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Besides exploring novel transition patterns, acquiring a full understanding of the transition nature is an ultimate
pursuit in studies of phase transitions. The fundamental models of light-matter interactions manifest single-qubit
topological phase transitions (TPTs), which call for an analytical demonstration apart from numerical studies.
We present a rigorous study of TPTs in the Jaynes-Cummings model generally with Stark nonlinear coupling. In
terms of the properties of Hermite polynomials, we show that the topological structure of the eigenfunction has an
exact correspondence to the spin winding by nodes, which yields a full spin winding without antiwinding nodes.
We find it is the superposition between neighboring Fock states that leads to such a nontrivial spin winding. The
spurious fractional contribution to the winding number of the winding angle at infinity is found to be actually an
integer. Thus, the phase transitions in the model have the nature of TPTs and the excitation number is endowed
as a topological quantum number. The principal transition establishes a paradigmatic case in which a transition
is of both the symmetry-breaking Landau class of transition and the symmetry-protected topological class of
transition, while conventionally these two classes of transitions are incompatible due to the contrary symmetry
requirements. Such a transition-class reconciliation is realized by a preserved higher symmetry (here the parity)
which protects the TPTs, while the symmetry breaking involves the subsymmetries. We also explain the origin
of unconventional TPTs in the presence of counterrotating terms. Our results may provide deeper insight into
the few-body phase transitions in light-matter interactions.
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I. INTRODUCTION

Recent years have witnessed both theoretical progress
[1–4] and experimental advances [5–19] in the frontier of
light-matter interactions. In this context, especially with
the entrance into the era of ultrastrong [5–18] and deep-
strong [18,19] couplings, few-body quantum phase transitions
(QPTs) have become practically relevant and have attracted
particular attention [4,20–32] among the massive efforts
[1–6,20–87] in the dialogue between mathematics and physics
[2] inspired by the milestone of finding integrability of the
fundamental light-matter-interaction model [1]. Few-body
QPTs are fascinating not only because they exhibit critical and
universal behaviors [22–25,28,30] as in many-body systems
[24,25] but also due to their high controllability and tunability,
which show advantages in applications such as in quantum
metrology [51–54].

Phase transition (PT) is a ubiquitous phenomenon in our
physical world. Whereas investigation of PTs is a field full
of challenges, also surprising discoveries may be often en-
countered. Exploring novel patterns of PTs and seeking a full
understanding of PTs have always been goals. In this regard,
the well-known Landau theory [88] made a breakthrough in
understanding traditional phase transitions by realizing that a
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PT is associated with some symmetry breaking, while another
essentially different class of PT is the topological phase tran-
sition (TPT) [89–94], which does not break the symmetry of
the system. Phase transitions are also classified into classical
ones and quantum ones; the former are thought to be driven
by thermal fluctuations and the latter by quantum fluctuations
[24,95]. Since the symmetry requirement of these two classes
of PTs are contrary, they are in principle incompatible. An
exceptional finding of their coexistence would be surprising
and intriguing.

When PTs traditionally occur in thermodynamical sys-
tems, few-body systems can also manifest PTs, as it has
been found in light-matter interactions. Indeed, the quantum
Rabi model (QRM) [40,96,97], known as the most funda-
mental model of light-matter interactions, possesses a QPT
[20–22] in the low-frequency limit ω/� → 0 for the ratio of
the bosonic mode frequency ω and the atomic level splitting
�, which is a replacement for the thermodynamical limit
in many-body systems. At this point, as a mutual support
from other fields, it is worth mentioning that finite-size PTs
can also occur with level crossings in pairing-depairing mod-
els [98–100] and coupled fermion-boson models [101–103]
realizable in superconducting [99,100,102] and cold atomic
systems [98,99,103]. Although it might be a matter of prefer-
ence whether to term the transition quantum by considering
the negligible quantum fluctuations in the photon vacuum
state [24], the transition in the QRM is found to have
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scaling behavior which forms critical universality as in tra-
ditional QPTs. Such critical universality not is only valid
for anisotropy [25,28], but also holds for the Stark nonlinear
coupling [30] and the critical exponents can be bridged to the
thermodynamical case [25]. On the other hand, apart from
the various patterns of explicit [27] or hidden [28] symmetry
breaking as in the Landau class of PTs, the symmetry-
protected TPTs also emerge [28–31] in these single-qubit
systems (see a brief comparison of TPTs and Landau-class
PTs in Appendix A). Interestingly, these TPTs not only oc-
cur at gap closing [28–31] as in the conventional TPTs in
condensed matter [93,104–109], but also happen in gapped
situations [29–31] analogously to the unconventional TPTs in
the quantum spin Hall effect with strong electron-electron in-
teractions [110] and the quantum anomalous Hall effect with
disorder [111]. The study extending topological transitions
to excited states in the presence of level anticrossing also
reveals other unconventional types of TPTs with unmatched
wave-function nodes and spin-winding numbers, as well as
topological transitions of spin knots [31]. However, these
studies on the single-qubit TPTs are based on numerical anal-
ysis; a more convincing analytical study is lacking. In such a
situation, the problem of the winding angle at infinity remains
elusive and unconventional TPTs are in need of a clearer
understanding [31].

In this work we present a rigorous study of topological
transitions in a fundamental model of light-matter interac-
tions generally including the Jaynes-Cummings (JC) linear
coupling [83,112] and Stark nonlinear coupling [30,41–43]
(JC-Stark model). As the eigenstates are composed of two
Hermite polynomials, we rigorously demonstrate that the
topological structure of the wave function has an exact cor-
respondence to the spin winding by nodes and that the spin
is winding without antiwinding nodes. We also analytically
show that the spurious fractional contribution of the winding
angle at infinity to the winding number is actually an integer.
Thus, the PTs in the model have the nature of TPTs and the
excitation number is endowed the connotation of a topological
quantum number. We also point out that the principal transi-
tion is simultaneously of both the symmetry-breaking Landau
class of transition and the symmetry-protected topological
class of transition, while conventionally these two classes
of transitions are incompatible due to the contrary symme-
try requirements. Our results may provide deeper insight
into the few-body phase transitions in light-matter inter-
actions, including the origin of unconventional topological
transitions.

The paper is organized as follows. Section II introduces
the JC-Stark model for analytical analysis in this work.
Anisotropy is also included for further discussion. Section III
presents the exact solution of the JC-Stark model. Section IV
shows the topological nature of the transitions by analytical
analysis of the nodes of the eigenfunctions and the corre-
spondence of spin windings. Section V demonstrates that
the principal transition is simultaneously both a Landau-class
and topological-class transition. Section VI shows the TPTs
without parity variation and gives an understanding of the
unconventional TPTs without gap closing for the anisotropic
case. Section VII provides a summary and discusses our con-
clusions.

II. MODEL AND SYMMETRY

We start with a fundamental model of light-matter interac-
tions with the Hamiltonian [30,85]

H = H0 + Hg + Hλ + HStark, (1)

H0 = ωa†a + �

2
σx, HStark = χωn̂σx, (2)

Hg = g(σ̃−a† + σ̃+a), Hλ = λg(σ̃+a† + σ̃−a), (3)

which generally includes a bosonic mode with photon number
n̂ = a†a and frequency ω, a qubit represented by the Pauli
matrices σx,y,z with level splitting �, the rotating-wave term
of interaction Hg with coupling strength g, the counterrotat-
ing term Hλ with coupling anisotropy ratio λ, and the Stark
nonlinear interaction [41–43] HStark with coupling ratio χ . In
the literature, HJC = H0 + Hg is the Jaynes-Cummings model
(JCM) [83,112], H0 + Hg + Hλ is the anisotropic QRM [45],
and the λ = 1 case is the QRM [40,96,97]. Here we define
σ̃± = (σz ∓ iσy)/2 adopting the spin notation as in Ref. [39],
in which σz = ± conveniently represents the two flux states
in the flux-qubit circuit system [113]. The tilde of σ̃± denotes
spin raising and lowering on the σx basis, to distinguish the
later-defined σ± on the σz basis. We can retrieve the conven-
tional notation by a spin rotation {σx, σy, σz} → {σz,−σy, σx}
around the axis �x + �z. Numerical studies show that these mod-
els manifest single-qubit TPTs [28–31]. In the present work,
for our analytical investigation, we first focus on the JC-Stark
model [30]

HJC-Stark = H0 + Hg + HStark. (4)

Ultimately, we will also use the analytical results to dis-
cuss the unconventional TPTs in the general model H . All
these models have parity symmetry [P̂, H] = 0, with P̂ =
σx(−1)a†a, which as we will see is the key symmetry that
protects the TPTs.

To extract the topological feature we rewrite the
Hamiltonian in position space

H = ω

2
p̂2 + vσz (x) + H+σ+ + H−σ−, (5)

H± = � − χω

2
∓ gyi

√
2 p̂ + χω

2
(x̂2 + p̂2), (6)

with the substitutions a† = (x̂ − i p̂)/
√

2 and a = (x̂ +
i p̂)/

√
2, where p̂ = −i ∂

∂x , and spin raising and lowering on
the σz = ± basis, i.e., σx = σ+ + σ− and σy = −i(σ+ − σ−).
In such a representation vσz (x) = ω(x + g′

zσz )2/2 + εz
0 is an

effective spin-dependent potential with g′
z = √

2gz/ω, gz =
1+λ

2 g, and εz
0 = − 1

2 (g′2
z + 1)ω. The � term now acts as spin

flipping in σz space or tunneling in position space [21,39]. We
also define gy = 1−λ

2 g. The gy terms, together as
√

2gy p̂σy,
resemble [30] the Rashba spin-orbit coupling in nanowires
[114–118] or the equal-weight mixture [29,119,120] of
the linear Dresselhaus [121] and Rashba [122] spin-orbit
couplings.

III. EXACT SOLUTION

The JC-Stark model (4) possesses U(1) symmetry,
as denoted by the excitation number n̂ + |⇑〉〈⇑| or
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n̂ + σx/2 + 1/2; the eigenstates only involve bases with the
same excitation number n and take the following form [30],
similar to the JCM [83,112]:

ψ (x,η)
n = (

C(η)
n⇑ |n − 1,⇑〉 + C(η)

n⇓ |n,⇓〉)/√Nn, (7)

ψ0 = |0,⇓〉. (8)

Here η = ± denotes two branches of energy levels, n =
1, 2, . . . labels the Fock state on the photon-number basis,
and ⇑ and ⇓ are two spin states of σx. The parity is negative
(positive) when n is even (odd):

P̂ψ (x,η)
n = (−1)n−1ψ (x,η)

n , P̂ψ0 = (−1)ψ0. (9)

The coefficients are explicitly given by

C(η)
n⇑ = e− + η

√
e2− + ng2, (10)

C(η)
n⇓ = g

√
n, (11)

where e+ = (n − 1+χ

2 )ω, e− = 1
2 (� − ω) + (n − 1

2 )χω, and

Nn = C(η)2
n⇑ + C(η)2

n⇓ is the normalization factor. For state ψ0

we can define C0⇓ = 1 and C0⇑ = 0 using similar coefficient
notation. Correspondingly, the eigenenergies are determined
by

E (n,η) = e+ + η

√
e2− + n g2, (12)

E0 = −�

2
. (13)

Apparently, the energy branch E (n,+) is higher than E (n,−);
thus the ground state is the lowest state of ψ (x,−)

n and ψ0. So
far n is only the excitation number and we have not seen any
topological aspect.

IV. TOPOLOGICAL-TRANSITION NATURE
AT FINITE FREQUENCIES

A. Wave-function nodes

Corresponding to Eq. (7), we can rewrite the eigenfunc-
tions in position space

ψx
+(x) ≡ ψ

(x,η)
n,⇑ (x) = C(η)

n⇑ φn−1(x)/
√

Nn, (14)

ψx
−(x) ≡ ψ

(x,η)
n,⇓ (x) = C(η)

n⇓ φn(x)/
√

Nn, (15)

where φn(x) = 〈x|n〉 is the eigenfunction of the quantum har-
monic oscillator with quantum number n,

φn(x) = 1

π1/4
√

2nn!
Hn(x)e−x2/2. (16)

Note that the Hermite polynomial Hn(x) has a number n of
real roots x = yZ , where Hn(yZ ) = 0. Accordingly, the wave-
function components ψ

(x,η)
n,⇑ (x) and ψ

(x,η)
n,⇓ (x) have n − 1 and n

real nodes yZ , respectively, where ψ (x,±)
n,σx

(yZ ) = 0.
We can also transform onto the spin-σz basis, represented

by ↑ and ↓, on which the wave function becomes

ψ (z,η)
n = ψ z

+(x)|↑〉 + ψ z
−(x)|↓〉, (17)

with spin components

ψ z
+(x) ≡ ψ

(z,η)
n,↑ (x) = C(η)

n⇑ φn−1(x) + C(η)
n⇓ φn(x)√

2Nn
, (18)

ψ z
−(x) ≡ ψ

(z,η)
n,↓ (x) = C(η)

n⇑ φn−1(x) − C(η)
n⇓ φn(x)√

2Nn
. (19)

The parity symmetry ensures

ψ
(z,η)
n,↑ (x) = (−1)n−1ψ

(z,η)
n,↓ (−x). (20)

Later on in Sec. IV D we will see that both components have
n nodes x = xZ , where ψ (z,η)

n,σz
(xZ ) = 0.

We give an example of the eigenfunction in Figs. 1(a)–1(c)
for n = 6 with ψx,z

± (x) representing ψ (x,η)
n,σx

(x) and ψ (z,η)
n,σz

(x)
in Eqs. (14), (15), (18), and (19). The nodes of ψx

±(x)
are marked by open squares (spin up + =⇑) and closed
squares (spin down − =⇓) in Fig. 1(a) and the nodes of
ψ z

±(x) by open circles (spin up + =↑) and closed circles
(spin down − =↓) in Fig. 1(b). We can also plot all the
nodes together in the wave-function amplitude |ψ z

±(x)| as in
Fig. 1(c), where the nodes of ψ (x,η)

n,σx
(x) are located at points

|ψ z
+(x)| = |ψ z

−(x)|. Here the open squares (⇑) are crossing
points of ψ z

+(x) = ψ z
−(x) of both solid lines (ψ z

± > 0) or both
dashed lines (ψ z

± < 0), while closed squares (⇓) are crossing
points of ψ z

+(x) = −ψ z
−(x) between solid lines and dashed

lines.
The node number represents the topological structure of

the wave function in the sense that with a fixed node number
one cannot go to another node state by continuous shape
deformation of the wave function, just as one cannot change
a torus into a sphere by a continuous deformation in the
topological picture of so-called rubber-sheet geometry. Such
a wave-function topological structure can be reflected by
the physical topological character as there is a one-to-one
correspondence between the wave-function nodes and the
spin-winding nodes, as we discuss in the following sections.

B. Spin winding: Node correspondence to wave-function
and symmetric and antisymmetric properties

Note that the eigenfunctions in (7) and (8) are real, so the
corresponding spin textures are related to the wave function
components by

〈σz(x)〉 = ψ z
+(x)2 − ψ z

−(x)2 = 2ψx
+(x)ψx

−(x), (21)

〈σx(x)〉 = ψx
+(x)2 − ψx

−(x)2 = 2ψ z
+(x)ψ z

−(x), (22)

〈σy(x)〉 = i[ψ z
−(x)∗ψ z

+(x) − ψ z
+(x)∗ψ z

−(x)] = 0. (23)

We see the spins are winding within the 〈σz(x)〉-〈σz(x)〉 plane
and the nodes of the eigenfunction are in one-to-one corre-
spondence to the nodes of the spin winding:

ψ (z,η)
n,σz

(xZ ) = 0 ⇐⇒ 〈σz(xZ )〉 = 0, (24)

ψ (x,η)
n,σx

(yZ ) = 0 ⇐⇒ 〈σx(yZ )〉 = 0. (25)
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FIG. 1. Analytical correspondence of nodes or zeros in (a)–(c) wave function components, (d) Hermite polynomials, and (e) and (f) spin
windings. The closed (open) squares mark the corresponding nodes in ψ x

+ (ψ x
−), 〈σz(x)〉 with positive (negative) 〈σx (x)〉, and Hn (Hn−1),

respectively, while closed (open) circles denote the nodes in ψ z
+ (ψ z

−) and 〈σx (x)〉 with positive (negative) 〈σz(x)〉. Nodes of ψ x
± (ψ z

±) are also
the amplitude-crossing points |ψ z

+| = |ψ z
−| (|ψ x

+| = |ψ x
−|) as in (c). Here ω = 0.5�, g = 2.5gs, χ = 0, n = 6, and gs = √

ω�/2.

The node correspondence of the wave function and the spin
winding is shown in Figs. 1(a)–1(c) and Figs. 1(e) and 1(f),
respectively, where the squares represent the corresponding
nodes of ψx

± and 〈σz(x)〉 and the circles locate the correspond-
ing nodes of ψ z

± and 〈σx(x)〉.
From Eqs. (21)–(23) the spin textures for state ψ (x,η)

n can
be analytically obtained to be

〈σz(x)〉 = e−x2
g Cnωη

2n−3/2Nσ

Hn−1(x)Hn(x), (26)

〈σx(x)〉 = e−x2

2nNσ

[
C2

nωηHn−1(x)2 − 2g2Hn(x)2], (27)

〈σy(x)〉 = 0, (28)

where Nσ = √
π (n − 1)![4g2n + Cnωη�nωχ ], Cnωη = �nωχ +

η
√

�2
nωχ + 4g2n, and �nωχ = � − ω + (2n − 1)χω. For

state ψ0, we have 〈σz(x)〉 = 〈σy(x)〉 = 0 and 〈σx(x)〉 =
−e−x2

/
√

π . Equations (26) and (27) indicate that there is also
a correspondence of the roots of the Hermite polynomials
to the nodes of the wave function and the spin winding, as
illustrated in Fig. 1(d). This will be discussed further around
Eq. (30) in Sec. IV C and with f± in Sec. IV D.

The parity symmetry also leads to the symmetry of 〈σx(x)〉
and antisymmetry of 〈σz(x)〉. Indeed, the parity symmetry im-
plies that ψ z

−(x) = Pψ z
+(−x) [27], the substitution of which

into (21) and (22) yields

〈σz(−x)〉 = −〈σz(x)〉, 〈σx(−x)〉 = +〈σx(x)〉. (29)

The above symmetric and antisymmetric properties of 〈σx(x)〉
and 〈σz(x)〉 can also be directly seen from (26) and (27) as
Hn(−x) = (−1)nHn(x). Figure 1(e) shows an example of the
spin texture. We can see that indeed 〈σx(x)〉 is symmetric and

〈σz(x)〉 is antisymmetric, which yields a 〈σz(x)〉 reflection-
symmetric spin winding in the 〈σz(x)〉-〈σx(x)〉 plane as
demonstrated in Fig. 1(f). These symmetry properties of the
spin texture will be used in the argument for the distribution
of 〈σx(x)〉 nodes.

C. Invariant 〈σz(x)〉 nodes

From Eq. (26) we see that the nodes of 〈σz(x)〉 are
completely determined by the roots of Hn−1(x) and Hn(x).
The 〈σz(x)〉 nodes are located at the roots of the Hermite
polynomials

Hn−1
(
z(n−1)

Z

) = 0 or Hn
(
z(n)

Z

) = 0, (30)

which are independent of the model parameters. Such an
invariant feature may provide some particular advantage in
designing potential topological devices. For example, these
spin nodes could provide topological information for quan-
tum topological encoding and decoding [31]. The topological
information based on such an invariant node will be robust as
it is completely unaffected by the variations of the parameters
within the topological phase.

On the other hand, unlike the local order parameters in
traditional phase transitions, the topological feature is a global
property that in principle needs measurements over a global
space (typically in the real space, the momentum space, or the
energy spectrum space) to distinguish [108,123–125], which
is a common experimental difficulty for TPTs in condensed
matter. In this regard, the invariant nodes here also greatly
reduce the experimental cost and simplify the identification of
the topological states in experimental simulations as one only
needs to check the feature around the fixed points of nodes
instead of scanning a large range of x space.
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FIG. 2. Full winding without antiwinding nodes. The schematic
spin winding is shown between two adjacent nodes (open squares) on
the negative 〈σx (x)〉 axis, (a) without antiwinding nodes, (b) with two
antiwinding nodes (closed squares) on the positive 〈σx (x)〉 axis, and
(c) with one antiwinding node. The required evolution of the Hermite
polynomial Hn(x) (dotted lines) is shown for two adjacent roots
(open squares) in Hn−1(x), corresponding to (a)–(c), with (d) fulfilled
by the Hermite polynomial properties but (e) and (f) unfulfilled.

D. Full winding without antiwinding nodes

It should be noted that the Hermite polynomial roots z(n−1)
Z

and z(n)
Z alternate due to the relation

H ′
n(x) ≡ ∂xHn(x) = 2nHn−1(x), (31)

which indicates that the Hn−1 roots z(n−1)
Z are always the

maxima or minima of Hn(x), as shown by the upward and
downward triangles in Fig. 2(d). From the relation Hn(x) =
2xHn−1(x) − ∂xHn−1(x) we see that

Hn
(
z(n−1)

Z

) = −H ′
n−1

(
z(n−1)

Z

)
, (32)

which indicates that two adjacent roots z(n−1)
Z, j and z(n−1)

Z, j+1 must
have different signs of Hn due to the different gradient signs
from H ′

n−1, i.e.,

Hn
(
z(n−1)

Z, j

)
Hn

(
z(n−1)

Z, j+1

)
< 0, (33)

leading to a root z(n)
Z between z(n−1)

Z, j and z(n−1)
Z, j+1. [Note that here

Hn(z(n−1)
Z, j ) and Hn(z(n−1)

Z, j+1) are always finite due to the Turán
inequality Hn(x)2 − Hn−1(x)Hn+1(x) > 0, which excludes si-
multaneous zeros of Hn(x) and Hn−1(x).] Figure 2(d) shows
such a case schematically: The open squares A and C repre-
sent the two adjacent Hn−1 roots, at which the gradient has
different signs, as indicated by the arrow orientations along
the solid line. The Hn signs at A and C are different (indicated

by the triangles), which must surround an Hn root (closed
square B).

Note that from Eqs. (26) and (27) we find Hn−1 roots and
Hn roots correspond to 〈σz(x)〉 nodes on opposite 〈σx(x)〉 axes,
as in Fig. 2(a). Thus, the above analysis means that between
two adjacent 〈σz(x)〉 nodes on the same 〈σx(x)〉 axis (open
squares A and C) there must be another 〈σz(x)〉 node on the
opposite 〈σx(x)〉 axis (closed square B). The possibility to
have more than one 〈σz(x)〉 node on the opposite 〈σx(x)〉 axis
as in Fig. 2(b) is excluded, as that would spuriously introduce
some new Hn maximum or minimum which however has no
match with Hn−1 zero, violating the relation (31), as denoted
by the triangle in Fig. 2(e). This excluded case in Fig. 2(b)
also avoids antiwinding (i.e., cancellation of the spin-winding
angle in the returning route). The antiwinding at one 〈σz(x)〉
node as in Fig. 2(c) is also violating the relation (31). There-
fore, the σz(x)〉 nodes should appear alternately on positive
and negative 〈σx(x)〉 axes without antiwinding.

The same happens for 〈σx(x)〉 nodes. Actually, Eq. (27)
can be factorized into a product of factors f± = Hn−1(x) ±
cHn(x), where c is a parameter-determined coefficient. The
〈σx(x)〉 nodes are just the f± roots. Both factors f± have n
roots as Hn−1(x) and Hn(x), subject to the relation (31), are in-
terlacing with alternate zeros as in Fig. 1(d), while the number
of the f± roots is determined by the crossing times of Hn−1(x)
and Hn(x), which are unaffected by any amplitude amplifi-
cation with nonzero c, as one can recognize from Fig. 2(d).
Thus, there are 2n, 〈σx(x)〉 nodes, while from Eq. (27) we
know there are 2n − 1, 〈σz(x)〉 nodes. Since there is no an-
tiwinding, the 〈σx(x)〉 nodes and the 〈σz(x)〉 nodes are also
interlacing. Indeed, except for the node on the infinity side,
each 〈σx(x)〉 node can only appear in the interval between
two adjacent 〈σz(x)〉 nodes on opposite 〈σx(x)〉 axes, while
each interval can accommodate only one 〈σx(x)〉 node; oth-
erwise accommodation of more 〈σx(x)〉 nodes would totally
outnumber the 2n, 〈σx(x)〉 nodes due to the 〈σz(x)〉 reflection
symmetry mentioned near (29).

In the above analysis, we have seen that the alternate nodes
from the neighboring Hermite polynomials are driving the
full spin winding. To get some more insight, in Appendix B
we compare different combinations of the Fock basis which
show that the superposition between the neighboring Fock
states, |n − 1,⇑〉 and |n,⇓〉 as in (7), leads to a nontrivial
spin winding, while the other superpositions between non-
neighboring bases tend to generate spin trajectory returns and
cancel the spin winding. This analysis not only verifies the
full winding behavior addressed above but also provides an
understanding of the various spin-winding knots emerging
in the λ �= 0 case [31] in which non-neighboring bases are
involved.

Summarizing the above analysis, we can rigorously con-
clude that the spin is in full winding without antiwinding
nodes. The nodes are in the counterclockwise sequence 1234
as in Fig. 2(a) or the clockwise sequence 1432 on the (1)
positive-〈σz(x)〉 axis (closed circle), (2) positive-〈σx(x)〉 axis
(closed square), (3) negative-〈σz(x)〉 axis (open circle), (4)
negative-〈σx (x)〉 axis (open square), periodically until com-
pleting the total spin winding at infinity. Such clarification of
the full winding behavior is necessary for the explicit extrac-
tion of the winding number later on in Sec. IV F.
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FIG. 3. Vanishing external spin-winding angle at infinity.
(a) Close-up of the spin winding in Fig. 1(f) around the origin.
Here θe is the external winding angle at large x. (b) Plot of θe

versus 〈σx (x)〉 in the |x| → ∞ limit. Also shown are plots of
(c) log10[〈σz(x)〉/〈σx (x)〉] and (d) θe versus large x by the exact
solution (dots) and the asymptotic expression (35) (solid line).

E. Spurious fractional winding angle at infinity

Apart from the main part of the spin winding in the node
sequence, the total winding angle is also partially determined
by the winding at infinity. A plot focusing on the external
winding angle θe is illustrated in Fig. 3(a). At first glance
one might think that θe is fractionally finite. However, a more
careful tracking of θe at larger |x| reveals that θe is approaching
zero at infinity, as shown in Fig. 3(b). Indeed, at infinity the
leading term of Hermite polynomials is

Hn(x) → (2x)n, (34)

so we have the ratio of the spin texture

〈σz(x)〉
〈σx(x)〉 → −

�nωχ + η
√

4g2n + �2
nωχ√

2g

1

x
, (35)

which is approaching zero. As demonstrated in Fig. 3(c), this
asymptotic behavior (solid line) agrees well with the exact
ratio (dots) obtained by Eqs. (26) and (27). Correspondingly,
as shown in Fig. 3(d), the external angle of spin winding is
vanishing at infinity

θ∞ = arctan
〈σz(x)〉
〈σx(x)〉 → 0. (36)

This vanishing external angle achieves an integer number of
total spin-winding angles as formulated in the next section.

F. Winding number in terms of nodes

We can know the rounds of spin winding by the winding
number around the origin in the 〈σz〉-〈σx〉 plane as calculated
by

nzx = 1

2π

∫ ∞

−∞

〈σz(x)〉∂x〈σx(x)〉 − 〈σx(x)〉∂x〈σz(x)〉
〈σz(x)〉2 + 〈σx(x)〉2

dx,

(37)

which has also been applied in topological classification
in nanowire systems and quantum systems with geometric

driving [115–118]. With the normalized spin texture

〈σ̄z,x (x)〉 = 〈σz,x(x)〉√
〈σz(x)〉2 + 〈σx(x)〉2

, (38)

we can rewrite the integrand as

〈σz(x)〉∂x〈σx(x)〉 − 〈σx(x)〉∂x〈σz(x)〉
〈σz(x)〉2 + 〈σx(x)〉2

= −∂x〈σ̄z(x)〉
ηx

√
1 − 〈σ̄z(x)〉2

= ∂x〈σ̄x(x)〉
ηz

√
1 − 〈σ̄x(x)〉2

, (39)

where ηx,z = sign〈σ̄x,z(x)〉, so that the integral (37) can be
worked out explicitly in terms of either 〈σx(x)〉 or 〈σz(x)〉
nodes

nzx = −
Mx∑
i=0

arcsin〈σ̄z(xZ,i+1)〉 − arcsin〈σ̄z(xZ,i )〉
2πηx(i)

(40)

=
Mz∑
i=1

arcsin〈σ̄x(yZ,i+1)〉 − arcsin〈σ̄x(yZ,i )〉
2πηz(i)

. (41)

Attention should be paid here that the summation in Eq. (40)
[Eq. (41)] is over Mx, 〈σx(x)〉 nodes [Mz, 〈σz(x)〉 nodes], i.e.,
over xZ,i (yZ,i), not over the nodes of the variable 〈σz(x)〉
[〈σx(x)〉] in the integrand (39). Corresponding to ηx,z in
(39), ηx(i) [ηz(i)] is the sign of 〈σx(x)〉 [〈σz(x)〉] in space
section x ∈ (xZ,i, xZ,i+1) [x ∈ (yZ,i, yZ,i+1)], which can be rep-
resented by the sign of a 〈σz(x)〉 [〈σx(x)〉] node in the section.
The edge sections i = 0, Mx,z are (−∞, xZ,1) and (xZ,Mx ,∞)
[(−∞, yZ,1) and (yZ,Mz ,∞)]. We have set xZ,0 = −∞ and
xZ,Mx+1 = ∞ (yZ,0 = −∞ and yZ,Mz+1 = ∞).

Noting that arcsin〈σ̄z(yZ,i )〉 = π
2 sign[σ̄z(yZ,i )] and

arcsin〈σ̄x(xZ,i )〉 = π
2 sign[σ̄x(xZ,i )], we arrive at

nzx = −
Mx∑
i=0

sgn〈σ̄z(xZ,i+1)〉 − sgn〈σ̄z(xZ,i )〉
4ηx(i)

(42)

=
Mz∑
i=0

sgn〈σ̄x(yZ,i+1)〉 − sgn〈σ̄x(yZ,i )〉
4ηz(i)

, (43)

where we have set the function sgn(σ̄x,z ) = sign(σ̄x,z ) for
the nodes and sgn(σ̄x,z ) = 2 arcsin(σ̄x,z )/π for the infinity
ends. Finally, only the neighboring nodes with opposite signs
contribute.

The expressions (40)–(42) are valid for general spin wind-
ings. Note that the original version of the winding number (37)
involves calculus of both the integral and differential, which
is numerically more difficult to treat. In contrast, Eqs. (42)
and (43) are simple algebraic expressions comprising only a
finite number of nodes of 〈σz(x)〉 and 〈σx(x)〉, which greatly
simplifies the calculation of the winding number. Moreover,
the integral (37) depends on the topological structure of the
spin texture geometrically. The equivalence of Eqs. (42) and
(43) to Eq. (37) indicates that, given the few points of nodes,
the topological winding number remains the same no
matter how the spin texture is geometrically deformed,
which reclaims the original sense of topological classifica-
tion in the so-called rubber-sheet geometry. As Eqs. (42)
and (43) are nodes whose order encodes the topolog-
ical message by an algebraic code as at the end of
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Sec. IV D, it is also a demonstration of bridging of
the geometrical topology and the algebraic topology, here
physically in the context of the wave function and spin
winding.

According to the discussion in Secs. IV D and IV E, the
spin is in full winding without antiwinding nodes and the
external winding angle at infinity is vanishing. Note that there
are Mx = 2n, 〈σx(x)〉 nodes and Mz = 2n − 1, 〈σz(x)〉 nodes,
while the infinity ends only contribute to sgn(σ̄z ) to complete
a full integer round of winding. Thus, from (40) and (41) we
can readily conclude that the magnitude of the spin-winding
number is

|nw| = |nzx| = n. (44)

The sign of nw is determined by the winding direction, which
is reflected in ηx,z(i) and can be more explicitly obtained by
the status at infinity as in the following.

G. Winding direction

Since the winding is smooth without antiwinding nodes
and the external winding angle is zero at infinity θ∞ → 0,
the winding direction can be determined by the signs of
〈σz(x)〉 and 〈σx(x)〉 at infinity where the spin winding starts
and ends. The winding will be counterclockwise if 〈σz(x)〉
starts to grow negatively (positively) while 〈σx(x)〉 increases
positively (negatively), which happens in the second (fourth)
quadrant; otherwise the winding is clockwise if 〈σz(x)〉 and
〈σx(x)〉 start in the first (third) quadrant. Clockwise winding
starting in the second (fourth) quadrant or counterclockwise
winding starting in the first (third) quadrant is excluded as
that would lead to Mz = 2n + 1 > Mx = 2n, which conflicts
with the previously discussed node numbers determined by
Eqs. (26) and (27). Thus, the winding is counterclockwise
(clockwise) if the sign

sw = sign
〈σz(x)〉
〈σx(x)〉

∣∣∣∣
x→−∞

= sign
(
�nωχ + η

√
4g2n + �2

nωχ

)
(45)

is negative (positive). This indicates that all states with
η = −1 have a counterclockwise spin-winding direction,
while the winding direction of the states with η = +1 is
opposite. The ground state is composed of η = −1 states and
thus has a counterclockwise winding direction.

Thus, the energy branch label η and the excitation number
n together give the complete information of the spin-winding
number for state ψ (x,η)

n ,

nw = −swn = −ηn, (46)

which is the topological quantum number. The minus sign in
(46) is added to assign positive nw to the counterclockwise
winding direction. Now we see that both η and n are endowed
with topological connotations, representing the winding direc-
tion and the magnitude of the winding number, respectively.

H. Topological phase diagram

For an overall view of all the phase transitions, we show the
ground-state phase diagrams in the g-ω, χ -ω, and χ -g planes

FIG. 4. Topological phase diagrams. The ground-state spin-
winding number nw is plotted in the (a) g-ω plane at χ = 0.5,
(b) χ -ω plane for g = 2.5gs at χ = 0.5, (c) χ -ω plane for g = 3.0gs

at χ = 0.5, and (d) χ -g plane at ω = 0.3�.

in Fig. 4, where the numbers mark nw. The phase boundaries
shifting states from ψ (x,−1)

n to ψ
(x,−1)
n+1 can be analytically ob-

tained for n = 0,

g(0,1)
c = 2gs

√
1 − χ, (47)

and for n > 0,

g(n,n+1)
c = 2gs

√
(χ+ + 2nχ+χ−)ω̃ − χ + Sr, (48)

where Sr =
√

(1 − χ+ω̃)2 + 4n(n + 1)χ+χ−ω̃2, ω̃ = ω/�,
χ± = 1 ± χ , and gs = √

ω�/2. In Fig. 4 the thick blue line
represents the principal boundary g(0,1)

c where the first transi-
tion occurs from the nw = 0 phase to the nw = 1 phase when
the coupling g is increasing at a fixed Stark coupling χ in
Fig. 4(a) or when χ is increasing at a fixed g in Fig. 4(b). The
principal boundary disappears if the fixed g is larger than g(0,1)

c
as in Fig. 4(c), which can be seen more clearly in Fig. 4(d),
where g(0,1)

c exists in a finite range within the physical regime
χ ∈ [−1, 1]. Here we find that the critical couplings can be
tuned by χ .

V. SIMULTANEOUS OCCURRENCE OF LANDAU-CLASS
AND TOPOLOGICAL-CLASS TRANSITIONS

As mentioned in the Introduction, the Landau-class tran-
sitions break the symmetry while the topological-class
transitions preserve the symmetry. Conventionally, these two
classes of transitions are incompatible due to the contrary
symmetry requirements. However, here the principal tran-
sition at g(0,1)

c provides a paradigmatic case of exception,
as it turns out to be both a Landau-class transition and a
topological-class transition simultaneously.

A. Topological-class transition feature at g(0,1)
c : Transition

of spin-winding topology

As addressed in the preceding section, we have seen the
topological nature of all the transitions, including the principal
transition at g(0,1)

c . To have direct insight into the topological
transition for the principal transition, in Figs. 5(a) and 5(b) we
plot spin profiles in the 〈σz(x)〉-〈σz(x)〉 plane for the phases
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FIG. 5. Simultaneous occurrence of the symmetry-protected
topological-class transition and the symmetry-breaking Landau-
class transition. The ground-state spin profile is shown in the
〈σz(x)〉-〈σx (x)〉 plane in the (a) nw = 0 phase and (b) nw = 1 phase.
The ground-state wave function ψ z

±(x) is shown with (c) P̂x and P̂σ

symmetries in the nw = 0 phase and (d) broken P̂x and P̂σ symme-
tries in the nw = 1 phase. Here (a) and (c) g = 0.8gs and (b) and
(d) g = 2.0gs at ω = 0.6� and χ = 0.5.

before and after the transition. As we can see, in the nw = 0
phase the spin profile is completely flat [〈σz(x)〉 = 0 ∀ x] and
does not wind at all as in Fig. 5(a), while in the nw = 1 phase
the spin is winding nontrivially as in Fig. 5(b). These two
totally different spin-winding styles provide a sharp topolog-
ical contrast for recognition of the topological nature of the
transition.

B. Landau-class transition feature at g(0,1)
c : Symmetry

breaking of space inversion and spin reversion

The nw = 0 phase before the principal transition at g(0,1)
c

is also special as it possesses more symmetries than the
Hamiltonian. Indeed, besides the parity symmetry, the state
ψ0 = |0,⇓〉 in this phase has symmetries of space inversion
and spin reversion

P̂xψ0 = ψ0, P̂σψ0 = −ψ0, (49)

where

P̂x = (−1)a†a, P̂σ = σx. (50)

In the position space on the σz basis the wave function
takes the form ψ0 = ψ z

0,+(x)|↑〉 + ψ z
0,−(x)|↓〉 = [φ0(x)|↑〉 −

φ0(x)|↓〉]/√2, where φ0(x) is the Gaussian function. The
symmetry operator P̂x actually inverses the space [27] of a
function P̂xF (x) = F (−x), which gives

P̂xψ0(x) = ψ0(x), (51)

P̂σψ0(x) = −ψ0(x), (52)

as φ0(x) is an even function. The space inversion and spin
reversion are more directly visible from the plot of the wave-
function components in Fig. 5(c). It should be mentioned
that theses symmetries in Eqs. (17)–(20) are rigorously ful-
filled at any finite frequency, in contrast to the QRM and
the anisotropic QRM where the low-frequency condition is

required for the validity of these symmetries [28]. The un-
limited frequency condition greatly relaxes the experimental
requirements for QPTs [21].

On the contrary, in other phases with nw �= 0, the symme-
tries of space inversion and spin reversion are broken. Indeed,
from Eqs. (17)–(20) we can easily recognize

P̂xψ
(z,η)
n (x) �= ±ψ (z,η)

n (x), (53)

P̂σ ψ (z,η)
n (x) �= ±ψ (z,η)

n (x), (54)

in contrast to the symmetry-preserving Eqs. (51) and (52). In
Fig. 5(d) with nw = 1 we see directly that the wave function
is asymmetric under either space inversion or spin reversion.

Thus, the principal transition from state ψ0 to state ψ
(z,η)
1 is

accompanied by the symmetry breaking of both space inver-
sion and spin reversion. This symmetry-breaking feature holds
without approximation at any frequency. In such a symmetry-
breaking sense, the principal transition also belongs to the
Landau class of transitions. Also, in the Landau theory the
energy is expressed as a functional of some order parameters.
We discuss the variational energy as a functional of the order
parameters in symmetry breaking around the transition in
Appendix C.

C. Key for reconciliation of the two contrary transition
classes: Unbroken higher symmetry

We have seen at g(0,1)
c the simultaneous occurrence of the

topological class of transition and the Landau class of transi-
tion, which are conventionally incompatible due to opposite
symmetry requirements. The key for their simultaneous oc-
currence or coexistence essentially lies in the reconcilable
situation that the symmetry which the topological class of
transition preserves is actually different from the symmetries
which the Landau class of transition breaks. Indeed, the sym-
metry that protects the topological feature of the spin winding
for the eigenstates in the transitions is the parity symmetry P̂,
which comprises both the space inversion and the spin reversal

P̂ = P̂xP̂σ . (55)

As mentioned in Sec. II, the gy term in the coupling is effec-
tively the Rashba spin-orbit coupling or equal-weight mixture
of the linear Dresselhaus and Rashba spin-orbit couplings
[28–31], which involves the spin nontrivially and drives the
spin winding. The parity symmetry guarantees the symmetric
spin texture in (29) and its connection at the two infinity
ends in the position variation, which establishes the symmetry
situation for the TPTs. Note that both before and after the
transition g(0,1)

c this parity symmetry that actually protects all
the TPTs is still preserved

P̂ψ0(x) = −ψ0(x), (56)

P̂ψ (z,η)
n (x) = ±ψ (z,η)

n (x), (57)

even when the subsymmetries in both the space inversion and
the spin reversal are broken. Therefore, the conventionally
opposite symmetry requirements for the Landau class and
topological class of phase transitions reconcile each other here
and we see the simultaneous occurrence or coexistence of the
two contrary transition classes.
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FIG. 6. Parameter tuning for symmetries and simultaneous oc-
currence of topological-class and Landau-class transitions. The
topological-class transition (blue solid line) is protected by the parity
symmetry P̂, while the Landau-class transition (red dashed line)
breaks the symmetries of P̂x and P̂σ (the strikethroughs mark the sym-
metry breaking). The black dot at λ = 0 indicates the simultaneous
transition occurrence.

D. Parameter tuning for symmetries and simultaneous
occurrence of topological-class and Landau-class transitions

It might be helpful to provide an overview of the evo-
lutions and simultaneous occurrence of the two classes of
transitions in tuning the system parameters. Figure 6 shows
the evolutions of the principal topological transition boundary
(blue solid line) and the Landau-class transition boundary
(red dashed line) with the variation of the anisotropy rate
λ at a fixed Stark coupling ratio χ (illustrated by χ = 0).
Under a finite anisotropy, the Landau-class transition occurs
in the low-frequency limit ω/� → 0, which validates the
symmetries P̂x and P̂σ before the transition [28]. These sym-
metries are broken after the transition, as indicated by the
strikethroughs in the figure. This Landau-class transition does
not change the spin-winding number, as nw = 0 both before
and after the transition. Here, at finite λ the Landau-class
transition is of second order and the order parameters manifest
critical universality for both the anisotropy [25,28,30] and the
Stark nonlinear coupling [30]. After the topological transition
the spin-winding number becomes finite (nw > 0); it is pro-
tected by the parity symmetry P̂, which holds in all regions.
Both boundaries can be analytically extracted [30]:

gλ,χ

Landau = 2
√

(1 − χ )

1 + |λ| gs, (58)

gλ,χ
topo = 2

√
1 − χ2√

(1 + χ ) − λ2(1 − χ )
gs. (59)

Note that gλ,χ

Landau and gλ,χ
topo are apart from each other at finite

λ, as we see in Fig. 6. These two boundaries meet at λ = 0, as
marked by the black dot in the figure, to realize the simultane-
ous occurrence at

gsimul = 2gs

√
1 − χ = g(0,1)

c . (60)

We recall here at λ = 0 that, as mentioned below Eqs. (51)
and (52), the symmetries P̂x and P̂σ hold for all finite
frequencies, without the constraint of a low-frequency limit
as in the finite-λ regime. Now at the simultaneous occurrence,
the Landau-class transition becomes first order, as addressed
in Appendix C.

Although Fig. 6 is illustrated for χ = 0, we can have the
simultaneous occurrence in the entire physical regime of χ .
We can tune the coupling value of simultaneous occurrence
by χ as the blue (thick) line in Fig. 4(d).

VI. UNDERSTANDING UNCONVENTIONAL
TOPOLOGICAL TRANSITIONS IN THE PRESENCE

OF A COUNTERROTATING TERM

Most TPTs in the anisotropic QRM are conventional ones
[28] that occur with gap closing„ like those in condensed mat-
ter [93,104–109]. Unconventional TPTs without gap closing
also exist [29,30] analogously to the unconventional cases
in the quantum spin Hall effect with strong electron-electron
interactions [110] and the quantum anomalous Hall effect
with disorder [111]. These unconventional TPTs lie in the
ground state by a mechanism of node introduction from infin-
ity [29,30]. On the other hand, it is found that unconventional
TPTs emerge more frequently in excited states, especially
around level anticrossings [31]. We give an example of phase
diagrams with unconventional TPTs in Appendix D. Here we
can gain some insight from the JC-Stark model into the origin
of such unconventional TPTs in excited states.

Figure 7(a) shows the energy spectrum of the JC-Stark
model, where levels are crossing among all the states with
negative parity (blue solid line) and positive parity (red dotted
line). Figure 7(b) gives the spin-winding number nw (solid
line) of the ground state ( jE = 1) which jumps always at
parity variation (dotted line) and gap closing [similar to the
solid line in Fig. 7(f)]. The spin winding can change direction
in excited states, as indicated by the negative values of nw in
Fig. 7(d) for the state jE = 20 according to the discussion
in Sec. IV G. Each jump of nw is accompanied by a TPT.
In particular, some TPTs occur without parity variation, as
illustrated in Fig. 7(e) for the state jE = 2, which comes from
the level crossing between same-parity states. Note here that
the gap is still closing at the transitions despite no parity
variation. What is interesting is that once we add anisotropy,
e.g., λ = 0.01, the gap at these TPTs opens, as demon-
strated by the energy spectrum in Fig. 7(b) and more clearly
by the dotted line in Fig. 7(f). This gap opening accounts
for the aforementioned unconventional TPTs in the excited
state.

A clearer explanation can be given by regarding the coun-
terrotating term as a perturbation around these transitions,
which mainly involves the two level-crossing states ψ (x,η)

n

and ψ
(x,η′ )
n′ with energies ε1 = E (n,η) and ε2 = E (n′,η′ ) and

winding numbers nw,1 = −ηn and nw,2 = −η′n′. On the basis
of these two states, the Hamiltonian in matrix form can be
written as

H ≈
(

E (n,η) d
d E (n′,η′ )

)
, (61)
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FIG. 7. Topological transitions without parity variation and origin for unconventional topological transitions without gap closing. The
energy spectrum Ei − ER is shown (a) in the absence (λ = 0) and (b) in the presence (λ = 0.01) of the counterrotating term, with the reference
energy ER = (E2 + E1)/2. The spin-winding number nw (blue solid line) and parity P (red dotted line) are plotted for (c) jE = 1, (d) jE = 20,
and (e) jE = 2 at λ = 0. (f) First and second excitation gaps �i = Ei+1 − Ei at λ = 0.01. The dots in (f) are results from Eq. (63). Here
ω = 0.3� and χ = 0.5 in all panels.

where

d = 〈ψn|Hλ|ψn′ 〉 = λg
√

n′ + 1
C(η)

n⇑ C(η′ )
n′⇓√

NnNn′
δn,n′+2

+ λg
√

n′ − 1
C(η)

n⇓ C(η′ )
n′⇑√

NnNn′
δn,n′−2 (62)

and Hλ is the counterrotating term in (3) beyond the JC-
Stark model. The crossing levels are split as E± = 1

2 (E (n,η) +
E (n′,η′ ) ± �) with a gap opening at the level-crossing point
E (n,η) = E (n′,η′ ),

� =
√

(E (n,η) − E (n′,η′ ) )2 + 4d2 → 2|d|, (63)

which is finite for n = n′ ± 2, leading to the level anticrossing.
The validity of Eq. (63) is confirmed by the dots, which match
well the numerical result by exact diagonalization [27,31]
shown by the dotted line in Fig. 7(f). A comparison of Eq. (63)
with the exact diagonalization in varying λ is presented in
Appendix E.

From Eqs. (62) and (63) we see that the gap opening does
not occur for crossing states with different parity, since they
have even and odd n, respectively, as indicated by P = (−1)n

from Eq. (9). Note that the small λ here is a perturbation
which is not yet enough to change the winding numbers so
that nw remains similar to the λ = 0 case in Fig. 7(e). Thus, the
TPTs originally at level crossing now become unconventional
TPTs without gap closing as the gap is opening. Larger λ may
induce more unconventional TPTs than those inherited from
the λ = 0 case at the gap opening [31]. Finally it should be
noted that such unconventional TPTs are still protected by the
parity symmetry as the added term Hλ preserves the parity
symmetry [Hλ, P̂] = 0. The above analysis provides a simple

but clear understanding of the unconventional TPTs in excited
states.

At larger λ an explicit analytic formulation is not available
as the perturbation treatment becomes invalid; one may need
to fall back on the numerical method of exact diagonalization
[27,31] as illustrated in Appendix D. Still, one could argue
by some adiabatic [101,117] continuity, despite that a more
strict analysis may need some further work. In fact, the TPTs
emerge when one goes from the low-frequency limit to finite
frequencies [28,30], while at finite frequencies the adiabatic
approximation [126] becomes more valid [58]. On the other
hand, as mentioned in Sec. II, the gy terms in (6) resemble [30]
the Rashba spin-orbit coupling in nanowires [114–118]. Here
the gap opening occurs at large couplings which lead to large
effective Rashba couplings, while we know from nanowires
that a strong Rashba coupling lies in an adiabatic regime for
the geometric phase which is connected to the spin winding
[115]. Indeed, although the wave function may be continu-
ously deformed, the topological feature remains similar in
anisotropy variation within a topological phase as demon-
strated [28–31] by the polaron picture [21,27,29,60,101]. In
such adiabatic-favorable situations, one may speculate that
the main feature of the conventional and unconventional TPTs
may be extended to a larger λ regime, which really is the case,
as illustrated in Fig. 10 in Appendix D.

VII. CONCLUSION

We have presented a rigorous study to show the topological
nature of transitions in the Jaynes-Cummings model gener-
ally with Stark nonlinear coupling, which is a fundamental
model for light-matter interactions. The exact and explicit
solution of the model enabled us to analytically analyze the
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nodes of the eigenfunctions and establish the exact corre-
spondence to the nodes in the spin texture. In light of the
Hermite polynomial properties, we have proven that the spin
nodes on 〈σz(x)〉 and 〈σx(x)〉 axes are interlacing on posi-
tive and negative axes, and thus the node sequence forms
a smooth spin winding without antiwinding nodes. At this
point we found it is the superposition between the neighboring
Fock states, as induced by the rotating-wave terms in the
λ = 0 case, that plays a crucial role in generating the non-
trivial spin winding, while the other superpositions between
non-neighboring bases lead to spin trajectory returns and can-
cel the spin winding. This finding not only verifies the smooth
winding behavior in the JC-Stark model here but also provides
an understanding of the various spin-winding knots emerging
in the λ �= 0 case [31], in which non-neighboring bases are
involved. In particular, the spurious fractional winding angle
at infinity was found to be an integer, which achieves a full
winding. Thus, the phase transitions in the model have the
nature of TPTs.

In the analysis we saw that the topological features are
protected by the parity symmetry, which leads to symmetric
and antisymmetric properties of 〈σx(x)〉 and 〈σz(x)〉 for a
close form of spin windings. Note that the parity symme-
try is present in most of the relevant coupled light-matter
models, which accounts for the numeric finding of the ubiq-
uity of TPTs in different light-matter interactions including
anisotropy [28,29,31] and the Stark nonlinear coupling [30].

Based on a strict derivation, we reformulated the spin-
winding number to facilitate the extraction of winding
numbers by replacing the integral formula with an algebraic
formula in terms of finite points of nodes, which also bridges
the geometrical topology and the algebraic topology in a phys-
ical way. The excitation number and the energy branch label of
eigenstates turn out to be the magnitude and the sign (winding
direction) of the winding number; thus both are endowed with
a topological connotation.

In particular, we have found that the 〈σz(x)〉 nodes are
invariant, which might have potential advantage in design-
ing topological devices as they provide robust topological
information unaffected by variations of the parameters.
The invariant nodes can also greatly reduce the experimental
cost and simplify the identification of the topological states in
experimental simulations.

We have also demonstrated that the principal transition has
the character of the Landau class of phase transition besides
that of the TPT, by pointing out the symmetry-breaking aspect
and variational energy analysis as functionals of order param-
eters. Note that conventional Landau-class phase transitions
and topological-class phase transitions are incompatible due
to the contrary symmetry requirements. Here the principal
transition established a paradigmatic case that a transition can
simultaneously be both a symmetry-breaking Landau-class
transition and a symmetry-protected topological-class transi-
tion. The key for the reconciliation of the two contradictory
classes of transitions lies in the preserved higher symmetry
which protects the TPTs despite the subsymmetries being
broken in the Landau-class transition.

Moreover, we have applied our result to analyze the gap
opening at some particular TPTs without parity variations
in the presence of the counterrotating term, which gives an

analytical explanation for the unconventional TPTs without
gap closing. Note that a gapped situation can avoid the detri-
mental time divergent problem in preparing the sensing state
[54]; the unconventional TPTs may similarly have potential
advantages in possible applications or designing quantum
topological devices. In such a favorable situation, our under-
standing might be helpful for further exploring and exploiting
unconventional TPTs in light-matter interactions.

Finally, it is worth mentioning that the model considered
in the present work may be implemented in realistic systems,
e.g., in superconducting circuits. Indeed, both the anisotropy
[12,45,127–129] and the Stark nonlinear coupling [84–86]
are adjustable. Besides realizations of ultrastrong couplings in
the λ �= 0 case [5,7,8,11–19], access to ultrastrong couplings
are also possible for λ = 0 [130–132]. The position x can
be represented by the flux of Josephson junctions and the
spin texture might be measured by interference devices and a
magnetometer [133]. One could also extract the wave function
from the spin density, with the amplitude equal to the density
square root and the sign determined by the cusp situation at the
nodes (see Appendix F). In this sense the wave function also
becomes an observable, while the full spin texture is directly
available by Eqs. (21) and (22) in terms of the extracted
wave function. The topological feature addressed in this work
was found to be robust against non-Hermiticity induced by
the dissipation and decay rates in practical systems [134].
These systems may provide platforms for possible tests or
applications of our results. Our analysis might be relevant also
for some other systems as the effective Rashba or Dressel-
haus spin-orbit coupling in our model is similar to those in
nanowires [114–118], cold atoms [119,135], and relativistic
systems [136].
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APPENDIX A: BRIEF COMPARISON OF
TOPOLOGICAL-CLASS AND LANDAU-CLASS

PHASE TRANSITIONS

A TPT refers to the change of the topological structure in
some physical space as a certain system parameter crosses
a critical threshold. As a more definite definition, for the
state function ψ (u) possessing a topological structure, if there
is a critical parameter uc such that for any δu sufficiently
small the topological structure of the state function ψ (u) is
different from that of ψ (u + δu), then one can say that the
system undergoes a TPT at uc [137]. Here the state function
is essentially the wave function, while the topological feature
can also manifest in the physical properties. In our systems
of light-matter interactions, we not only see the topological
feature both in the wave function and in the physical proper-
ties (spin winding) but also show their correspondence as in
Sec. IV B. The critical thresholds for the TPTs are given in
Fig. 4.

Unlike the local order parameter in the Landau-class tran-
sition (LCT) [88], the topological structure is a global feature
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TABLE I. Comparison of topological-class and Landau-class
phase transitions.

Parameter Landau class Topological class

symmetry broken preserved
characterization order parameter topological number
property type local global
character variation varying invariant
gap situation closing closing (conventional)

gapped (unconventional)

and finally represented by some topological quantum number.
The topological number is invariant in a topological phase, in
contrast to the Landau order parameter, which is varying with
the system parameter even in the same phase. Nevertheless,
the universality of the LCT may lie in the critical exponent γ

for second-order transition, around which the order parameter
varies with a form proportional to |u − uc|γ [24,25,28,30,95].
Generally speaking, the LCT has a gap closing of the exci-
tation energy of quantum type at zero temperature or of the
free-energy or thermodynamical potential of classical type
at finite temperature. Usually TPTs are concerned with the
ground state [94], while topological classification can be ex-
tended also to the excited states [31]. For TPTs, gap closing is
a necessary condition conventionally, while there are also un-
conventional TPTs in special cases in both condensed-matter
[110,111] and light-matter interactions [29–31] that occur
without gap closing. We give a brief comparison of these two
essentially different phase transitions in Table I. The TPTs
[28–31] and the LCTs [20–32] in light-matter interactions fit
all these key features [28–31].

APPENDIX B: FOCK BASIS (n − 1)-n COMBINATION
CRUCIAL FOR SPIN WINDING

In this Appendix we show that an (n − 1)-n combination
for the Fock basis, as in the solution (7), is crucial for the full
spin winding addressed in Sec. IV D. To see the difference of
the basis combination, we consider a trial state with a more
general n1-n2 combination of the Fock basis

ψ
(x)
trial = (Cn1⇑|n1,⇑〉 + Cn2⇓|n2,⇓〉), (B1)

up to a normalization factor. Here we assume real coefficients
Cn1⇑ and Cn2⇓ as in (7) due to the fact that the eigenstates are

nondegenerate except at some level-crossing points. The spin
texture for ψ

(x)
trial can be obtained as

〈σz(x)〉 = 2e−x2
Cn1⇑Cn2⇓Hn1 (x)Hn2 (x)(

C2
n1⇑ + C2

n2⇓
)√

π2n1 2n2 n1!n2!
, (B2)

〈σx(x)〉 = e−x2[
Cx

n1
Hn1 (x)2 − Cx

n2
Hn2 (x)2

]
(
C2

n1⇑ + C2
n2⇓

)√
πn1!n2!

, (B3)

〈σy(x)〉 = 0, (B4)

where Cx
n1

= 2−n1C2
n1⇑n2! and Cx

n2
= 2−n2C2

n2⇓n1!
For n1 = n2 it is obvious to see that 〈σx(x)〉 is proportional

to 〈σz(x)〉 while sharing the same Hn1 (x)2 polynomial factors;
there is no spin winding, as illustrated by Fig. 8(a), where the
spin winding is completely suppressed. For n1 = n2 + 1, this
basis combination has alternate nodes of the Hermite polyno-
mials, as in Fig. 1(d), that drives the spin in full winding as
demonstrated in Sec. IV D, which is confirmed by Fig. 8(b).
For n1 = n2 + 2, both 〈σz(x)〉 and 〈σx(x)〉 become symmetric,

〈σz(−x)〉 = 〈σz(x)〉, 〈σx(−x)〉 = 〈σx(x)〉, (B5)

due to Hn(−x) = (−1)nHn(x). As a consequence, besides the
broken reflection symmetry around the 〈σx(x)〉 axis, the spin
winding in the x > 0 path will completely return to the x < 0
path, as indicated by the returning arrows in Fig. 8(c), which
cancels the spin winding with a finally vanishing winding
number. For n1 = n2 + 3, the reflection symmetry recovers;
however, the alternate node order as in the n1 = n2 + 1 case
is broken. The spin winding forms returning knots as in
Fig. 8(d), which also cancel the total winding, thus yielding
a vanishing spin-winding number as well.

These examples indicate that the (n − 1)-n basis combina-
tion coming from the rotating-wave term plays a crucial role
in driving the spin winding. This simple analysis not only
verifies the full winding behavior of the JC-Stark model in
this work but also provides an understanding of the various
spin-winding knots (returning loops) emerging in the λ �= 0
case [31] in which all non-neighboring bases are involved [31]
in an eigenstate with some weight distribution [27].

APPENDIX C: VARIATIONAL ENERGY AS A
FUNCTIONAL OF ORDER PARAMETERS

In this Appendix we discuss the energy functional of order
parameters in the situation of the symmetry breaking at the
principal transition. Although the exact solution has been ob-
tained in Sec. III, a reformulation of the energy as a functional
of order parameters is more connected with the Landau theory

FIG. 8. Fock basis (n − 1)-n combination crucial for effective spin winding. Spin winding for the n1-n2 Fock basis is shown for (a) n2 = n1,
(b) n2 = n1 + 1, (c) n2 = n1 + 2, and (d) n2 = n1 + 3. Here n1 = 2, Cn2,⇓ = 1, and Cn1,⇑ = 0.5. In (b) the spin-winding number is finite, while
in the other cases the spin winding cancels itself.
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FIG. 9. Variational energy ε as a functional of order parameters in symmetry breaking: ε as a functional of (a) w, (b) 〈σx〉, and (c) 〈n̂〉, for
state ψ1 before [g = 1.5gs, orange (light) solid line], at (g = 2.0gs, dotted line), and after [g = 2.5gs, blue solid (dark) line] the transition g(0,1)

c

in competition with the energy of state ψ0 (thin dashed line); (d) 〈σx〉 (solid line) and 〈n̂〉 (dotted line) versus g for the ground state; and ε as a
function of (e) 〈σx〉 and (f) 〈n̂〉 for states ψn at g = 2.5gs. The circles mark the minimized energy and the squares label the maximized energy,
which reproduces the exact JC energy in η = −1 and +1 branches, while the diamond locates the order parameters for ψ0. State ψ0 (diamond)
preserves the subsymmetries P̂x and P̂σ as indicated by integer numbers of 〈σx〉 and 〈n̂〉, while the other states (circles and squares) break the
subsymmetries as reflected by deviations of 〈σx〉 from ±1 and 〈n̂〉 from integer numbers. Here ω = 0.5�, λ = 0, and χ = 0 in all panels.

of phase transitions. Under the constraint of the U(1) symme-
try, the eigenstate of the JC-Stark model should be either a
linear combination of bases |n − 1,⇑〉 and |n,⇓〉,

ψn =
√

1 − w2|n − 1,⇑〉 + w|n,⇓〉, (C1)

or composed solely of ψ0 = |0,⇓〉. The energy of ψ0 is sim-
ply E0 = −�/2, while the energy of ψn is variational with
respect to the basis weight w,

ε = ε0 + [ω − � − χω(2n − 1)]w2 + 2
√

ng
√

1 − w2w,

(C2)

where ε0 = (1 + χ )ω(n − 1) + �
2 is independent of w. The

minimization and maximization of ε with respect to w lead to

w± = ±
√

4g2n + A2
w ± Aw

√
4g2n + A2

w

8g2n + 2A2
w

, (C3)

where Aw = [(2n − 1)χ − 1]ω + �, which is equivalent
[138] to (10) and (11) with η = ±.

Note the relations

〈n̂〉 = n − 1 + w2, (C4)

〈σx〉 = (1 − 2w2). (C5)

The variational energy can be rewritten in a functional form
of the order parameter 〈σx〉 or 〈n̂〉,

ε = ε0 − Cε(1 − 〈σx〉) + η
√

ng
√

1 − 〈σx〉2, (C6)

ε = ε0 − 2Cε(〈n̂〉 + 1 − n)

+η2
√

ng
√

(n − 〈n̂〉)(〈n̂〉 + 1 − n), (C7)

where Cε = [�−ω
2 + (n − 1

2 )χω]. Figure 9 illustrates some
examples of the variational energy around the transition at
g(0,1)

c in competition with the energy of ψ0. The circles mark
the minimized energy, while the squares label the maximized
energy. We see that when g is increasing, the minimized en-
ergy becomes lower than that of state ψ0, which triggers a
first-order transition unlike the second-order transition in the
QRM or the anisotropic QRM [27,30] in the low-frequency
limit. The upper branch (η = +1) and the lower branch (η =
−1) of the variational energy ε are connected and form energy
circles as shown in Fig. 9(d). The lowest and highest points are
the final energies, which together with E0 reproduce the exact
energies in Eq. (12) not only for the ground state but also for
the excited states as demonstrated in Figs. 9(e) and 9(f).

Note that the energy and the order parameters of ψ0 are
represented by the diamonds in Figs. 9(b)–9(e), where the
expectation value 〈σx〉 = 〈P̂x〉 = −1 implies the spin reversal
symmetry in (51) and 〈n̂〉 = 0 indicates the space inversion
symmetry in (52). As a contrast, the values of 〈σx〉 and 〈n̂〉
for the minimum and maximum points on the energy circles
deviate from the integer numbers, which means breaking of
these symmetries.

APPENDIX D: PHASE DIAGRAMS IN THE g-λ PLANE
AND EMERGING UNCONVENTIONAL TPTS

Conventional TPTs are accompanied by gap closing, while
unconventional TPTs occur without gap closing. Figure 10
provides some phase diagrams extracted by the method of
exact diagonalization [27,31] for the state jE = 2 to illus-
trate the conventional and unconventional TPTs. Figure 10(a)
shows the parity in blue (P = −1) and red (P = +1); transi-
tions occur when the parity is reversed. These transitions are

053705-13



ZU-JIAN YING PHYSICAL REVIEW A 109, 053705 (2024)

FIG. 10. Phase diagrams in the g-λ plane and unconventional
topological phase transitions for state jE = 2. (a) Parity P. (b) First
gap �1/ω [plotted by (�1/ω)1/4 to increase the visibility of the
boundaries]. (c) Spin-winding number nw. The black solid lines mark
conventional TPTs at the gap closing boundaries in (a) and (b), while
the boundaries between these solid lines are unconventional TPTs
without gap closing. (d) Second gap (�2/ω)1/2. Here ω = 0.3� and
χ = 0.5.

conventional TPTs as the spin-winding number nw has a jump
[Fig. 10(c)] and the gap is closing [Fig. 10(b)]. Apart from
these conventional TPTs, in Fig. 10(c) we also see some other
TPTs with variations of nw which do not have a parity reversal
or gap closing corresponding to Figs. 10(a) and 10(b). These
additional TPTs are unconventional TPTs. The second gap
�2 [Fig. 10(d)] along these additional transition boundaries is
zero at λ = 0 but immediately opens once the counterrotating
term is turned on by a finite value of λ, which provides an
origin tracking for the unconventional TPTs as discussed with
Fig. 7 in Sec. VI.

APPENDIX E: COMPARISON OF PERTURBATION
AND EXACT DIAGONALIZATION

FOR THE OPENING GAP AT FINITE λ

In Fig. 7(f) we have given an example of the opening gap
�2 in the presence of the counterrotating term at λ = 0.01;
there the dots mark �2 obtained by perturbation [Eq. (63)].
Here we show the evolution of �2 with respect to λ at a fixed
coupling, as illustrated by g = 1.703gs in Fig. 11. We see that
�2 is zero in the absence of the counterrotating term at λ = 0
but becomes finite and remains open in a finite range of λ. We
find that the gap expression (63) by perturbation (blue circles)
is working well here up to the anisotropy order λ ∼ 0.2, in
comparison with the result of exact diagonalization (green
squares) [27,31].

APPENDIX F: EXTRACTING THE WAVE FUNCTION
AND SPIN TEXTURE FROM THE SPIN DENSITY

It may be worth mentioning that for an eigenstate of the
models in (3) and (4) we can get the wave function and all
the spin textures from the spin density (occupation proba-
bility of a spin state), which might provide convenience for

FIG. 11. Comparison of perturbation and exact diagonalization
for the opening gap �2 with finite λ at fix g = 1.703gs. Here ω =
0.3� and χ = 0.5.

experimental measurements for the topological structure.
With the notation for the Hamiltonian (3), σz = ± represents
two flux states in a flux qubit system. The position x and the
momentum p can be simulated by the flux and the charge of
Josephson junctions in another superconducting circuit sys-
tem coupled to the qubit system [113,133]. The JCM can also
be simulated by adding a gradient magnetic field to the cold-
atom system in the trapping potential with spin-orbit coupling
[29,138]; in this case the position x is in real space. As shown
in Fig. 12 once the spin density ρz

+(x) (orange solid line) is
available, the wave-function component ψ z

+(x) (blue dotted
line) will be obtained with the amplitude equal to

√
ρz

+(x) and
the sign to be reversed across a node, due to the fact that here
ψ z

+(x) is a smooth real function and a cusp is not allowed
in quantum mechanics in the absence of potential singularity.
There is a free overall sign for ψ z

+(x), which is however
irrelevant. The other wave-function component is simply de-
termined by the parity symmetry as ψ z

−(x) = Pψ z
+(−x). In

terms of Eqs. (21) and (22), the spin textures of 〈σz(x)〉 and
〈σx(x)〉 are then both obtained. Here the parity value P = ±1
can be determined by the sign of the tunneling energy, but the

FIG. 12. Extracting the wave function ψ z
+(x) (blue dotted line)

from the spin density ρz
+(x) (orange solid line). The wave-function

amplitude is determined by |ψ z
+(x)| = √

ρz
+(x), while the negative

sign in the uncovered dotted sections is picked up by the requirement
of a smooth function for the wave function in quantum mechanics.
Here the parameters are the same as in Fig. 1.
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sign difference of P is reflected only with respect to the 〈σz(x)〉
axis for the spin winding in the 〈σz(x)〉-〈σx(x)〉 plane, which

does not affect the topological structure and the absolute spin-
winding number.
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