R = 10. Then we show the quantum routing probabilities
TbR2 and TbL2 versus the phase θ and the detuning �c/γ2R in
Figs. 8(a) and 8(b), respectively. In Fig. 8(a), we can find that
the period of TbR2 is π and the maximum value of TbR2 can
reach 50%. TbR2 will decrease to 0 when the detuning satisfies
�c/γ2R = 0,±10 or the phase shift becomes θ = −kπ (k =
0, 1, 2, 3, . . .). In Fig. 8(b), we show that the period of TbL2

also is π and the maximum value of TbL2 can reach 100%. TbL2

will decrease to 0 with �c/γ2R = 0 and θ = −kπ and then
it can reach 100% with �c/γ2R = ±10 and θ = −π/2 − kπ .
These results show that the efficient quantum routing of single
photons within bandwidth frequency also can be implemented
and the phase shift θ can modulate the matching of the routing
probability and the detuning.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we investigate how to modulate the quantum
routing of single photons within bandwidth frequencies by
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chiral cavity-photon coupling and cavity-atom interaction. We
have shown that the routing probabilities in L and R directions
are all greater than 20% within bandwidth frequencies in the
normal four-port quantum router and the maximum proba-
bilities are 25% and 100%, respectively. Using a terminated
waveguide as the incident channel, we can implement more
efficient quantum routing of single photons within bandwidth
frequencies and the limit of the probabilities in L and R direc-
tions can all reach 100% within bandwidth frequencies. We
also show that the chiral decay rates γ1L, γ1R, and γ2L can
determine the distribution of the routing probabilities in both
directions. The phase period of the routing probabilities is π

and the phase shift can also influence the quantum routing. It
has been demonstrated that the coupling strength between the
atom and light in the clockwise (cw) mode gcw is much weaker
than that between the atom and light in the counterclockwise
(ccw) mode gccw (e.g., �ccw = g2

ccw/β ≈ 2π × 48 MHz and
�cw = g2

cw/β ≈ 2π × 1.7 MHz with β = 2π × 3 MHz) in
experiment [38].

Considering the atom in the Zeeman state, the single pho-
tons propagating along the right (left) direction correspond to
the ccw (cw) mode [38,39]. However, the roles of cw and ccw
modes can be exchanged by preparing the atom in the opposite
Zeeman ground state [38]. That means it can experimentally
modulate the ratio �ccw/�cw from 0.035 to 28.23 by the exter-
nal bias fields. These results demonstrate the feasibility of our
quantum routing scheme.

We hope that our proposal can provide a feasible and ro-
bust approach to constructing the quantum networks within
bandwidth frequencies.
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