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Routes to chaos in the balanced two-photon Dicke model with qubit dissipation
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We study the semiclassical limit of the two-photon Dicke model with both cavity decay and qubit dissipation,
and extend a recent analysis of its stationary points [Garbe et al., Sci. Rep. 10, 13408 (2020)], where a large
unstable region was found. By considering the explicit dynamical evolution, we show that the unstable region
actually hosts a rich nonlinear behavior. At variance with other types of Dicke models (without qubit dissipation
or with one-photon interactions), the occurrence of chaos does not rely on a large counterrotating interaction.
Furthermore, new routes to chaos appear in addition to period-doubling bifurcations, i.e., intermittent chaos and
quasi-periodic oscillations. The transition mechanisms under these three distinct routes are investigated in detail
through the system’s long-time evolution, the optical field power spectrum, Lyapunov exponents, and bifurcation
diagrams. Additionally, we provide a comprehensive phase diagram detailing the existence of stable fixed points,
limit cycles, and the aforementioned chaos-related dynamics.
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I. INTRODUCTION

Chaos, famous for its “butterfly effect,” is one of the most
vital subjects in nonlinear science, with significant applica-
tions in the fields of secure communication and encryption
[1,2]. It is particularly relevant for quantum optical systems
where, benefiting from the rapid development of integrated
quantum technology, chaotic dynamics has been investigated
in a variety of platforms, such as optomechanics [3–7], non-
linear magnonics [8–11], and Dicke-type models [12–15].
However, most of such realizations can only access specific
types of nonlinear behaviors. An important example concerns
the transition from a steady state to chaos, which occurs via
various periodic and quasi-periodic states and is commonly
referred to as “route to chaos.” Chaos can appear following
a “period-doubling” route, where a cascade of pitchfork bi-
furcations leads to oscillatory dynamics with period T , 2T ,
4T , . . . , until the chaotic dynamics is finally established. This
behavior has been typically observed in various types of Dicke
models [16–18] and in optomechanics [4]. However, other
routes to chaos exist in general [1,2]. We show here that the
two-photon Dicke model with qubit dissipation can support
several distinct routes to chaos, depending on the system’s
parameters.

The quantum Dicke model has sparked profound re-
search in the past decades [12,13]. It describes a collective
interaction between N qubits and a single bosonic mode
which, in the strong coupling regime, can induce many in-
teresting equilibrium and nonequilibrium phenomena, such
as a superradiant phase (SP) transition [19–28], multistabil-
ity [29,30], and classical and quantum chaos [31–35]. The
implementation of this model with analog quantum simulators
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makes it possible to examine these phenomena in several
experimental platforms [36,37], such as trapped ions [38,39],
arrays of nitrogen-vacancy (NV) centers [40], and supercon-
ducting circuits [41–43]. In these driven-dissipative systems,
multiphoton processes can be selected from linear interactions
by properly adjusting the driving lasers’ parameters. There-
fore, an interesting variation of the Dicke model considering
a two-photon interaction has received much interest recently,
and has been shown to display a variety of intriguing dynam-
ical behaviors [14,15,18,44–50].

For the closed one-photon Dicke model, a transition from
quasi-integrability to quantum chaos is predicted to occur
after the superradiant phase transition has taken place [51–54].
Accounting for dissipation, the observation of classical chaos
has been only reported so far in models with an unbalanced
interaction, i.e., where the coupling strength of the counter-
rotating terms is larger than the corotating terms [16–18].
The study of classical nonlinear dynamics arises naturally
in Dicke-type models, since the semiclassical limit becomes
exact at large N [55–57]. Taking cavity loss into considera-
tion, Refs. [16] and [18] analyzed the one- and two-photon
Dicke models, respectively, finding a rich dynamical behav-
ior including Hopf bifurcations, period doubling, and strange
attractors. However, these studies assumed that the dominant
decoherence mechanism is from the bosonic field, while ne-
glecting qubit dissipation.

In this paper we extend the above study of the two-photon
Dicke model [18] by including the influence of atomic dissi-
pation. We find that this effect has a profound influence on
the system properties, leading to qualitative changes in the
nonlinear behavior: qubit dissipation not only benefits system
stability, but also results in a richer scenario for the occurrence
of chaotic dynamics. Differently than models without qubit
decoherence [16,18], additional routes to chaos are available
here (besides period-doubling bifurcations). We list them in
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TABLE I. Representative examples of chaotic dynamics in various types of Dicke models. The first column differentiates between one-
and two-photon interactions (1ph and 2ph, respectively). The second column indicates the dissipation channels. Note that �↑ (second line)
refers to incoherent pumping. λ is the ratio between counter- and corotating couplings. Detailed parameters are as indicated by the last column.
Their values are generally similar to the ones used in this work.

Model Dissipation Anisotropy Route to chaos Reference

1ph κ λ � 1.75 Period doubling, global bifurcation Fig. 16 of Ref. [16] (λ− = 1)
1ph κ , �↓, �↑ λ � 2.3 Period doubling Fig. 9 of Ref. [17]
2ph κ λ � 2.15 Period doubling Fig. 8(a) of Ref. [18]
2ph κ , �↓, �φ λ = 1 Period doubling, intermittency, quasi-periodicity This work

the fourth column of Table I, which presents a comparison of
several instances of chaos in Dicke-type models. One can also
appreciate from Table I that in this case the chaotic dynamics
survives in the isotropic limit (λ = 1), thus does not rely on
strong counterrotating terms.

We finally comment about the relationship of our study
with the stability of the model, which is an important issue
in the presence of a two-photon interaction. It is well known
that the two-photon Dicke Hamiltonian undergoes a spectral
instability in the ultrastrong coupling regime, when discrete
energy levels collapse into a continuous band [58–60]. This
dynamical property is preserved in the presence of bosonic
field decay [18]. For the present case (including qubit dissi-
pation) an “instable phase” (I) has been revealed by a study
of stable fixed points [61]. However, considering the explicit
time evolution, we generally find here a stable, albeit complex,
dynamics. From this perspective, our study provides a precise
characterization of the I-phase of Ref. [61].

The paper is organized as follows. In Sec. II, we describe
the open two-photon Dicke model and explore its phase dia-
gram in the mean-filed approximation, only considering stable
fixed points. In Sec. III, we investigate the long-time nonlinear
dynamics and find three distinct routes to chaos, depending on
the qubit frequency: (1) period doubling; (2) intermittency;
and (3) quasi-periodicity; In Sec. IV, we present the overall
phase diagram, involving stable fixed points as well as chaos-
related nonlinear dynamics. A comparison of our results with
previous relevant research can also be found. Finally, we pro-
vide a summary of our findings in Sec. V.

II. THE MODEL

We consider a two-photon Dicke model described by the
Hamiltonian [61]

Ĥ = ω0â†â + ωq

2

N∑
j=1

σ̂ ( j)
z + g√

N

N∑
j=1

σ̂ ( j)
x (â2 + â†2), (1)

where â (â†) is the annihilation (creation) operator of a
bosonic field of frequency ω0 and �̂σ ( j) are the Pauli operators
of N qubits. The qubits have a uniform transition frequency
ωq and coupling strength g with the bosonic mode. As a
consequence, Eq. (1) can be rewritten in terms of collective

angular momentum operators �̂J = 1
2

∑N
j=1

�̂σ ( j) as follows:

Ĥ = ω0â†â + ωqĴz + 2g√
N

X̂ Ĵx. (2)

Here, we have also defined X̂ = â2 + â†2 and Ŷ = i(â2 −
â†2). The two-photon Dicke Hamiltonian is invariant under
the generalized parity operator �̂ = (−1)N

⊗N
j=1 σ̂

( j)
z eiπ â†â/2

[58], leading to

â → iâ, σ̂x,y → −σ̂x,y. (3)

As a result, the system features a fourfold symmetry.
The two-photon Dicke Hamiltonian is well known for

its spectral properties, with the discrete eigenenergy levels
collapsing into a continuous band in the ultrastrong cou-
pling regime [58–60]. Cavity field dissipation alone cannot
eliminate this instability, as a diverging photon number is
obtained when approaching the corresponding localized phase
[18]. Before this instability, a superradiant-like phase transi-
tion takes place, in which the collective pseudospin attains
a macroscopic mean value and the bosonic field is driven
to a squeezed state [47,48,62]. As we will see, however, the
properties of the model depend sensitively on the dissipative
environment. In this work, we describe the system evolution
with the standard master equation (h̄ = 1):

˙̂ρ = −i[Ĥ , ρ̂] + κD[â]ρ̂ +
N∑

j=1

(
�↓D[σ̂ ( j)

− ]ρ̂ + �φD
[
σ̂ ( j)

z

]
ρ̂
)
,

(4)

where the Lindblad superoperators are defined as D[Â]ρ̂ =
2ÂρÂ† − Â†Âρ − ρÂ†Â. As in Ref. [61], we include all three
dissipation channels which naturally appear in the system:
photon loss (κ), individual qubit decay (�↓), and individual
qubit dephasing (�φ). The Lindblad master equation is left
unchanged by the transformation in Eq. (3) [i.e., �̂†ρ̂�̂ is also
a solution of Eq. (4)], thus retains the fourfold symmetry of
the model.

In the following, we will focus on the limit of large N
and consider coupling strengths comparable to the bosonic-
field frequency, when the spin degrees of freedom acquire
macroscopic populations. This justifies applying the mean-
field approximation to the system’s dynamics. Decoupling
cavity-qubit correlations as 〈ĈQ̂〉 = 〈Ĉ〉〈Q̂〉, the following
equations of motion are obtained:

d〈X̂ 〉
dt

= −2κ〈X̂ 〉 − 2ω0〈Ŷ 〉, (5)

d〈Ŷ 〉
dt

= −2κ〈Ŷ 〉 + 2ω0〈X̂ 〉 + 4g
√

Nsx(2〈â†â〉 + 1), (6)

d〈â†â〉
dt

= −2κ〈â†â〉 + 2g
√

Nsx〈Ŷ 〉, (7)
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dsx

dt
= −ωqsy − 2�′sx, (8)

dsy

dt
= ωqsx − 2g√

N
sz〈X̂ 〉 − 2�′sy, (9)

dsz

dt
= 2g√

N
〈X̂ 〉sy − 2�↓(sz + 1), (10)

where we rescaled the expectation values of the spin opera-

tors as �s = 〈2 �̂J〉/N and defined �′ = 2�φ + �↓/2. Due to the
presence of qubit dissipation, the collective spin evolution will
not be restricted to the unit sphere, giving a six-dimensional
phase space (instead of the five-dimensional phase space of
Ref. [18]).

As a first step of our investigation we focus on the sta-
tionary states, whose stability can be established from the
Jacobian matrix and the Routh-Hurwitz criteria [1,63]. As ex-
pected, the system presents a phase transition from the normal
phase (NP) to the superradiant phase (SP). The normal phase
fixed point is [61]

NP : sz = −1, 〈â†â〉 = 0, (11)

and is stable for [61]

g < gt1 =
√(

κ2 + ω2
0

)(
ω2

q + 4�′2)
4ω0ωq

. (12)

The above results, and in particular Eq. (11), are only strictly
valid within the mean-field approximation. In the limit of
large N , the exact expectation values of the spin operators
have deviations from sz = −1 much smaller than 1. As we
will see, the photon states acquires a macroscopic population
of order N in the superradiant phase [see Eq. (13), where
β ∝ 1/N] and in the course of the dynamical evolution (see
Fig. 3, where n̄c = 〈â†â〉/N). Thus, more precisely, the mean-
field solution NP actually implies 〈â†â〉 � N , rather than zero
photons.

We also note that, in most literature, a 1/N scaling of the
interaction is adopted in the two-photon Dicke Hamiltonian,
i.e., the coupling strength is written as g/N [47,48,50,58,62].
However, from the point of view of the normal state instability,
it is quite interesting to consider the alternative scaling 1/

√
N ,

which we have used in Eq. (1). With this choice, as seen
in the phase diagrams of Fig. 1 (white solid curves), there
is a well-defined phase boundary independent of N [61]. If
1/N scaling were adopted in Eq. (1), the stability boundary
would differ by a factor

√
N in gt1, giving a critical line which

depends on qubit number. Considering the thermodynamic
limit N → ∞ at fixed g, the normal state would always be
stable, as the critical line will shift right with increasing N .
Therefore, in the following, we will restrict ourselves to the
type of thermodynamic limit implied by Eq. (1), when the
nontrivial instability of the normal phase remains independent
of N .

The second type of fixed point is a superradiant
state with excited spins (sz > −1) and a nonzero photon

FIG. 1. (a1 and a2) Phase diagrams of stable fixed points for
different N . The dark blue area represents the NP; the light blue
area represents the SP, and the red area represents the phase without
any stable fixed point (I). Critical point gt1 (white line) separates NP
from other phases. gt2 (red dashed line) is the boundary of SP and
phase I, which is obtained numerically. (a2 and a3) Chaotic motion in
phase I for N = 10, ωq/ω0 = 0.1, g/ω0 = 0.32. (b2 and b3) Chaotic
motion in phase I for N = 50, ωq/ω0 = 0.1, g/ω0 = 0.27. Insets:
corresponding qubit trajectories in phase space. The other parameters
are κ/ω0 = 1 and �↓/ω0 = �φ/ω0 = 0.01.

number:

SP : sz = −1 + β

2
+

√(
1 + β

2

)2

− β
g2

t1

g2
,

〈â†â〉 = 1

2β
(sz + 1), (13)

where β = ω0�
′/(Nωq�↓). As the system has a fourfold

symmetry, the SP fixed points of Eq. (13) appear in pairs,
distinguished by the values of ±〈X̂ 〉,±〈Ŷ 〉,±sx,y. In the
parameter range of Fig. 1, the SP states are stable when
gt1 < g < gt2. gt2 is obtained numerically and plotted by the
red dashed line in the figure. SP states also appear at large
coupling strength, beyond the parameter range considered in
this work [61]. As seen in Fig. 1, the SP phase shrinks with
increasing qubit number.

The phase diagram for stable fixed points in Figs. 1(a) and
1(b) is plotted under small qubit dissipation and isotropic cou-
plings. Phase NP (SP) indicates where the fixed point NP (SP)
is stable. Phase I denotes the absence of a stable fixed point.
More details on how the phase diagram changes with different
system parameters can be found in Ref. [61], which inves-
tigates stationary dynamics of the two-photon Dicke model
by the mean-field decoupling approximation. Considering the
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effects of both qubit and cavity dissipation, Ref. [61] indi-
cates that, at isotropic coupling, there is a threshold of qubit
dissipation beyond which only SP and bistable phases exist;
otherwise, the unstable phase I occupies a large part of the
phase diagram. While that study is limited to stationary states,
the unstable region conceals abundant nonlinear dynamics. As
shown in Figs. 1(a2)–1(b3), both in small (N = 10) and large
(N = 50) systems, we found chaotic motions in the unstable
phase I. Furthermore, other chaos-related nonlinear behaviors
will be described in detail below.

Figures 1(a) and 1(b) have a simple structure when com-
pared to the phase diagram of the anisotropic two-photon
Dicke model [18], which considers unbalanced rotating and
counterrotating coupling. Taking only cavity decay into ac-
count, the system displays a localized phase U0 reflecting
the spectral collapse of the closed-system Hamiltonian. In
this U0 phase, the system tends to evolve towards the poles
of the Bloch sphere with a diverging photon number. At the
same time, various coexistence phases lead to complex phase
diagrams, which depend on initial conditions. The localized
phase and various coexistence phases are absent in Fig. 1,
which reflects the role of qubit dissipation in the stabilization
of the two-photon Dicke model. Further, in Ref. [18], the
anisotropic parameter λ plays an important role in the non-
linear behaviors since chaos is only found above a pole-flip
transition: λ > λt > 1.

As an extension of the above studies, the current work
is implemented with the isotropic condition λ = 1 and will
focus on the nonlinear dynamics in the unstable phase. Small
qubit decay is clearly more advantageous for our simulation,
which will provide a large area of unstable phase. �↓ = �φ =
0.01ω0 are adopted in Figs. 1(a) and 1(b), and will also be
used throughout this work. Before presenting the main results,
we note that system dynamics are inevitably influenced by
qubit number, just as the above-mentioned studies. Though
the cavity field does not exhibit a well-defined classical occu-
pation in the SP phase, mean-field treatment is nevertheless
applicable to the given system since the atomic field has a
macroscopic population [18]. The mean-field approximation
has little effect on I phase, which exhibits a macroscopic oscil-
lation in the evolution of n̄c(t ) = 〈â†â〉(t )/N . As shown in the
insets of Figs. 4(a3) and 4(b3), the photon field oscillation is
about 0 < n̄c(t ) < 8 with small qubit number N = 10. Large
fluctuations of photon field also pose higher requirements
for computing accurately the dynamics, especially in larger
systems. Since chaos can be found in both small and large
systems (it is actually easier to discover in large systems), we
adopt N = 10 throughout our calculation to mitigate numeri-
cal difficulties caused by large qubit numbers.

III. ROUTES TO CHAOS

Even though there is no stable fixed point in phase I, it
is more complicated than it looks: we found various types
of nonlinear dynamics in this phase, such as periodic, quasi-
periodic, and chaotic motion. Generally, chaos can appear in
a nonlinear three- (or higher) dimensional deterministic sys-
tem via local bifurcation. In the discussed two-photon Dicke
model, altering qubit frequency ωq allows chaos to manifest
in three distinct ways. In the following, we present a detailed

FIG. 2. Evolution from periodic to chaotic motion through
period-doubling bifurcation. (a) Bifurcation phase diagram for
ωq/ω0 = 0.1 which plots the oscillation amplitudes of sz(t ) =
2〈Ĵz〉(t )/N . The insets (from right to left) present the bifurcation of
qubit trajectories from the symmetry limit cycle, unsymmetric limit
cycle, via period doubling to chaos. The dashed black lines indicate
the values of parameters. (b1–b3) Chaotic dynamics (g/ω0 = 0.384)
by qubit evolution sz(t ), perturbations of cavity field ln(εIc ), and
power spectrum density of photon field, respectively. (c1–c3) Evo-
lution of period doubling (g/ω0 = 0.373). Other parameters are the
same as Fig. 1.

analysis of the bifurcation processes of how the system enters
into the chaotic regime by (1) period-doubling bifurcation, (2)
intermittency, and (3) quasi-periodicity.

A. Period-doubling bifurcation

For a small value of qubit frequency, we found period-
doubling bifurcation and cascade leading to chaos. Using the
bifurcation diagram in Fig. 2(a), we illustrated in detail how
a limit cycle transformed into a chaotic attractor. It is obvi-
ously seen that oscillations give a single amplitude at large g,
while gradually bifurcating to 2n (n = 1, 2, 3, . . . ) amplitudes
as g decreases. As a typical route to chaos, period-doubling
bifurcation has been observed in the anisotropic two-photon
Dicke model. Differently, the bifurcation of the periodic orbit
here begins with a symmetric-broken limit cycle. For large
coupling, qubit trajectory in phase space first exhibits a limit
cycle with two symmetric loops, displaying one amplitude in
the bifurcation diagram, which consists of the amplitudes of
sz(t ). To simplify the observation of bifurcation, we hide the
axes of sx,y,z in the insets of qubit trajectories. The two loops
become unsymmetrical with the decreasing coupling strength,
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FIG. 3. Evolution from periodic to fully chaotic motion via IC. By plotting the time evolution of photon field n̄c = 〈â†â〉/N , perturbation,
and photon field spectrum in the columns from left to right, we present periodic evolution (g/ω0 = 0.3763), intermittent chaos (g/ω0 =
0.3795), and fully chaotic dynamics (g/ω0 = 0.3826) in (a)–(c), respectively. For better insight, we enlarge part of intermittency dynamics
(green shaded) in the inset of (b1). Correspondingly, insets in (b2) display system trajectories of chaotic (green) and periodic sectors (purple)
in IC. A medium value of qubit frequency ωq/ω0 = 0.15 is used in the calculation. Other parameters are the same as Fig. 1.

presenting two amplitudes. When the coupling strength de-
creases further, it splits into a new one with four loops,
resulting in quadruple amplitudes in the phase diagram. The
corresponding dynamics are depicted in Fig. 2(c), where the
system evolution shows four amplitudes with fourth periods of
the original simple cyclic motion. Dynamics in a regular orbit
provides a flat form in the evolution of cavity field perturba-
tion ln(εIc), the slope of which determines the value of the
Lyapunov exponent (LE). Several discrete peaks can be found
in the power spectral density (PSD) of photon number n̄c =
〈â†â〉/N . They are equally spaced in the figure, indicating
that the frequency ratios are rational. By further decreasing g,
cascading of bifurcation occurs. The system finally enters the
chaotic regime with infinite amplitudes. Figure 2(b) depicts
chaotic dynamics, which presents a random oscillation with
variable amplitude and a continuous spectrum. In phase space,
even infinitesimally nearby trajectories will rapidly deviate
from one another, leading to an exponential growth of the
perturbation and a positive LE.

B. Intermittency

We discovered that chaos can emerge through intermittent
motion when system settings are changed for the medium
value of qubit frequency. Intermittency describes dynamics

switching between different types of oscillations under fixed
control parameters. The switching appears to occur randomly,
usually between regular and chaotic behaviors [2,64]. The
detailed process of how chaos appears via intermittent chaos
(IC) is exemplified in Fig. 3, where ωq/ω0 = 0.15 is adopted.

For small coupling strength, the system evolves on a
periodic orbit that is formed by the fixed point SP via Hopf bi-
furcation. Stable oscillation with constant amplitude is shown
in Fig. 3(a). As stated in the previous section, periodic dynam-
ics offer a flat shape in the evolution of perturbation ln(εIc)
and equidistant discrete peaks in the power spectrum. With
increasing coupling strength, occasional bursts of irregular
motion in periodic dominant evolution occur. It can be seen
from Fig. 3(b) that, along with time, system behavior switches
between period and chaos for constant system parameters,
giving rise to a ladder form in the evolution of ln(εIc). In
Fig. 3(b2), short-lived chaos generates the leap part, present-
ing a strange attractor in phase space (inset plotted by the
green line). The flat part corresponds to periodic oscillation,
which produces a limit cycle (inset plot by the purple line).
During the evolution, system trajectory vacillates between
periodic orbits and chaotic attractors. This particular inter-
mittence feature is also demonstrated clearly in the PSD of
the cavity field, which distinguishes several equally spaced
discrete peaks from numerous small sidebands. Occasional
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FIG. 4. Evolution from quasi-periodic (left panel: g/ω0 =
0.3716) to chaotic motion (right panel: g/ω0 = 0.3795) for large
qubit frequency ωq/ω0 = 0.25. The inset in (a1) and (b1) is the
blowup of a random prominent peak of sz(t ). In the discrete spec-
trum (a3), the main frequencies are at integer multiples of f1 =
5.3 × 10−3ω0, and the distance between auxiliary frequency peaks
is f2 = 2.6 × 10−4ω0. Inset in (b2): chaotic attractor. Insets in (a3)
and (b3): evolution of cavity field n̄c = 〈â†â〉/N . Other parameters
are the same as in Fig. 1.

chaotic motion becomes more frequent and lasts longer with
further increasing coupling strength. Eventually, the system
enters a fully chaotic phase, displaying irregular oscillation,
a sloped version of ln(εIc)(t ), and a continuous spectrum,
see Fig. 3(c). In comparison with periodic and intermittent
spectra, no dominant frequency can be recognized from the
chaotic continuous spectrum.

C. Quasi-periodicity

For large qubit frequency, we found that chaos emerges
by way of quasi-periodicity. As can be seen from Fig. 4(a1),
the qubit behaves deceptively with periodic oscillation when
the coupling strength is small. Actually, the trajectory never
repeats itself exactly. Each prominent peak of the quasi-
periodicity includes several additional minor oscillations,
presenting a number of amplitudes. Physically, the spins in
our system can be regarded as an oscillator with a nonlinear
coupling to another harmonic oscillator—the bosonic field.
The interaction of the two nonlinear oscillators introduces ad-
ditional frequencies. If the ratio of the frequencies is rational,
system dynamics show periodic motion, as we have presented

FIG. 5. (a) Amplitude statistics of qubit oscillation sz(t ) during
quasi-periodicity to chaos. The dashed lines mark the quasi-periodic
and chaotic dynamics presented in Fig. 4. (b) Corresponding values
of the LE. The dashed line denotes the zero value. Other parameters
are as in Fig. 4.

in the previous sections. On the contrary, the system exhibits
quasi-periodicity if the ratio is irrational [2,56].

In the quasi-periodic scenario, the system trajectory will
drift slightly with the change of initial conditions, result-
ing in a small distance from the original trajectory that
will not diverge with time. On the one hand, it produces a
flat shape in the evolution of ln(εIc), i.e., zero LE. On the
other hand, the long time trajectory will cover the surface
of a tour in phase space. As can be seen from the inset
in Fig. 4(a2), the trajectory that corresponds to the addi-
tional minor oscillations is crammed into two ring surfaces.
Under the competition of the two modes, quasi-periodicity
creates a distinct power spectrum with periodic oscillation,
see Fig. 4(a3). Though it consists of discrete peaks, the fre-
quencies are not evenly distributed. The dominant peaks are
situated at 0,± f1,±2 f1, . . . , with auxiliary peaks spaced at
f2 bunched around them. With increasing coupling strength,
each oscillation comprises a growing number of amplitudes.
The trajectories from the two tours spread and interweave,
finally leading to chaotic motion, seen in Fig. 4(b). Corre-
spondingly, positive LE and continuous spectrum also can be
seen in the picture.

Similar to the bifurcation diagram in Fig. 2, we record the
amplitudes of sz(t ) during the appearance of chaos through
quasi-periodicity. As shown in Fig. 5(a), both quasi-periodic
and chaotic oscillation show a larger number of peaks, while
the former can be counted. When the dynamic of the system
gets chaotic, an overwhelming number of amplitudes arise in
a narrow band of g, producing a dense concentration of points
in the picture. The variation of the Lyapunov exponent with
coupling strength is shown in Fig. 5(b), which is in good
agreement with the amplitude statistics graph. LE is close
to zero in the domain of finite amplitudes, corresponding to
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FIG. 6. Overall phase diagram. It contains stable phases [NP
(dark blue) and SP (light blue)] and oscillatory phases [periodic
(green), quasi-periodic (yellow), intermittent chaos (red spots), and
full chaos (brown)]. The dashed-dotted lines mark the values of qubit
frequencies that we have used in previous figures. The red dashed
line is the critical boundary gt2. Other parameters are the same as in
Fig. 1.

quasi-periodic oscillations. Positive LE, as reflected by infi-
nite amplitudes, provides evidence for the existence of chaos.

IV. OVERALL PHASE DIAGRAM

The emergence of chaos in various ways results from the
nonlinear interaction between the spin and cavity field. The
inclusion of qubit dissipation enables us to treat it as a spin
whose dynamics will not be constrained on the Bloch sphere
anymore. Including stable fixed points and chaotic dynamics,
we provide in Fig. 6 the overall phase diagram as function
of coupling strength g and qubit frequency ωq. The stable
phases NP and SP are indicated by dark and light blue areas
in the figure. The unstable phase in Fig. 1 now is replaced
by periodicity (green), quasi-periodicity (yellow), intermittent
chaos (red), and full chaotic (brown) phases. When calcu-
lating the phase diagram, it is useful to distinguish periodic
motion and quasi-periodicity from intermittency and chaos
using the Lyapunov exponent, where regular oscillations yield
zero values and chaotic dynamics produce positive values.
Consequently, we need to differentiate quasi-periodicity from
the period. Both of them have discrete spectra and zero LE.
We can recognize quasi-periodicity by its nonrepetitive and
irregular time evolution. When compared to periodic oscilla-
tion, significantly increased amplitudes could be discovered in
quasi-periodicity during the same time interval. Moreover, the
amplitudes generated by quasi-periodicity will change with
oscillation time and sampling frequency. Also, we can identify
quasi-periodicity by the power spectrum, which shows an
irrational ratio of frequencies. Then, we can separate inter-
mittency and full chaos through the ladder form of ln(εIc)(t ).

As we can see from the figure, the system evolves on a
periodic orbit produced by fixed-point SP via Hopf bifurcation

when the coupling strength is slightly larger than gt2. Due to
the competition between the spin and bosonic modes, an addi-
tional frequency may arise as the coupling strength increases.
The dashed-dotted lines indicate the position of the three
typical qubit frequencies that have been used in Figs. 2–5. For
small qubit frequency, which is represented by ωq/ω0 = 0.1
(bottom line), one mode is locked by another one under strong
coupling, leading to period-doubling dynamics over a finite
control parameter regime. The output light will display intense
bursts or pulses, which is a very popular way of generating
frequency comb. By properly adjusting system parameters,
the two modes exhibit balanced influences on the system,
which gives rise to intermittent chaos. The parameters we used
in Fig. 3, which show the process of intermittent chaos to
full chaos, are chosen along the middle line ωq/ω0 = 0.15.
IC is uncommon in our system; it only shows several spots in
the picture. For large qubit frequency, the frequency induced
by the two competition modes will show a slight devia-
tion from the original frequency. Incommensurate frequencies
lead to irregular oscillation and quasi-periodicity. Before
approaching the quasi-periodic state, the system usually expe-
riences a periodic phase that diminishes with increasing qubit
frequency.

Now we can compare the dynamics of the current model
to the anisotropic two-photon Dicke model that only consid-
ers cavity field dissipation [18]. Aside from the differences
highlighted in the phase diagram of stable fixed points, see
Sec. II, the present model also exhibits distinct nonlinear dy-
namics. In Ref. [18], chaos can only be found in an anisotropic
model (λ > λt > 1), and appears through a cascade of period-
doubling bifurcations. For a given set of parameters, multiple
types of motion coexist in phase space, resulting in a phase di-
agram which depends on the system’s initial state. The current
work, which is implemented in the isotropic instance λ = 1,
likewise shows the presence of chaos. However, besides aris-
ing from a cascade of period-doubling bifurcations, chaos can
occur via intermittency and quasi-periodicity by adjusting the
qubit frequency, creating a complex phase diagram. Since we
do not find the coexistence of different motions, the phase dia-
gram will not be influenced by the system’s initial state. Other
chaos-related dynamics, such as the occurrence of windows
of periodicity and collision of chaotic attractors, can also be
discovered in the current model but are not discussed here in
detail.

V. CONCLUSION

In conclusion, we investigated the semiclassical nonlin-
ear dynamics of the two-photon Dicke model showing that,
in the presence of qubit dissipation, three distinct routes
to chaos can appear. Qubit decay and dephasing help to
stabilize the system, as we do not find here a localized
phase (reflecting the spectral collapse of the Hamiltonian)
or phase coexistence [18]. Besides normal and superradi-
ant phases, a variety of chaos-related phenomena survives
in a large region of parameters, even restricting ourselves
to balanced co- and counterrotating couplings. More inter-
estingly, through the manipulation of qubit frequency, chaos
can appear in three distinct ways: a period-doubling route for
small ωq, intermittent motion for a moderate value of ωq,
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and quasi-periodic oscillations for large ωq. We provide a
comprehensive illustration of the transitions using bifurcation
diagrams and a global chaotic phase diagram. Comparisons
of our findings to prior research in the field also have been
made.

It might be possible to realize the dissipative two-photon
Dicke model in driven systems such as trapped ion chains
and quantum superconducting circuits, which can elimi-
nate undesirable effects caused by ultrastrong coupling in
loss-dominated systems [39,45,58,65,66]. Under effective
implementations of the model, coupling strength can be com-
parable to (or even larger than) the bosonic and atomic
(effective) frequencies, as well as considered decoherence and
dissipation processes. The dissipation channels can be tailored
in strongly driven atomic cloud or quantum simulation sys-
tems using bath-engineering approaches [67–71].

The present discussion considers the semiclassical limit of
the collective spin variables, which at large N becomes an ac-
curate description of one- and two-photon Dicke models (see,
e.g., Refs. [18,27,72] for explicit comparisons to the exact
quantum solution). Still, it would be of great interest to inves-
tigate how these nonlinear phenomena manifest themselves
in fully quantum treatments [73–75]. Studies have shown that

signatures of dissipative quantum chaos can be detected by the
Liouvillian superoperator, whose spectrum shows unique sta-
tistical properties [76–83]. Furthermore, quantum Lyapunov
exponents have been computed in the closed Dicke model
from the out-of-time-ordered correlator (OTOC) [52]. The
anisotropic coupling may also be included in the present
dissipative Dicke model, which would likely result in more
complicated dynamics and phase diagrams. Our investiga-
tion into the nonlinear dynamics of this dissipative quantum
system may stimulate further research on quantum chaos,
the findings of which may be applicable to quantum on-chip
devices and communications.
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