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Nonlinear frequency shift caused by asymmetry of the multipeak coherent
population trapping resonance
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We study the coherent population trapping resonance induced by the radiation of a microwave-current-
modulated diode laser. The situation is considered when a harmonic phase modulation of the microwave field is
used to generate the error signal for the frequency stabilization of atomic clocks. We demonstrate that in this case
the resonance acquires a multipeak structure. If it is asymmetric and the components of the multipeak structure
are not fully resolved, then the resonance frequency nonlinearly depends on the laser field intensity. The peaks
become separated at an increase in the frequency of the phase modulation, providing a linear dependence of
the frequency on the intensity of the laser field. This theoretical prediction is confirmed experimentally. Other
advantages of the high-frequency modulation regime are also discussed.
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I. INTRODUCTION

The coherent population trapping (CPT) phenomenon has
been widely used to develop chip-scale atomic clocks [1].
Small size and low-power consumption are the main advan-
tages of CPT clocks that make them attractive for many
applications. The main elements of these devices are a
vertical-cavity surface-emitting laser and a miniature glass
cell filled with alkali-metal atoms and a buffer gas [2,3]. A
microwave modulation of the laser’s injection current is used
to obtain a required optical field to induce the CPT resonance.
Typically, the modulation frequency � is equal to the half
of the alkali-metal atoms’ ground-state hyperfine splitting ωg.
In this case the first sidebands of the laser field (often called
“resonant components”) are tuned to the absorption line. The
transmission signal depends on the difference 2� − ωg = δ

and reaches its maximum level at δ = 0.
To stabilize the local oscillator frequency at the peak of

the CPT resonance, the frequency � or its phase can be
harmonically modulated (� → � + m ωm cos ωmt , where m
is the phase modulation index), which provides oscillations of
the light absorption at multiples of ωm. The oscillation signals
∝ cos ωmt and ∝ sin ωmt are called in-phase and quadrature
signals, respectively. The mixture of these signals, which has a
dispersive shape and provides maximum slope, is often taken
as an error signal [4,5].

The light shift of the CPT resonance frequency is consid-
ered to be the main factor limiting the long-term frequency
stability of CPT clocks [6–10]. The standard approach to
its suppression in the case of chip-scale devices is to find a
specific optical spectrum for which the light shift caused by
high-order sidebands (k � 2, where k is the spectral compo-
nent number) compensates for the shift caused by the carrier
and resonant components [11–13] (this is possible if the buffer
gas pressure is not too high [14]).

*tsygankov.e.a@yandex.ru

In most cases, the first-order sidebands have unequal pow-
ers due to a nonlinear interaction of spectral components in
the active medium of the diode laser [15], which leads to
the asymmetry of the CPT resonance. In Ref. [16] we have
obtained analytical expressions for the frequency shift δas of
the zero-crossing point of in-phase and quadrature signals
occurring due to the resonance asymmetry. It was shown
that this shift has a nonlinear dependence on the laser field
intensity in contrast to the light shift. Later this result was also
obtained in Ref. [17]. This feature hinders the effectiveness
of techniques for the suppression of the microwave transi-
tion frequency’s light shift based on modulation of the total
optical field intensity in the following way. When the con-
dition ∂ (δas + δ0)/∂I = 0 is fulfilled, where δ0 is the light
shift, the total shift is not equal to zero, δas + δ0 �= 0.
Then, despite the fact that the zero of the error signal does
not respond to variations in the optical field intensity, the
corresponding frequency still remains shifted from the fre-
quency of the microwave transition. The value of this shift
depends on the degree of the CPT resonance’s asymme-
try, which is determined by the parameters of the laser
radiation and the atomic medium. Therefore, the clock fre-
quency can undergo random walks which reduce the clocks’
performance.

In this paper, we demonstrate that a nonlinear dependence
of δas on the laser field intensity stems from a multipeak struc-
ture of the resonance, wherein the distance between peaks is
determined by the frequency ωm. Therefore, the frequency
of the central peak is pulled by other peaks in the case of
an unresolved structure. We experimentally demonstrate that
suppression of the frequency pulling at high values of ωm

provides a linear dependence of δas on I , which was proposed
in Ref. [17].

II. THEORY

To describe the coherent population trapping reso-
nance, at least a � system of levels is required. The
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FIG. 1. The energy level diagram under consideration.

excited-state level |e〉 should be coupled with the ground
ones |a〉 and |b〉, which we considered here as nondegenerate,
ωa − ωb = ωg; see Fig. 1. In our case the coupling is due to
electric-dipole transitions induced by a bichromatic optical
field

E (t ) = − 1
2 {E−1e−i[(ω0−�)t−ϕ(t )] − E1e−i[(ω0+�)t+ϕ(t )]} + c.c.,

(1)
where ϕ(t ) = m sin ωmt is the modulation needed for produc-
ing in-phase and quadrature signals. The frequency ω0 is taken
to be equal to a half sum of the involved transitions, wherein
ω0 � ωg, i.e., the long- and short-wavelength spectral compo-
nents are resonant to the transitions |a〉 → |e〉 and |b〉 → |e〉,
correspondingly. The dipole moments of both transitions are
taken equal and real. The frequency � is close to ωg/2, and
the difference gives two-photon detuning δ.

It is known [18] that we can arrive at the following set of
equations for the density-matrix elements using the rotating-
wave approximation, assuming a low saturation regime and
adiabatically eliminating the excited state [19]:

ρee = 2

γ


{
V 2

−1ρaa + V 2
1 ρbb − 2V−1V1Re[ρ̃ab(t )]

}
, (2a)

[
i
∂

∂t
+ 2(δ̃ + mωm cos ωmt ) + i
̃g

]
ρ̃ab = i

V−1V1



. (2b)

In the equations above, we imply for the Rabi frequencies
that V−1 = dE−1/2h̄ = V1 = dE1/2h̄ = V and ρaa = ρbb �
1/2, but retain the lower indices for convenience, and γ

and 
 are the decay rates of the excited-state population
and of the optical coherences, respectively. The ground-
state relaxation rate 
̃g = 
g + (V 2

−1 + V 2
1 )/
 accounts for

the resonance power broadening. The light shift δ0 can be
accounted in detuning δ̃ = δ − δ0, but it is not the object
of our interest here. Finally, we specially note that ρ̃ab is
not the coherence itself, but its slowly varying amplitude:
ρab = ρ̃abe−2i�t .

Equation (2b) can be straightforwardly integrated or be
solved numerically. However, these approaches do not give
an understanding about the influence of the modulation on the
CPT resonance structure. Instead, we will use the replacement
ρ̃ab → ρ̄abe2im sin ωmt to make as a step behind in the derivation

of the equations. This gives

ρee = 2

γ


{
V 2

−1ρaa + V 2
1 ρbb − 2V−1V1Re[e2im sin ωmt ρ̄ab(t )]

}
,

(3a)(
i
∂

∂t
+ 2δ̃ + i
̃g

)
ρ̄ab = i

V−1V1



e−2im sin ωmt . (3b)

The equations above now can be directly treated via the
Fourier series expansion of ρ̄ab over the frequency ωm and the
Jacobi-Anger one for e∓2im sin ωmt . At first, for the amplitude of
the zeroth harmonic A0 of ρee over ωm, which determines the
nonoscillating part of the optical field transmission studied in
the experiment, we have

A0 = V 2

γ


⎡
⎣1 − 2
̃g

V 2




∞∑
k=−∞

J2
k (2m)

(2δ̃ + kωm)2 + 
̃2
g

⎤
⎦, (4)

where we used the relations V−1 = V1 and ρaa = ρbb = 1/2,
and Jk (·) is the Bessel function of the first kind of the index
k. The amplitude A0 can be obtained from the absorption
signal by averaging over T = 2π/ωm due to the orthogonality
property of the trigonometric functions.

Equation (4) demonstrates that the modulation provides a
multipeak structure of the CPT resonance, which becomes
resolved with growth of ωm; see Fig. 3. This feature can be
understood as follows. In contrast to the standard situation,
the optical field prepares the ground-state coherence not only
at the frequency 2� (difference of resonant spectral compo-
nent frequencies), but also at frequencies 2� + kωm. When
2� + kωm = ωg, the amplitude of the corresponding oscilla-
tions of the ground-state coherence reaches maxima providing
minimum in the absorption for the probing process.

Considering the in-phase and quadrature signals, their
shape can be relatively complicated at moderate values of m
and ωm. This feature also stems from the fact that they have a
multicomponent structure. For example, the amplitude of the
quadrature signal AQ is determined by the function

AQ ∝
∞∑

k=−∞
(2δ̄ + kω̄m)

Jk (2m)[Jk−1(2m) − Jk+1(2m)]

(2δ̄ + kω̄m)2 + 1
, (5)

where δ̄ = δ̃/
̃g, and ω̄m = ωm/
̃g (the parameters are nor-
malized on the ground-state coherence relaxation rate), which
demonstrates that there are dispersive-shaped curves that have
a zero-crossing point at frequencies corresponding to the
peaks in the mean in time absorption; see Fig. 4.

There are oscillations of ρee not only at frequency ωm, but
also at its multiples, kωm. They can be understand as a result of
probing the coherence oscillations at frequency 2� + sωm by
the product of the optical field’s components oscillating at fre-
quencies 2� + sωm ∓ kωm. Therefore, for example, there are
terms ∝Jk (2m)Jk−1(2m), ∝Jk (2m)Jk+1(2m) in Eq. (5). Simi-
larly, the expression determining the oscillations of ρee at 2ωm

will contain products Jk (2m)Jk−2(2m) and Jk (2m)Jk+2(2m),
etc.

Finally, when V−1 �= V1, and the frequencies of the spec-
tral components are detuned from the transitions |a〉 → |e〉,
|b〉 → |e〉, the CPT resonance becomes asymmetric and the
side peaks of A0 pull the frequency of the central one. A
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FIG. 2. (a) Scheme of the experimental setup. TEC—
thermoelectric cooler; PD—photodetector; AOM—acousto-optic
modulator. (b) Spectrum of the laser radiation used in the experiment.

similar situation occurs for the in-phase and quadrature sig-
nals. Since in the case of bichromatic optical field with
different powers of spectral components ρaa �= ρbb, equa-
tions for the ground-state populations are required to describe
the CPT resonance. Fourier amplitudes of the coherence and
populations are coupled and there is no general analytical so-
lution of the equations. However, for m 
 1, the expressions
describing the frequency shifts of the signals can be obtained
[16]. Specifically, for the zero-crossing point of the sum of
signals, we have the following shift:

δas ∝ V 2
−1 − V 2

1




(1 + ω̄m)
(
1 + ω̄2

m

)
1 + ω̄m

(
3 + ω̄2

m

) . (6)

This function falls with growth of ω̄m from the zero, reaches
a minimum at ω̄m � 0.47, and after that grows. For ω̄m � 1
the shift has the same value as for ω̄m 
 1, i.e., this function
demonstrates a behavior typical for the frequency pulling.
Also, δas linearly depends on the optical field intensity in these
cases since it is proportional to (V 2

−1 − V 2
1 )/
. In contrast, δas

is a nonlinear function of the optical field intensity at moderate
values of ω̄m as far as 
̃g contains the power broadening.

III. EXPERIMENT

The experimental setup is schematically shown in Fig. 2(a).
We used a single-mode vertical-cavity surface-emitting laser
(VCSEL) generating at �795 nm. The dc and rf components
of the injection current were fed to the laser via a bias tee.
The modulation frequency �/2π was close to 3.417 GHz,
and the first-order sidebands of the polychromatic optical field
were tuned to transitions Fg = 2 → Fe = 2, Fg = 1 → Fe = 2
of the 87Rb D1 line. The power of the rf field and the injection
current value were set to provide a significant difference be-
tween the powers of the resonant spectral components [see
the inset in Fig. 2(b)] and cause a noticeable asymmetry
of the CPT resonance. A quarter-wave plate was used to form
the CPT resonance in the σ+-σ+ scheme. The diameter of the
laser beam was 3 mm. The laser wavelength was stabilized
by a feedback loop that controls the temperature of the laser
diode.

A cylindrical atomic cell (8 mm diameter, 15 mm length,
0.7 mm wall thickness) filled with isotopically enriched 87Rb
and Ne at a pressure of 90 Torr was under study. The atomic
cell was placed in a longitudinal magnetic field of 0.02 G
to separate the metrological microwave transition from the
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FIG. 3. Multipeak structure of the CPT resonance (nonoscillat-
ing part of the laser field transmission) observed experimentally at
ωm/2π equal to 536, 1149, and 3064 Hz. The modulation index m
was fixed and equal to 0.65.

magnetosensitive ones at sublevels mFg = ±1. The tempera-
ture of the atomic cell was maintained close to 65 ◦C with
an accuracy of 0.01 ◦C. The cell, the heater, and the solenoid
were placed in a three-layer μ-metal magnetic shield, provid-
ing an over 500-fold suppression of the laboratory magnetic
field.

To stabilize the frequency of the voltage-controlled
crystal oscillator (VCXO), which served as a local oscil-
lator, the rf signal frequency was modulated: j(t ) = jdc +
jrf cos (�t + m sin ωmt ). Figure 3 shows the experimentally
registered nonoscillating part of the CPT resonance. The
rf frequency was scanned at a rate of 1 kHz/s around
3.417 359 GHz. The signal of the cell transmission was
low-pass filtered ( fc = 10 Hz) and averaged over five scans.
The laser radiation power was 60 µW. Figure 3 demon-
strates the evolution of the laser field transmission with the
growth of the modulation frequency ωm while maintaining the
modulation index m = 0.65. When the value of ωm exceeds
the ground-state relaxation rate, the multipeak structure be-
comes resolved. Experimentally, for a modulation frequency
ωm/2π = 3064 Hz we clearly observed five separated peaks
with a width of about 950 Hz. The amplitudes Ak of the
registered peaks are determined by the squares of the Bessel
functions of the corresponding index: for the central peak
A0 ∝ J2

0 (2m), for the first side peaks A±1 ∝ J2
1 (2m), etc., as

follows from Eq. (4). It can be seen that all peaks have the
same type of asymmetry: The left slope is steeper than the
right. Therefore, the frequency of the central peak is pulled.

To obtain the error signal, the transmission signal of the
atomic cell was demodulated at a frequency of ωm/2π using
a lock-in amplifier. The experimentally obtained error signal
for the modulation frequency ωm/2π , approximated by the
theoretical curve, is shown in Fig. 4(a). An excellent agree-
ment between the theory and experimental data can be seen.
Figure 4(b) demonstrates that due to the multipeak structure
of the resonance, the error signal is the sum of the dispersion
curves from each peak, which explains its rather complex
shape.

Figure 5 shows the dependence of the CPT resonance
frequency on ωm for a fixed value of m = 0.65. The VCXO
frequency was stabilized at a value corresponding to the zero-
crossing point of the error signal and was measured with a
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FIG. 4. (a) Quadrature signal for ωm/2π = 3064 Hz, m = 0.65,
and theoretical fit made via Eq. (5) for 
̃g/2π = 480 Hz. (b) Individ-
ual components of the error signal plotted according to terms in the
sum of Eq. (5). The solid line is for k = 0, and the dashed and dotted
lines are for k = ±1 and k = ±2, correspondingly.

frequency counter referenced to a passive H maser. When the
modulation frequency is smaller than the individual width of
the peaks, the in-phase signal has a steeper slope than the
quadrature signal. In the opposite case the steepness of the
in-phase signal drops and the quadrature signal dominates. For
each value of ωm, the phase of synchronous detection was set
to maximize the slope, therefore a mixture of in-phase and
quadrature signals was used as the error signal. The initial
increase of the frequency at small values of ωm is associated
with pulling of the central peak towards the high-frequency
side peaks. The maximum shift of the error-signal frequency,
caused by the pulling effect, reaches a value of 14 Hz, which
is quite large while the error signal in Fig. 4 looks sym-
metric. It is achieved at ωm/2π � 460 Hz, which is close to
the half width of the CPT resonance for m = 0 and is in
good agreement with the theoretical prediction. At modulation
frequencies significantly higher than the widths of the peaks
the effect of frequency pulling is small.

We obtained the dependencies of the CPT resonance
frequency on the optical field power for two cases: when
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FIG. 5. The dependence of the CPT resonance frequency on the
modulation frequency. Circles are experimental data, and the solid
line is a guide for the eyes.
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FIG. 6. (a) The dependence of the CPT resonance frequency on
the laser power for two modulation frequencies. Gray lines are the
linear approximation. (b) and (c) Nonlinear parts of the curves shown
in (a).

the pulling is present (ωm/2π = 230 Hz) and when it is
suppressed (ωm/2π = 10 kHz) [Fig. 6(a)]. The first case cor-
responds to a point on the left slope of the dependence shown
in Fig. 5. The VCXO frequency was stabilized and measured
in the same way as described above, while the laser power was
linearly varied using an acousto-optic modulator. The increase
in resonance frequency with power is mainly caused by the
light shift. The difference between the two dependences is
due to the frequency pulling which gives a shift of the order
of 10 Hz nonlinearly dependent on the optical field intensity.
The transition to high values of ωm provides a significant
reduction of δas, and its nonlinear part ≈2 Hz; see Fig. 6(b).
This residual shift was obtained by subtracting the linear fit
from the experimental data.

IV. DISCUSSION

Our theoretical calculations show that the slope of the
error signal in the case of high modulation frequencies ωm

is approximately 1.21 times smaller compared to the mixture
of in-phase and quadrature signals having maximal possible
steepness. However, the use of high-frequency modulation
has some advantages besides suppressing the shift δas, that
occurs due to the frequency pulling effect. First, it can be more
beneficial due to the decreased level of low-frequency noise.
The second advantage is the simplicity of finding the maximal
slope of the central dispersive curve. It is determined by the
product J0(2m)J1(2m); see Eq. (5). Therefore, only the value
of the modulation index m should be set to 0.54. In contrast,
in a moderate-frequency regime (compared to the width of the
peaks), the ratio of ωm to the ground-state relaxation rate and
the phase of synchronous detection must also be optimized.

The inequality in the powers of the resonant components
is considered to be the main source of the CPT resonance
asymmetry. But, in principle, the spectrum can be made sym-
metrical. For example, we have recently demonstrated that
the powers of the first-order sidebands can be equalized by
an additional modulation of the injection current at a doubled
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microwave frequency [20]. However, there are other sources
of the resonance asymmetry: the inequality of populations
of working sublevels due to unequal spontaneous transitions
from the excited state to the ground one [21], inhomogeneity
of the magnetic field, the temperature gradient in the atomic
cell [22], transverse inhomogeneity of the laser beam when
the light shift is unsuppressed [23,24], and the optical field
absorption [16]. Therefore, we generalize results of Ref. [17]:
The use of high modulation frequency ωm should suppress the
frequency pulling due to all the above-mentioned sources.

V. SUMMARY

We have considered a situation where the phase mod-
ulation is used to stabilize a local oscillator frequency in

chip-scale atomic clocks. In this case, the CPT resonance
consists of several peaks pulling the frequency of the central
one if the resonance is asymmetric. The pulling drops off
when peaks are resolved, i.e., when the modulation frequency
significantly exceeds the relaxation rate of the ground-state
coherence.

For each peak in the optical field transmission, there is a
dispersive-shape curve in the quadrature signal, i.e., it has a
multidispersive structure. The central curve is also affected
by the frequency pulling. As we have demonstrated, the de-
pendence of its frequency on ωm vanishes when the curves
become resolved. Finally, we have obtained a linear depen-
dence of the quadrature signal frequency when the pulling is
suppressed.
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