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Monochromatically driven two-level systems (i.e., Rabi models) are ubiquitous in various fields of physics.
Though they have been exactly solved, the physical pictures in these exact solutions are not clear. Recently,
approximate analytical solutions with neat physics have been obtained by using the counter-rotating hybridized
rotating wave (CHRW) method, which has been proven to be effective over a wider range of parameters than
the previous analytical solutions. However, the CHRW depends on a parameter ξ , which has no solution in
some regimes. Here, we combine the double-unitary-transformation approach with the generalized Van Vleck
nearly degenerate perturbation theory, and present approximate analytical results with clear physics for almost
all parameter regimes, which agree well with the numerical solutions and the previous experimental results.
Moreover, the dynamic frequencies of the Rabi model are regular, and the frequency with the highest Fourier
amplitude changes from the Rabi frequency to 2nω with driving frequency ω and integer n, as the driving
intensity increases from weak to deep-strong. In addition, we further explore the Floquet dynamics of the
dissipative open Rabi model. Remarkably, the dissipations are tunable in the rotating frame, and the approximate
analytical results obtained by our method are in good agreement with the numerical results in the strong driving
regime. These results pave the way to quantum control using strong and deep-strong driving with applications in
quantum technologies.
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I. INTRODUCTION

Optical control of materials based on Floquet engineering
has been attracting great interest ranging from the realiza-
tion of novel phenomena [1–8] to optical suppression of
decoherence [9–11]. The prototype of an optically controlled
quantum system is the Rabi model, describing a two-level
system driven by a monochromatic field with amplitude A
and frequency ω, which is common in different physical se-
tups, ranging from quantum optics to condensed matter and
quantum information [12,13]. For a weak and near-resonance
driving, one usually invokes the rotating-wave approximation
(RWA), and results show that the dynamics of the Rabi models
are periodic oscillations with Rabi frequency [12,14]. In fact,
the dynamics of the Rabi model are much richer than those
under the RWA, such as Rabi oscillations’ collapse and revival
[15]. To observe these and other novel phenomena in the lab-
oratory, a strong (deep-strong) driving regime is required, that
is, the driving amplitude A has to be comparable to or larger
than the system’s decoherence rates (transition frequency of
the system) [16–23]. Beyond the weak driving regime, the
RWA breaks down, and the frequency components of the
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dynamics are no longer a single Rabi frequency and become
analytically difficult to predict.

An exact analytical solution to this Rabi model in terms of
two known special functions has been presented in Ref. [24],
and an iterating approach for strong-coupling periodically
driven two-level systems is presented in Ref. [25]. Though
they all show analytical results that agree well with the numer-
ical results, it is difficult to analytically provide the frequency
components of the system dynamics, which are demanded in
experiments for the strongly driven system [26]. Therefore,
analytical solutions with clear physics are also needed. The
counter-rotating hybridized rotating wave (CHRW) approach
is beyond the traditional RWA and remains the RWA form
with a renormalized tunneling strength and a modified driving
[27]. However, it is based on a unitary transformation with
a parameter ξ , which has no solution in some situations.
In this work, we present approximate analytical results of
the Rabi model with clear physics for almost all parame-
ter regimes by combining the double-unitary-transformation
(DUT) approach with the generalized Van Vleck (GVV)
nearly degenerate perturbation theory. Our analytical results
agree well with the numerical solutions obtained by Floquet
theory and the previous experimental results [26]. Moreover,
we further investigate the effectiveness of the GVV method
in the dissipative open Rabi model and find that it is still
applicable in the strong driving regime.
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The paper is organized as follows. The formalism of Flo-
quet dynamics is presented in Sec. II. We explore the Floquet
dynamics of the closed Rabi model in Sec. III and the dissipa-
tive open Rabi model in Sec. IV. Conclusions are given in the
last section of the article.

II. FLOQUET DYNAMICS

In this work, we investigate the Rabi model in the Floquet
picture: copy infinite two-level systems and then shift the
energy separation between each copy by h̄ω with Planck’s
constant h̄. Note that hereafter h̄ = 1. This correspondence al-
lows one to view Rabi oscillations and Floquet states from the
simpler perspective of their time-independent-problem equiv-
alent [28]. A periodic time-dependent Hamiltonian H (t ) =
H (t + T ) with period T can be transformed to an equiv-
alent time-independent infinite-dimensional Floquet matrix
eigenvalue problem. The Hamiltonian H (t ) has Fourier com-
ponents of ω with ω = 2π/T ,

H (t ) =
∑

n

H [n] exp(−inωt ), (1)

where the component H [n] is represented in the Floquet state
|α, n〉 = |α〉⊗ |n〉 with the system index α (note that in the
generalized Floquet formalism α can be the N-level system
index, but in this work, the Rabi model is restricted to N = 2)
and the Fourier index n that runs from −∞ to ∞ [29].
According to the Floquet theory [30], the elements of the
infinite-dimensional Floquet matrix HF are defined by

〈α,n|HF |β,m〉 = H [n−m]
αβ + nωδαβδnm, (2)

with integers n and m. The Floquet matrix is then diagonal-
ized,

HF |εγ l〉 = qγ l |εγ l〉, (3)

where qγ l is the quasienergy eigenvalue and |εγ l〉 is the corre-
sponding eigenvector. An initial state |
(0)〉 can be written as

|
(0)〉 =
∑
γ l

aγ l |εγ l〉, (4)

with aγ l = 〈εγ l |
(0)〉. The wave function at time t is

|
(t )〉 =
∑
γ l

aγ l e
−iqγ l t |εγ l〉 =

∑
γ l

e−iqγ l t |εγ l〉〈εγ l |
(0)〉.

(5)
For a given initial state |
(0)〉 = |α, 0〉, the time-averaged

transition probability from |α〉 to |α′〉 can be calculated:

Pα→α′ (t ) =
∣∣∣∣∣
∑

n

〈α′, n|
(t )〉
∣∣∣∣∣
2

=
∣∣∣∣∣
∑

n

∑
γ l

e−iqγ l t 〈α′,n|εγ l〉〈εγ l |α, 0〉
∣∣∣∣∣
2

. (6)

According to the Floquet theory [31], the eigenvalues of
the Floquet matrix exhibit translational symmetry, i.e., qγ n =
qγ 0 + nω. As a result, the probability to find the system in
state |α′〉 is expected to show oscillatory behavior with fre-
quencies nω and ±�ε + nω. Here, �ε = qγ n − qγ ′n. In the
next section, we will focus on the analytical results of these
frequencies.

III. CLOSED RABI MODEL

The Rabi model describes a two-level system, denoted by
ground state |0〉 and excited state |1〉, driven by a harmonic
driving with amplitude A and frequency ω,

HRabi(t ) = ω0

2
σz + A

2
cos(ωt )σx, (7)

where σx,y,z is the usual Pauli matrix and ω0 the transition
frequency of the system. Recently, strongly driven quantum
systems have attracted considerable attention [21,32], and the
traditional RWA is not valid in this regime. Thus, we will an-
alytically investigate the Floquet dynamics of the Rabi model
by using the CHRW [33] and GVV methods.

A. Counter-rotating hybridized rotating wave

The essence of the CHRW method is a unitary transforma-
tion

U1(t ) = exp

[
−i

Aξ

2ω
sin(ωt )σx

]
, (8)

with parameter ξ ∈ [0, 1] to be determined later [27]. The
Hamiltonian in Eq. (7) after the transformation is

H1(t ) = U †
1 (t )HRabi(t )U1(t ) − iU †

1 (t )
∂U1(t )

∂t

= ω0

2

{
cos

[
Aξ

ω
sin(ωt )

]
σz + sin

[
Aξ

ω
sin(ωt )

]
σy

}

+ A

2
(1 − ξ ) cos(ωt )σx. (9)

Note that after the transformation U1(t ), the basis states of the
Hamiltonian in Eq. (9) are

|s1(t )〉 = cos

[
Aξ

2ω
sin(ωt )

]
|1〉 + i sin

[
Aξ

2ω
sin(ωt )

]
|0〉,

|s0(t )〉 = i sin

[
Aξ

2ω
sin(ωt )

]
|1〉 + cos

[
Aξ

2ω
sin(ωt )

]
|0〉. (10)

Using exp[iAξ/ω sin(ωt )] = ∑∞
n=−∞ Jn(Aξ/ω)exp(inωt )

with nth-order Bessel function of the first kind Jn(·), Eq. (9)
can be divided into three parts H1(t ) = H ′

1 + H ′′
1 (t ) + H ′′′

1 (t ),
where

H ′
1 = ω0

2
J0

(
Aξ

ω

)
σz, (11)

H ′′
1 (t ) = A

2
(1 − ξ ) cos(ωt )σx + ω0J1

(
Aξ

ω

)
sin(ωt )σy, (12)

and H ′′′
1 (t ) = H1(t ) − H ′

1 − H ′′
1 (t ) includes all higher-order

harmonic terms sin(nωt ) and cos(nωt ) with n � 2, which
are ignored in the CHRW method. Therefore, H1(t ) � H ′

1 +
H ′′

1 (t ) and can be rewritten as

H1(t ) = ω0

2
J0

(
Aξ

ω

)
σz + Ã

4
(e−iωtσ+ + eiωtσ−), (13)

where

A

2
(1 − ξ ) = ω0J1

(
Aξ

ω

)
≡ Ã

4
, (14)
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FIG. 1. Coefficients C0, C1, C41 , C42 , C21 , C22 , C31 , and C32 in
Eqs. (15) as a function of A with ω/ω0 = 1 (a) and ω/ω0 = 0.6
(b), obtained from Eqs. (A5)–(A9). The gray areas denote no results
because there are no reasonable ξ based on Eq. (14), i.e., no solution
for ξ ∈ [0, 1] satisfies A

2 (1 − ξ ) = ω0J1( Aξ

ω
).

with ξ ∈ [0, 1]. Clearly, Eq. (13) possesses a RWA-like form
with a renormalized transition frequency J0(Aξ/ω)ω0 and a
renormalized driving strength Ã.

For an initial state |0〉, the population of excited state P1(t )
can be easily given as (see Appendix A)

P1(t ) = C0 + C1 cos(�̃t ) +
∞∑

n=1

[C2n cos(2nωt + �̃t )

+C3n cos(2nωt − �̃t ) + C4n cos(2nωt )], (15)

with effective Rabi frequency

�̃ =
√

�̃2 + Ã2/4, (16)

and renormalized detuning �̃ = J0(Aξ/ω)ω0 − ω. The coef-
ficients C0, C1, C2n , C3n , and C4n with n = 1, 2, 3, . . . ,∞ in
Eq. (15) are the Fourier amplitudes of the cosine functions
with frequencies 0, �̃, 2nω + �̃, 2nω − �̃, and 2nω, respec-
tively, and they are shown in Appendix A. From Eq. (15),
we find that the dynamic frequency components of the Rabi
model are infinite, and they exhibit translational symme-
try with a translation of 2nω, which is different from the
general nω discussed in Sec. II. Although the even pho-
ton number (i.e., 2nω) has been discussed before [31,34–
36], here we present the analytical results of all the dy-
namic frequencies and corresponding amplitudes, which, to
our knowledge, have not been presented directly before. The
reason for the even photon number is that the periodic-driven
signal in the Rabi model (the cosine signal) has additional
symmetry [26].

The effectiveness of CHRW has been demonstrated [27],
and here we directly use this method to analyze the major
frequencies of system dynamics at different driving intensi-
ties, which have not been studied previously. Figure 1 shows
the variation of Fourier amplitude [i.e., C0, C1, C41 , C42 , C21 ,
C22 , C31 , and C32 in Eq. (15)] with the driving intensity A.
For a resonant situation in Fig. 1(a), when A/ω0 → 0, the
Floquet dynamic is a constant of 0.5 plus a Rabi oscillation

FIG. 2. The number of solutions to ξ ∈ [0, 1] that satisfy equa-
tion A

2 (1 − ξ ) = ω0J1( Aξ

ω
). The magenta and red dashed lines are

ω/ω0 = 0.6 and ω/ω0 = 1, respectively. The yellow stars on the ma-
genta and red dashed lines represent the maximum driving strength
(i.e., A/ω0 = 4.18) that were realized in experiments [26].

with an amplitude of 0.5 and a frequency of �̃. As A in-
creases, the Fourier amplitude of the Rabi oscillation with
frequency �̃ decreases, while the Fourier amplitudes of the
high-frequency oscillation terms (i.e., 2nω ± �̃ and 2nω) in-
crease and gradually exceed the former, indicating that the
RWA without high-frequency oscillation terms is no longer
valid. In addition, in most intervals of the deep-strong driv-
ing regime (i.e., A/ω0 
 1), the Fourier amplitudes of 2nω

terms are larger than those of other terms and become the
main oscillation terms of the Floquet dynamics. Moreover,
we show the variation of the Fourier amplitudes with A for
the off-resonance situation in Fig. 1(b). When A/ω → 0, the
transition probability P1(t ) → 0, which is reasonable for non-
resonant weak coupling. The amplitude of the Rabi frequency
C1 increases with the increase of A, reaching its maximum at
about A/ω0 = 1, and then gradually decreases. Similarly, 2nω

terms become the main oscillation terms of the Floquet dy-
namics in the most intervals of the deep-strong driving regime.
Note that Eq. (15) has no solution with some parameters in
the gray areas as shown in Fig. 1, which we will discuss in the
next paragraph.

We present the valid conditions of the CHRW in this
paragraph. From Eq. (14), we see that the solution of ξ is
the key of the CHRW. Figure 2 shows the number of solu-
tions for the parameter ξ ∈ [0, 1] that satisfy equation A(1 −
ξ )/2 = ω0J1(Aξ/ω). We find that with parameters ω/ω0 =
0.27 (0.15), A/ω0 = 1.41 (1.35), there are two (three) solu-
tions, i.e., ξ = 0.253, 0.6043 (ξ = 0.1691, 0.2837, 0.8256),
and so on. In these regions where ξ has no unique solution, the
CHRW method is no longer applicable. Also, in some param-
eter ranges, no ξ belongs to [0,1] that satisfies A(1 − ξ )/2 =
ω0J1(Aξ/ω), such as 3.84 � A/ω0 � 7.01 with ω/ω0 = 1
(shown by the red dashed line) and 2.30 � A/ω0 � 4.20
with ω/ω0 = 0.6 (shown by the magenta dashed line). How-
ever, the maximum driving intensity experimentally studied
reached A/ω0 = 4.18, as the yellow stars shown in Fig. 2.
Therefore, analytical results with clear physics suitable for the
whole driving-strength range urgently need to be solved.
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B. Double-unitary transformation

In this section, we use the DUT approach to investigate
the Floquet dynamics of the Rabi model in Eq. (7). DUT is
a powerful method for dealing with transverse (off-diagonal)
and periodically driven quantum systems (such as the Rabi
model), which makes it possible to obtain analytical results
by using perturbation theory. The first unitary transformation
is U2 = exp(−iπσy/4), and the Hamiltonian in Eq. (7) after
this transformation is

H2(t ) = A

2
cos(ωt )σz − ω0

2
σx, (17)

with basis |±〉 = (|1〉 ± |0〉)/
√

2. The second unitary trans-
formation is

U3(t ) = exp

[
−i

A

2ω
sin(ωt )σz

]
, (18)

and the Hamiltonian in Eq. (17) after this transformation be-
comes

H3(t ) = −ω0

2

∞∑
n=−∞

Jne−inωt [(−1)nσ+ + σ−], (19)

where Jn(A/ω) abbreviate as Jn and σ± = (σx ± iσy)/2. Note
that the basis states of Eq. (19) are

|s′
+(t )〉 = exp

[ iA sin(ωt )
2ω

]|1〉 + exp
[−iA sin(ωt )

2ω

]|0〉√
2

, (20)

|s′
−(t )〉 = exp

[ iA sin(ωt )
2ω

]|1〉 − exp
[−iA sin(ωt )

2ω

]|0〉√
2

. (21)

According to Eq. (1), the Floquet matrix block of Eq. (19) is

H [n] = −ω0

2
Jn[(−1)nσ+ + σ−]. (22)

Combined Eq. (22) with Eq. (2), the Floquet matrix of
Eq. (19) is

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . .
.

−2ω
−ω0

2 J0 0 −ω0
2 J1 0 −ω0

2 J2 0 −ω0
2 J3 0 −ω0

2 J4

−ω0
2 J0 −2ω

ω0
2 J1 0 −ω0

2 J2 0 ω0
2 J3 0 −ω0

2 J4 0

0 ω0
2 J1 −ω

−ω0
2 J0 0 −ω0

2 J1 0 −ω0
2 J2 0 −ω0

2 J3

−ω0
2 J1 0 −ω0

2 J0 −ω
ω0
2 J1 0 −ω0

2 J2 0 ω0
2 J3 0

0 −ω0
2 J2 0 ω0

2 J1 0 −ω0
2 J0 0 −ω0

2 J1 0 −ω0
2 J2

−ω0
2 J2 0 −ω0

2 J1 0 −ω0
2 J0 0 ω0

2 J1 0 −ω0
2 J2 0

0 ω0
2 J3 0 −ω0

2 J2 0 ω0
2 J1 ω

−ω0
2 J0 0 −ω0

2 J1

−ω0
2 J3 0 −ω0

2 J2 0 −ω0
2 J1 0 −ω0

2 J0 ω
ω0
2 J1 0

0 −ω0
2 J4 0 ω0

2 J3 0 −ω0
2 J2 0 ω0

2 J1 2ω
−ω0

2 J0

−ω0
2 J4 0 −ω0

2 J3 0 −ω0
2 J2 0 −ω0

2 J1 0 −ω0
2 J0 2ω

..
. . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← |s′
−, −2〉

← |s′
+, −2〉

← |s′
−, −1〉

← |s′
+, −1〉

← |s′
−, 0〉

← |s′
+, 0〉

← |s′
−, +1〉

← |s′
+, +1〉

← |s′
−, +2〉

← |s′
+, +2〉

, (23)

where Jk = Jk (A/ω). Then, we perform a basis transformation with

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . .
.

1 1 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 −1

. .
. . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)
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and Eq. (23) becomes

(25)

with Floquet basis

|s′
1(t )〉 = cos

[
A

2ω
sin(ωt )

]
|1〉 + i sin

[
A

2ω
sin(ωt )

]
|0〉

|s′
0(t )〉 = i sin

[
A

2ω
sin(ωt )

]
|1〉 + cos

[
A

2ω
sin(ωt )

]
|0〉. (26)

From the matrix structure of H ′
F in Eq. (25), one sees

that |s′
1, 0〉 couples to |s′

0, 1〉 via an off-diagonal term of
−ω0J1/2, and this block matrix is shown in light blue. By
tuning the frequency of the driving field (i.e., ω), the Flo-
quet state |s′

1, 0〉 can become nearly degenerate with |s′
0, 1〉,

namely, ω ≈ J0ω0. Following the standard GVV nearly de-
generate perturbation theory and to the second order [37,38],
Eq. (25) is reduced to a 2 × 2 matrix by including all other
off-resonant coupling channels as perturbation terms (see
Appendix B):

HGVV =
( J0ω0

2 + δ1′ −J1ω0
2 + δ1′0′

−J1ω0
2 + δ0′1′ ω − J0ω0

2 + δ0′

)
, (27)

where

δ1′ =
∞∑

k = −∞
k �= 0

[
(J2k+1ω0/2)2

J0ω0 − (2k + 1)ω
+ (J2kω0/2)2

−2kω

]
, (28)

δ0′ =
∞∑

k = −∞
k �= 0

[ −(J2k−1ω0/2)2

J0ω0 + (2k − 1)ω
+ (J2kω0/2)2

−2kω

]
, (29)

δ1′0′ =
∞∑

k = −∞
k �= 0

[ −J2k−1J2kω
2
0/4

J0ω0 + (2k − 1)ω
+ J2k+1J2kω

2
0

−8kω

]
, (30)

δ0′1′ =
∞∑

k = −∞
k �= 0

[
J2k+1J2kω

2
0/4

J0ω0 − (2k + 1)ω
+ J2k−1J2kω

2
0

−8kω

]
, (31)

which result from the higher-order harmonic terms. Therefore,
here our approach includes the higher-order harmonic terms
that are ignored in CHRW. In Appendix B, we numerically
prove that δ0′ = −δ1′ , δ1′0′ = δ0′1′ within the parameter range
of our research and also demonstrate that the second-order
perturbation results are more suitable for the exact numerical
results than the first-order perturbation results.

Diagonalize Eq. (27) to obtain the eigenvalues, and the
Rabi frequency is the difference between the two eigenvalues:

� =
√

4δ1′0′δ0′1′ + (δ′
1 − δ′

0 − ω)2 + B (32)

with B = 2(δ′
1 − δ′

0 − ω)J0ω0 − 2(δ1′0′ + δ0′1′ )J1ω0 + (J2
0 +

J2
1 )ω2

0. Then, all frequencies of the Floquet dynamics can be
written as ±� + 2nω and 2nω. In Fig. 3, we compare the
numerical, analytical, and the previous experimental results
of system dynamics frequencies in the general off-resonance
situation (i.e., ω/ω0 = 0.6). The numerical results are ob-
tained by Floquet theory. The approximate analytical results
are obtained by using CHRW and GVV, and the experimen-
tal results extracted from Ref. [26]. One can see that the
GVV results are more suitable for the exact numerical re-
sults than CHRW, because GVV results include higher-order
harmonic terms through perturbation theory, which are
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FIG. 3. Frequency components of transition probability P1(t ) as
a function of A with ω/ω0 = 0.6. The black lines plot ±�ε + 2nω

and 2nω, with quasienergy difference �ε determined numerically by
Floquet matrix (see Appendix C). The red dashed lines plot ±� +
2nω and 2nω with � in Eq. (32). The blue dash-dot lines plot ±�̃ +
2nω and 2nω with �̃ in Eq. (16). The green dots are the experimental
results extracted from Ref. [26].

ignored in CHRW. When A ∈ [2.30, 4.20] or A ∈ [6.10, 7.99],
CHRW has no results as discussed in Sec. III A. In contrast,
the GVV results agree well with the experimental results,
and the slight discrepancy may be compensated by consid-
ering higher-order perturbation terms. In addition, the GVV
results are not only suitable for resonant and near-resonant
situations, but also for large detuning situations, as shown
in Fig. 4. In fact, the GVV results are suitable for almost
all parameter regimes, except A/ω0 → 0 and ω/ω0 → 0 si-
multaneously. Therefore, the GVV results provide a better
approximation for the Rabi model with arbitrary strength and
detuning.

IV. DISSIPATIVE OPEN RABI MODEL

In this section, we further consider the dissipative open
Rabi model with population damping rate �i j from state |i〉 to

FIG. 4. Frequency components of transition probability P1(t ) as
a function of A and ω. Same as Fig. 3, the black lines are the
numerical results obtained by Floquet theory and the red dashed lines
are the approximate analytical results ±� + 2nω with � in Eq. (32).

| j〉 and the dephasing rate γii of state |i〉. With the assumption
of Markovian noise background, the density matrix for the
two-level system with basis |i〉 and | j〉 evolves according to
the Lindblad master equation [39,40],

ρ̇ = −i[H (t ), ρ] + �i j

2
D[| j〉〈i|]ρ + � ji

2
D[|i〉〈 j|]ρ,

+ γiiD[|i〉〈i|]ρ + γ j jD[| j〉〈 j|]ρ, (33)

with D[O]ρ = 2OρO† − O†Oρ − ρO†O. For the Rabi
model, in the laboratory frame, we only consider the pop-
ulation damping rate �10 from the excited state |1〉 to the
ground state |0〉 and the dephasing rate γ11 of state |1〉, i.e.,
�01 = γ00 = 0.

The GVV method transforms the Rabi Hamiltonian with
basis |0〉 and |1〉 in Eq. (7) into an effective analytically
solvable Hamiltonian in Eq. (27) with basis |s′

0,1(t )〉 through
two unitary transformations. The decay and excitation rate be-
tween |s′

0(t )〉 and |s′
1(t )〉 can be easily calculated by rewriting

the laboratory frame dissipators (i.e., �10 and γ11) in the new
basis (see Appendix D),

γs′
1s′

1
(t ) = sin2

[
A sin(ωt )

ω

]
�10

8
+ cos4

[
A sin(ωt )

2ω

]
γ11, (34)

γs′
0s′

0
(t ) = sin2

[
A sin(ωt )

ω

]
�10

8
+ sin4

[
A sin(ωt )

2ω

]
γ11, (35)

�s′
1s′

0
(t ) = sin2

[
A sin(ωt )

ω

]
γ11

2
+ cos4

[
A sin(ωt )

2ω

]
�10, (36)

�s′
0s′

1
(t ) = sin2

[
A sin(ωt )

ω

]
γ11

2
+ sin4

[
A sin(ωt )

2ω

]
�10. (37)

Equations (34)–(37) show that the decay parameters are time
dependent. One finds that when A is weak (i.e., A/ω → 0),
γs′

1s′
1
(t ) ≈ γ11, γs′

0s′
0
(t ) ≈ 0, �s′

1s′
0
(t ) ≈ �10 and �s′

0s′
1
(t ) ≈ 0,

because under this condition |s′
0(t )〉 � |0〉 and |s′

1(t )〉 � |1〉.
When A is deep-strong (i.e., A/ω 
 1), the decay rates change
greatly and periodically with time, and sometimes the ex-
citation rate between |s′

0〉 and |s′
1〉 is larger than the decay

rate between them, i.e., �s′
0s′

1
> �s′

1s′
0
. Similarly, the dephasing

rate of |s′
0〉 can be larger than that of |s′

1〉, i.e., γs′
0s′

0
> γs′

1s′
1
.

These tunable decay parameters provide a different platform
for quantum computing [41].

Submitting the decay parameters in Eqs. (34)–(37) and the
Hamiltonian in Eq. (27) into the Lindblad master equation in
Eq. (33), we obtain the dynamics of the transition probability
P1(t ), as the red-dashed lines shown in Fig. 5. To verify the
effectiveness of the GVV method, we also present the exact
numerical results obtained by solving the Floquet-Lindblad
equation with Hamiltonian in Eq. (7) and decay parameters
�10/ω = 1, γ11/ω = 0.2, �01/ω = γ00/ω = 0. We find that
the GVV results agree well with the numerical results in the
strong driving regime, and the small deviations between them
may result from higher-order terms of perturbation theory
and the loss of the fast oscillation terms when rewriting the
dissipation rates in Eqs. (34)–(37).
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0

1
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1
(a) Numerical

GVV

0 5 10 15
0

1

0
 t

P
1
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FIG. 5. Dynamics of transition probability P1 with ω/ω0 = 1,
A/ω0 = 10 (a) and ω/ω0 = 3, A/ω0 = 10 (b). The black lines denote
the numerical results and the red dashed lines are the results obtained
by GVV. Here, the initial state is 
(0) = |0〉 and decay parameters
are �10/ω = 1, γ11/ω = 0.2, and �01/ω = γ00/ω = 0.

V. DISCUSSION AND CONCLUSION

In conclusion, by combining DUT with GVV perturba-
tion theories, we present an approximate analytical result
of the Rabi model for almost all parameter regimes, except
A/ω0 → 0 and ω/ω0 → 0 simultaneously. The GVV results
agree well with the numerical solutions obtained by Floquet
theory and previous experimental results, and are also beyond
the results obtained by using CHRW, which have no results
within some parameter ranges. Moreover, as the driving inten-
sity increases from weak to deep-strong, the main frequency
component of the Floquet dynamics transitions from Rabi fre-
quency to 2nω. In addition, we further consider the dissipative
open Rabi model with population damping and dephasing
rates, and the results obtained by GVV Hamiltonian with
the regrouping decay rates agree well with the numerical
results in the strong driving regime. Our results provide a
desired theoretical method for studying the strongly driven
closed and open two-level systems. In particular, the devel-
opment of an ultrastrong laser opens the doorway for light-
matter interactions in the strong and deep-strong coupling
regimes.

The approximate analytical results of the Rabi model are
helpful for the use of strong driving for fast quantum gates,
specifically qubit state preparation. Starting with the qubit
in its ground state, we apply a monochromatic field with
driving strength A and frequency ω. With the help of our
analytical results, the field strength or duration can be quan-
titatively calculated to prepare the target state. In addition,
the tunable decay rates in the rotating frame may have ap-
plications in quantum computing. In particular, the excitation
rate between two states can be larger than the decay rate
between them, which is almost impossible in the laboratory
frame.
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APPENDIX A: DERIVATION OF EQ. (15)

The wave function in basis |s1,0(t )〉 is |
(t )〉 =
c1(t )|s1(t )〉 + c0(t )|s0(t )〉. The initial condition after the uni-
tary transformation is invariant, |si(0)〉 = |i〉, i = 1, 0. For an
initial state in |0〉, we can solve the Schrödinger equation with
Hamiltonian in Eq. (13) easily as given in Refs. [12,27],

c1(t ) = − iÃ

2�̃
sin

(
�̃t

2

)
ei ωt

2 (A1)

c0(t ) =
[

cos

(
�̃t

2

)
+ i�̃

�̃
sin

(
�̃t

2

)]
e−i ωt

2 . (A2)

The population of excited state |1〉 can be expressed as

P1(t ) =
∣∣∣∣cos

[
Aξ sin(ωt )

2ω

]
c1(t ) − i sin

[
Aξ sin(ωt )

2ω

]
c0(t )

∣∣∣∣
2

.

(A3)
Substituting Eqs. (A1) and (A2) into Eq. (A3), and regrouping
terms with the same frequency, we have

P1(t ) = C0 + C1 cos(�̃t ) +
∞∑

n=1

[C2n cos(2nωt + �̃t )

+C3n cos(2nωt − �̃t ) + C4n cos(2nωt )], (A4)

with

C0 = 1

2
− �̃2

2�̃2
J0

(
Aξ

ω

)
+ �̃Ã

4�̃2
J1

(
Aξ

ω

)
, (A5)

C1 = − Ã2

8�̃2
J0

(
Aξ

ω

)
− �̃Ã

4�̃2
J1

(
Aξ

ω

)
, (A6)

C2n = −
[

Ã2

8�̃2
+ nωÃ

2Aξ�̃

]
J2n

(
Aξ

ω

)

+ �̃Ã

8�̃2

[
J2n−1

(
Aξ

ω

)
− J2n+1

(
Aξ

ω

)]
, (A7)

C3n = −
[

Ã2

8�̃2
− nωÃ

2Aξ�̃

]
J2n

(
Aξ

ω

)

+ �̃Ã

8�̃2

[
J2n−1

(
Aξ

ω

)
− J2n+1

(
Aξ

ω

)]
, (A8)

C4n = �̃Ã

4�̃2

[
J2n+1

(
Aξ

ω

)
− J2n−1

(
Aξ

ω

)]

− �̃2

�̃2
J2n

(
Aξ

ω

)
, (A9)

where we used the formula cos[A sin(ωt )/ω] =∑∞
n=−∞ Jn(A/ω) cos(nωt ).

APPENDIX B: DERIVATION OF THE 2 × 2 EFFECTIVE
HAMILTONIAN BY THE GVV THEORY

In this section, we reduce the infinite-dimensional Floquet
matrix in Eq. (25) into a 2 × 2 effective matrix by using GVV
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perturbation theory [37,42]. Consider the Floquet states |s′
1, 0〉

nearly degenerate with |s′
0, 1〉. According to the perturbation

theory, we expand the 2 × 2 matrix h and its eigenstates
� in powers of ω0. The zeroth and higher order of � are
given by

�
′(0)
1 = |s′

1, 0〉, �
(0)
0 = |s′

0, 1〉,

�
′(1)
1 =

∞∑
k = −∞

k �= 0

[ −J2k+1ω0/2

J0ω0 − (2k + 1)ω
|s′

0, 2k + 1〉

− J2kω0

4kω
|s′

1, 2k〉
]
,

�
(1)
0 =

∞∑
k = −∞

k �= 0

[ −J2k−1ω0/2

J0ω0 + (2k − 1)ω
|s′

1, 2k〉

+ J2kω0

4kω
|s′

0, 2k + 1〉
]
. (B1)

The zeroth and higher order of h represented by � are

h(0) =
(

J0ω0
2 0

0 ω − J0ω0
2

)
, (B2)

h(1) = 〈�(0)|V ′|�(0)〉 =
(

0 − J1ω0
2

− J1ω0
2 0

)
, (B3)

h(2) = 〈�(0)|V ′|�(1)〉 − h(1)〈�(0)|�(1)〉

=
(

δ1′ δ1′0′

δ0′1′ δ0′

)
, (B4)

with δ1′ , δ0′ , δ1′0′ , and δ0′1′ given in Eqs. (28)–(31).
Equations (B2) and (B3) form a first-order perturbation
matrix:

HGRWA =
(

J0ω0
2 − J1ω0

2

− J1ω0
2 ω − J0ω0

2

)
, (B5)

which is similar to the rotating wave approximation and ne-
glects all other nonresonant coupling terms. Note that this
RWA is different from the conventional one subject to trans-
verse coupling, where RWA breaks down in the strong field,
and we refer to it as generalized rotating wave approximation
(GRWA). Diagonalize Eq. (B5) to obtain the eigenvalues, and
the Rabi frequency is the difference between the two eigen-
values:

�′ =
√

(ω − J0ω0)2 + J2
1 ω2

0. (B6)

Then, all frequencies of the Floquet dynamics can be written
as ±�′ + 2nω and 2nω.

Equations (B2)–(B4) form the second-order perturbation
matrix shown in Eq. (27). In Fig. 6, we plot δ1′ , δ0′ , δ1′0′ ,
and δ0′1′ as a function of A for resonant and off-resonant
situations. We find that δ0′ = −δ1′ , δ1′0′ = δ0′1′ with ω/ω0 = 1
and ω/ω0 = 0.6. In Fig. 7, we compare the numerical and ana-
lytic results of the frequencies obtained by GVV Hamiltonian

FIG. 6. Comparison of δ1′ and δ0′ , δ1′0′ , and δ0′1′ for various A
with ω/ω0 = 1 (a) and (b) and ω/ω0 = 0.6 (c) and (d).

and GRWA Hamiltonian. Clearly, the GVV results fit better
than the GRWA to the exact numerical results, indicating the
deviation of the GRWA and the validity of the GVV.

APPENDIX C: NUMERICAL RESULTS OBTAINED BY
FLOQUET THEORY

According to the Floquet theory, the Rabi model in Eq. (7)
can be rewritten as

H = H [0] + H [−1]eiωt + H [1]e−iωt (C1)

0 1.2 2.4 3.6
0

2

4

6

8

10

A
 / 

0

Frequency / 
0

Frequency / 
0

Floquet theory
GVV
GRWA

FIG. 7. Comparison of numerical results obtained by Floquet
theory and approximate analytical GRWA results [i.e., ±�′ + 2nω

and 2nω with � in Eq. (B6)] and GVV results [i.e., ±� + 2nω and
2nω with � in Eq. (32)] results of the frequency components for
various A with ω/ω0 = 0.6.
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with H [0] = ω0σz/2 and H [±1] = Aσx/4. Based on Eq. (3), the Floquet matrix is

H ′′
F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . .
.

ω0
2 − 2ω 0 0 A

4 0 0 0 0 0 0

0 −ω0
2 − 2ω A

4 0 0 0 0 0 0 0

0 A
4

ω0
2 − ω 0 0 A

4 0 0 0 0
A
4 0 0 −ω0

2 − ω A
4 0 0 0 0 0

0 0 0 A
4

ω0
2 0 0 A

4 0 0

0 0 A
4 0 0 −ω0

2
A
4 0 0 0

0 0 0 0 0 A
4

ω0
2 + ω 0 0 A

4

0 0 0 0 A
4 0 0 −ω0

2 + ω A
4 0

0 0 0 0 0 0 0 A
4

ω0
2 + 2ω 0

0 0 0 0 0 0 A
4 0 0 −ω0

2 + 2ω

. .
. . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

← |1, −2〉
← |0, −2〉
← |1, −1〉
← |0, −1〉
← |1, 0〉
← |0, 0〉
← |1, +1〉
← |0, +1〉
← |1, +2〉
← |0, +2〉

.

We obtain quasienergies by numerically diagonalizing H ′′
F . In our calculations, we truncate the matrix H ′′

F with n ranging from
−30 to 30.

APPENDIX D: UNITARY TRANSFORMATION
OF DECAY PARAMETERS

In this section, we give the derivation of Eqs. (34)–(37).
In the laboratory frame, the master equation of the dissipa-
tive open Rabi model with population damping rate �10 and
dephasing rate γ11 is [43]

ρ̇ = −i[H (t ), ρ] + �10

2
D[σ01]ρ + γ11D[σ11]ρ. (D1)

According to Eq. (26), the rotation matrix is

U4(t ) = cos

[
A sin(ωt )

2ω

]
I + i sin

[
A sin(ωt )

2ω

]
σx, (D2)

with I a 2 × 2 identity matrix. The decay and excitation rate
between |s′

1(t )〉 and |s′
0(t )〉 can be easily calculated by rewrit-

ing the laboratory frame dissipators in the new basis [41],
�10

2
D[σ01]ρ = �10

2
D[U †

4 (t )σs′
0s′

1
U4(t )]ρ

= �10

2
D

[
ζ
(
σs′

0s′
0
− σs′

1s′
1

) + βσs′
1s′

0
+ ησs′

0s′
1

]
ρ,

(D3)

γ11D[σ11]ρ = γ11D
[
U †

4 (t )σs′
1s′

1
U4(t )

]
ρ

= γ11D
[
βσs′

0s′
0
+ ησs′

1s′
1
+ ζ

(
σs′

1s′
0
− σs′

0s′
1

)]
ρ

(D4)

with ζ = 1
2 sin[ Aξ sin(ωt )

2ω
], β = sin2[ Aξ sin(ωt )

2ω
], and η =

cos2[ Aξ sin(ωt )
2ω

]. Therefore, by regrouping the above dissipators
and dropping out the fast oscillating terms, such as σs′

0s′
1
ρσs′

0s′
1

and σs′
1s′

0
ρσs′

1s′
0
, we obtain the effective decay rates in

Eqs. (34)–(37).
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