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Simultaneous vibrational resonance in the amplitude and phase quadratures
of an optical field based on Kerr nonlinearity
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Vibrational resonance (VR) is a nonlinear phenomenon in which the system response to a weak signal can
be resonantly enhanced by applying a high-frequency modulation signal with an appropriate amplitude. The
majority of VR research has focused on amplifying the amplitude or intensity of the system response to a
weak signal, whereas the study of the phase information of system responses in VR remains limited. Here,
we investigate the VR phenomena in both amplitude and phase quadratures of an optical field in a Kerr nonlinear
cavity driven by a near-resonant weak signal and a far-detuned modulation signal. Analytical and numerical
results demonstrated that the resonant enhancement in the amplitude and phase quadratures of the system
response to a weak signal simultaneously occurs as the amplitude of the modulation signal is varied. There
is a linear relation between the amplitude and frequency of the modulation signal for achieving an optimal VR
effect. Furthermore, we generalized our study to investigate the quadrature at an arbitrary phase and determined
that the VR enhancement sensitively depends on the phase. Our findings not only broaden the scope of VR
research by incorporating phase information but also introduce an approach for amplifying an optical field by
manipulating another optical field.
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I. INTRODUCTION

Resonance refers to the phenomenon by which the ampli-
tude of a physical system at a certain frequency overwhelms
that at other frequencies, which commonly occurs in nature
and can be observed or applied in nearly all branches of
physics, as well as in many interdisciplinary and engineering
fields. Stochastic resonance (SR) is a widely studied phenom-
ena [1–5] in which noise is utilized to amplify the response
of a bistable system to a weak input signal, and the optimal
amplification or the resonance occurs when the noise-induced
average transition rate matches the frequency of the weak
signal. SR was first proposed by Benzi et al. in the study of
climate change as an enhancement of the response of bistable
systems to weak deterministic signals [1–3]. Over time, the
study of SR has extended to various related areas, such as
coherence resonance [6–8], resonant activation [9–11], noise-
induced stability [12–14], noise-induced pattern formation
[15–17], and noise-enhanced temporal regularity [18,19].

A noteworthy analogy to SR is vibrational resonance (VR)
[20–22], which occurs when a high-frequency periodic signal
replaces noise in SR to amplify the response of a nonlinear
system to a weak signal. VR was first numerically observed
by Landa and McClintock [20], and was then theoretically
[23–26] and experimentally [27–30] demonstrated in a va-
riety of systems. The study of conventional VR has been
extended to a number of variations, that is, aperiodic VR
[31,32], ghost VR [33,34], nonlinear VR [35,36], entropic
VR [37,38], logical VR [39,40], and vibrational antiresonance
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[41]. Owing to the deterministic and controllable nature of
VR, it has demonstrated significant potential in several re-
search fields, including weak fault detection [42,43], weak
signal amplification [44,45], investigating atmospheric distur-
bance phenomena [46], and bioinformatics [47–50].

Most of the earlier research regarding VR has focused on
the enhancement of the system response to a weak signal,
whereas studies regarding the phase information of the sys-
tem response in the VR phenomena [41] remain limited. In
Ref. [41], Sarkar and Ray theoretically studied the phase vari-
ation of the system response in the vibrational antiresonance
phenomenon and demonstrated that a large phase shift was
induced by varying the amplitude of a high-frequency field.
To the best of our knowledge, the phase properties of the
system response to a weak signal in conventional VR have
not been investigated thus far. Therefore, in this study, we in-
vestigate the VR phenomena in both the amplitude and phase
quadratures of an optical signal in the context of a driven
single-mode optical cavity containing a Kerr medium. Owing
to the self-Kerr interaction of the cavity field, the amplitude
and phase quadratures are nonlinearly coupled, providing the
basis for studying the VR behaviors in both quadratures. By
directly separating the fast and slow motion, we derived the
approximate analytical expressions of the response ampli-
tudes for both quadratures. The response amplitude is a typical
quantity that can be used to characterize the VR phenomena,
which measures the amplitude of the system response at the
frequency of the weak signal to be amplified. The results
demonstrated that VR simultaneously occurred in the ampli-
tude and phase quadratures as we varied the amplitude of the
modulation signal. We also performed numerical simulations
to verify the analytical results and demonstrated the system
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FIG. 1. Sketch of our model. A single-model optical cavity con-
taining a third-order nonlinear Kerr medium is driven by a driving
field Ed and two signal fields, EH and EL . EL is a weak signal to be
amplified and EH is a modulation signal which is far detuned from the
cavity resonance frequency. The output field of the cavity is detected
via homodyne detection.

dynamics. The numerical results were qualitatively consistent
with the analytical results. Notably, the amplitude of the phase
quadrature was highly sensitive to the amplitude of the mod-
ulation signal in a certain regime, demonstrating the potential
to be applied for precision measurements. In addition, the
numerical results demonstrated that there was a linear rela-
tionship between the modulation amplitude and frequency for
the optimal condition of the signal amplification.

In the experiments, the quadrature information of an op-
tical field can be obtained using the standard homodyne
detection technique. By adjusting the phase of the local os-
cillator in the homodyne detection process, the information
for the desired quadrature of the system output signal can
be acquired. For example, the information of the amplitude
and phase quadratures discussed above can be obtained by
selecting a phase of zero and π/2, respectively. To clarify
the function of the phase in VR, we numerically investigated
the dependence of the response amplitude on the phase of
the local oscillator, and the results demonstrated that the re-
sponse amplitude experienced sine-like oscillations and its
maximal value did not correspond to zero or π/2. Our findings
encourage further investigation of the interplay between VR
and the optical phase information, and provide theoretical
guidance for simultaneously amplifying the amplitude and
phase quadratures of system responses to a weak optical field
by applying another optical field. This may have potential for
applications in optical signal detection and energy transfers
between optical fields with different frequencies.

In Sec. II, we introduce the physical model and provide
the theoretical formulation. The main results are presented in
Sec. III, including the VR phenomena in the amplitude and
phase quadratures of the system response, and the dependence
of VR behaviors on the system parameters. Finally, Sec. IV
concludes our study.

II. MODEL AND THEORETICAL ANALYSES

As shown in Fig. 1, the model being considered is an
anharmonic optical oscillator with a self-Kerr interaction,
that is, a single-mode optical cavity containing a nonlinear
Kerr medium. The cavity mode is driven by three fields
with different frequencies, one driving field (Ed ) and two
signal fields (EL and EH ). The Hamiltonian describing the
system rotating at the frequency of the driving field is given

(h̄ = 1) as

Ĥ = �â†â + χ (â†â)2 + iEd (â† − â)

+ iEL(e−i�Lt â† − ei�Lt â) + iEH (e−i�H t â† − ei�H t â),

(1)

where the cavity mode with the resonance frequency ωc is
represented by the annihilation operator â. The detunings are
defined as � = ωc − ωd ,�L = ωL − ωd , and �H = ωH − ωd .
χ is the third-order nonlinear coefficient of the Kerr medium.
To satisfy the condition of VR, we assume that the two signals
have distinguishing frequencies, that is, �H � �L.

Under the condition of a weak nonlinearity and strong driv-
ing field and with the inclusion of the dissipation induced by
the interaction with the environment, we can approximately
derive the equation of motion for the mean amplitude of the
cavity field α = 〈â〉:

dα

dt
= −(i(� + χ ) + κ/2)α − 2iχ |α|2α + Ed

+ ELe−i�Lt + EH e−i�H t . (2)

Here, we have approximately factorized the correlation terms,
e.g., 〈â†â2〉 ≈ 〈â†〉〈â〉2. Note, α is a complex variable and
therefore Eq. (2) is different from the typical equation of mo-
tion in classical nonlinear systems used for investigating the
VR phenomena. To transform Eq. (2) into real variables, we
defined the amplitude quadrature x = α+α∗

2 and phase quadra-
ture y = α−α∗

2i , thus the equations of motion of the system can
be expressed as follows:

dx

dt
= −κ

2
x + (� + χ )y + 2χ (x2 + y2)y

+ Ed + EL cos �Lt + EH cos �Ht, (3)

dy

dt
= −κ

2
y − (� + χ )x − 2χ (x2 + y2)x

− EL sin �Lt − EH sin �Ht . (4)

Precisely solving the coupled Eqs. (3) and (4) is com-
plex, as they are differential equations containing nonlinear
terms and two driving signals with distinguishing frequen-
cies. Therefore, the slow and fast motions were separated
[28,35,41,51]. Thus, the quadrature variables x and y were
rewritten as the summation of the slow and fast motions:

x(t ) = X (t ) + �x(t, τ = �Ht ), (5)

y(t ) = Y (t ) + �y(t, τ = �Ht ). (6)

Here, X (t ) and Y (t ) are the variables characterizing the slow-
motion components of the system response caused by EL,
whereas �x(t, τ ) and �y(t, τ ) are variables characterizing the
fast-motion components caused by EH , which satisfy

〈�x(t, τ )〉 =
∫ 2π

0
�x(t, τ )dτ = 0, (7)

〈
�y(t, τ )

〉 =
∫ 2π

0
�y(t, τ )dτ = 0. (8)

053701-2



SIMULTANEOUS VIBRATIONAL RESONANCE IN THE … PHYSICAL REVIEW A 109, 053701 (2024)

By substituting Eqs. (5) and (6) into Eqs. (3) and (4) and
averaging over one period of the fast motion τ , the following
is obtained:

dX

dt
= −κ

2
X + (� + χ )Y + Ed + EL cos �Lt

+ 2χ
(
X 2Y + 2X 〈�x�y〉 + Y 3 + Y

〈
�2

x

〉
+ 3Y

〈
�2

y

〉 + 〈
�2

x �y
〉 + 〈

�3
y

〉)
, (9)

dY

dt
= −κ

2
Y − (� + χ )X − EL sin �Lt

− 2χ
(
X 3 + XY 2 + 3X

〈
�2

x

〉 + X
〈
�2

y

〉
+ 2Y 〈�x�y〉 + 〈

�x�
2
y

〉 + 〈
�3

x

〉)
. (10)

Subsequently, the equations for the fast motion can be
obtained by subtracting the slow-motion Eqs. (9) and (10)
from the original-motion Eqs. (3) and (4) as follows:

d�x

dt
= −κ

2
�x + (� + χ )�y + EH cos �Ht

+ 2χ
(
X 2�y + 2XY �x + 3Y 2�y

+ 2X (�x�y − 〈�x�y〉) + Y
(
�2

x − 〈
�2

x

〉)
+ 3Y

(
�2

y − 〈
�2

y

〉) + �2
x �y − 〈

�2
x �y

〉 + �3
y − 〈

�3
y

〉)
(11)

d�y

dt
= −κ

2
�y − (� + χ )�x − EH sin �Ht

− 2χ
(
3X 2�x + 2X

(
�2

x − 〈
�2

x

〉)
+Y 2�x + 2XY �y + X

(
�2

y − 〈
�2

y

〉)
+ 2Y �x�y − 2Y 〈�x�y〉 + �x�

2
y − 〈

�x�
2
y

〉)
. (12)

As �H is assumed to be large, �̇x, �̇y � �x, �y, we can
obtain the approximate solutions for the fast-motion variables
as follows:

�x ≈ EH

�H
sin �Ht, (13)

�y ≈ EH

�H
cos �Ht . (14)

We then obtain 〈�2
x 〉 = 〈�2

y 〉 = E2
H

2�2
H

and 〈�x�y〉 =
〈�2

x �y〉 = 〈�x�
2
y 〉 = 0. By substituting these approximate

solutions for the fast motion into the equations of motion
for the slow motion [Eqs. (9) and (10)], we can obtain the
approximate equations merely for the slow motion of the
system variables, that is,

dX

dt
= −κ

2
X +

(
� + χ + 4χE2

H

�2
H

)
Y

+ 2χ (X 2Y + Y 3) + Ed + EL cos �Lt, (15)

dY

dt
= −κ

2
Y −

(
� + χ + 4χE2

H

�2
H

)
X

− 2χ (X 3 + XY 2) − EL sin �Lt . (16)

Equations (15) and (16) demonstrate that the high-frequency
signal impacts the steady-state properties of the system by the
additional detuning applied to the cavity field.

To evaluate the system response to the weak signal EL, we
first searched for the steady-state solution for X and Y in the
absence of the weak signal. The steady-state solution of the
field intensity |α|2s simply satisfies the following equation:

4χ2
(∣∣α∣∣2

s

)3 + 4χ
(
� + χ + 4χE2

H/�2
H

)(∣∣α∣∣2

s

)2

+ [(� + χ )2 + κ2/4]|α|2s − E2
d = 0, (17)

which is a cubic equation of |α|2s and can be solved by a
standard formula or numerically. From Eqs. (15) and (16)
and the relationship of |α|2s = X 2

s + Y 2
s , we can obtain the

steady-state solution of the field quadratures as follows:

Ys = − 2

κ

(
� + χ + 2χ |α|2s

)
, (18)

Xs = Ed

κ/2 − Ys
(
� + χ + 2χ |α|2s

) . (19)

Subsequently, we studied the deviation of X and Y from
the steady-state solution when a weak signal was applied.
Therefore, we expressed X and Y as the summation of their
stable solutions and small deviation parts owing to the signal
incidence as follows:

X = Xs + δX, (20)

Y = Ys + δY. (21)

Here, (δX, δY ) are the deviations of the system responses
(X,Y ) from one set of the steady-state solution (Xs,Ys).

As the δX and δY deviations were assumed to be small,
the nonlinear terms were ignored and the linear equations of
motion were obtained for (δX, δY ):

dδX

dt
= M11δX + M12δY + EL cos �Lt, (22)

dδY

dt
= M22δY + M21δX − EL sin �Lt, (23)

where M11 = 4χXsYs − κ
2 , M12 = � + χ + 4χE2

H

�2
H

+ 2χX 2
s +

6χY 2
s , M21 = −(� + χ + 4χE2

H

�2
H

+ 6χX 2
s + 2χY 2

s ), and

M22 = −(4χXsYs + κ
2 ). The solutions can be obtained by

certain mathematical derivations:

δX = A cos(�Lt ) + B sin(�Lt ), (24)

δY = C cos(�Lt ) + D sin(�Lt ). (25)

Here, the coefficients are defined as follows:

A = EL

C3
[�LC2M22M12

+�L(�LM12 + C1)(C1M11 − M21M22M12)], (26)

B = 1

C2
[A(M11C1 − M21M22M12) + EL(�LM12 + C1)], (27)

C = − 1

C1
[AM21M22 + �L(BM21 − EL )], (28)

D = AM21 + CM22

�L
, (29)
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FIG. 2. The VR phenomena in both the amplitude and phase quadratures of a weak optical signal by varying the amplitude of the
modulation signal EH . (a) and (b) Comparison of the analytical and numerical results for the response amplitudes in two quadratures as
EH is varied at three modulation frequencies (�H = 200�L, 500�L , and 800�L). The solid curves represent the analytical results Qx,a and
Qy,a, whereas the dashed curves represent the numerical results Qx,n and Qy,n. (c)–(e) Time evolution of the amplitude quadrature of the cavity
field for EH = 0.5κ, 2.365κ, 5κ . (f)–(h) Time evolution of the phase quadrature corresponding to (c)–(e). (i)–(k) Stability curves: Steady-state
solution of X as a function of the driving amplitude Ed . As labeled by the red arrow, Ed = 0.32κ was selected for (a)–(h). The other parameters
were as follows: � = −2κ, χ = κ, EL = 0.004κ , and �L = 0.03κ .

with C1 = �2
L + M2

22, C2 = �L(M21M12 + C1), and
C3 = C2M21M2

22M12 − C1C2(�2
L + M21M12) − �L(M11C1 −

M21M22M12)(C1M11 − M21M22M12).
A standard measure of quantitatively characterizing the VR

phenomena is the response amplitude Q, which is defined as
the ratio between the amplitude of the system response at the
signal frequency and amplitude of the input signal. As both
quadratures of the cavity field are involved in our model, we
evaluated the response amplitudes for the amplitude and phase
quadratures as follows:

Qx,a =
√

A2 + B2

EL
, (30)

Qy,a =
√

C2 + D2

EL
. (31)

These approximate analytical expressions [Eqs. (30) and (31)]
are the basic results obtained for analyzing the VR behavior
in our system.

III. RESULTS AND DISCUSSION

Based on the analytical expressions [Eqs. (30) and (31)],
we presented the response amplitudes Qx,a and Qy,a as a
function of the modulation amplitude EH for three differ-
ent modulation frequencies of �H = 200�L, 500�L, 800�L

[solid curves in Figs. 2(a) and 2(b)]. All the response ampli-
tudes Qx,a and Qy,a apparently peak at certain values of EH ,
indicating the occurrence of VR. As the modulation frequency

�H increased, the peak positions of Qx,a and Qy,a tended
to shift to larger values of EH , which is consistent with the
results obtained in Refs. [35,52]. This can be explained by
Eqs. (15) and (16), which indicate that the value of E2

H/�2
H

must be maintained above a certain level to ensure that the
high-frequency signal has an effective influence on the sys-
tem. In addition, the peak positions of Qx,a and Qy,a are
nearly overlapping in the axis of EH with the same modulation
frequency �H , which implies that VR simultaneously occurs
in two quadratures of the system response. Note that the
Qy,a curves exhibit a sharp transition, which reveals the high
sensitivity of Qy,a to the variation of the controlling parameter
EH .

To verify the validity of the aforementioned approximated
analytical results, the equation of motion for α [Eq. (2)]
was numerically solved using the fourth-order Runge-Kutta
method, and the Fourier components of the amplitude and
phase quadratures at the characteristic frequency of the weak
signal (�L) were computed as follows:

Qx,s = 2

nπ

∫ nT

0
dt x(t ) sin(�Lt ), (32)

Qx,c = 2

nπ

∫ nT

0
dt x(t ) cos(�Lt ), (33)

Qy,s = 2

nπ

∫ nT

0
dt y(t ) sin(�Lt ), (34)

Qy,c = 2

nπ

∫ nT

0
dt y(t ) cos(�Lt ), (35)
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where T = 2π/�L is the period of the weak signal EL, n is the
number of periods of the slow motion determined by the weak
signal in the simulation, and Qj,s( j = x, y) and Qj,c( j = x, y)
represent the sine and cosine components for amplitude and
phase quadratures, respectively. Subsequently, the numerical
response amplitudes for the two quadratures can be obtained
as follows:

Qx,n =
√

Q2
x,s + Q2

x,c

EL
(36)

Qy,n =
√

Q2
y,s + Q2

y,c

EL
. (37)

The value of Qj,n ( j = x, y) is proportional to the
Fourier transform coefficient at ω = �L, that is, Fx(ω) =∫ +∞

0 x(t )eiωt dt or Fy(ω) = ∫ +∞
0 y(t )eiωt dt . The numerical

results, Qx,n and Qy,n, are indicated by the dashed curves
in Fig. 2(a) By comparison, the numerical results were ap-
parently qualitatively consistent with the analytical results,
demonstrating the validity of the analytical calculations; how-
ever, there were certain deviations between the two.

To understand the physical reasons behind the trends of
Qx,n and Qy,n as EH was varied, Figs. 2(c)–2(h) present
the dynamics of the amplitude and phase quadratures at the
three representative points of EH = 0.5κ, 2.365κ, 5κ , as well
as the corresponding stability curves. For simplicity, �H =
500�L was considered as an example. When EH = 0.5κ ,
the modulation signal was weak and the system was in the
monostable state, as shown in Fig. 2(i). Thus, the signals
in both quadratures oscillated around the steady-state value
with a small amplitude [Figs. 2(d) and 2(g)], and the am-
plification of the weak signal was not significant. When EH

was increased to 2.365κ , which is the optimal value for
maximizing Qx,n and Qy,n [Figs. 2(a) and 2(b)], the sys-
tem became bistable [Fig. 2(j)], and the system responses in
both quadratures experienced oscillations with notably larger
amplitudes [Figs. 2(c) and 2(f)], resulting in significantly
amplified signals at the frequency of �L. When the am-
plitude of the high-frequency signal was further increased,
that is, EH = 5κ , the system became monostable once again
[Fig. 2(k)] and the low-frequency motion was nearly buried
in the strong rapid oscillations [Figs. 2(e) and 2(h)], which
is consistent with the low Qx,n and Qy,n presented in
Figs. 2(a) and 2(b).

In order to more deeply explore the mechanism of VR
in our system, we use MATCONT [53,54] to perform bifur-
cation analysis on our system. Based on the equations of
slow motion [Eqs. (15) and (16)] with including the influence
of EH and excluding the weak signal, the equilibrium curve
X − EH is plotted in Fig. 3. It is seen that in the range of
EH ∈ (2.29κ, 2.39κ ) there exist two limit points (LPs) on the
equilibrium curve, indicating the occurrence of limit point
bifurcation. By comparing this equilibrium curve with the
resonance curve (Qx − EH ) in Fig. 3(a), we can observe that
the parameter ranges of these two curves nearly perfectly
overlap. It implies that the occurrence of VR is closely related
to the appearance of LP bifurcation. In fact, earlier literatures
[55,56] discussed the relation between VR and bifurcations.
To further investigate the detailed dependence of the system

0
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Q
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FIG. 3. (a) Qx as a function of EH for �H = 500�L . [This curve
is the same as the brown dashed curve in Fig. 2(a) and it is plotted
here for comparison with (b).] (b) The steady-state value of X as a
function of EH based on Eqs. (15) and (16) with EL = 0 (obtained
using MATCONT). LP presents the limit point. The other parameters
are the same as those in Fig. 2.

responses on the properties of the modulation signal, the
response amplitudes of the two quadratures were plotted in
the EH − �H plane, as shown in Figs. 4(a) and 4(b), which
demonstrated an apparent linear relationship between EH and
�H for achieving resonance. These results are consistent with
previous analytical analyses, which demonstrated that the
modulation signal modifies the properties of the system stabil-
ity by the factor of E2

H/�2
H . In addition, as EH was increased

from 0 to 4κ , the system responses in the two quadratures
gradually increased. However, when EH > 4κ , the system re-
sponse saturated, indicating that an extremely large EH cannot
induce a significant enhancement of the system responses and

FIG. 4. Dependence of the response amplitudes Qx,n and Qy,n on
the parameters of the modulation signal (EH and �H ). (a) Qx,n in
the EH -�H plane; (b) Qy,n in the EH -EL plane. (c) and (d) View
of the variance of Qx,n and Qy,n vs EH corresponding to (a) and
(b). The parameters are as follows: � = −2κ, χ = κ, , Ed = 0.32κ ,
EL = 0.004κ , and �L = 0.03κ .
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FIG. 5. (a) Response amplitude of an arbitrary quadrature xφ vs
the phase φ. (b)–(d) Time evolution of xφ at three representative
points including A, B, and C in (a). Here, EH = 2.365κ , �H =
500�L , and the other parameters are the same as those shown in
Fig. 3.

a moderate modulation signal is adequate for achieving a good
VR enhancement.

The output quadrature from homodyne detection appar-
ently relies on the phase of the local oscillator (labeled as φ),
that is, x and y presented in the preceding section correspond
to φ = 0 and φ = π/2, respectively. To generalize our results,
the enhancement of the system response at the signal fre-
quency of �L for an arbitrary phase in the homodyne detection
was studied. In this case, the homodyne signal is expressed as
follows:

xφ,out = √
κ0xφ = 1

2 (αoute
iφ + α∗

oute
−iφ ). (38)

Here, αout is the amplitude of the output cavity field, which
is proportional to the intracavity amplitude α, that is, αout =√

κ0α (
√

κ0 is the coupling coefficient between the cavity
and the homodyne detection device). Thus, we defined the
response amplitudes for the quadrature of the phase φ as
follows:

Qφ =
√

Q2
φ,s + Q2

φ,c

EL
, (39)

where the sine and cosine Fourier components at the phase φ

are as follows:

Qφ,s = 2

nπ

∫ nT

0
dt

1

2
(αeiφ + α∗e−iφ ) sin(�Lt ), (40)

Qφ,c = 2

nπ

∫ nT

0
dt

1

2
(αeiφ + α∗e−iφ ) cos(�Lt ). (41)

As demonstrated in Fig. 5(a), the response amplitude Qφ

oscillated in a sine-like form as the phase varied from 0 to
2π , indicating that the system response was phase sensitive.
Notably, Qφ did not peak at φ = 0 or φ = π/2. Namely,
selecting a proper phase of the local oscillator facilitates the
signal enhancement effect in VR. To clarify the cause of
variation of Qφ , the time evolution xφ of several representative
points, including A: φ = 0 (x quadrature), B: φ = 0.625 (one
peak of the Qφ curve), and C: φ = 5.339 (one dip of Qφ

curve), are presented in Figs. 5(b)–5(d). At the peak, the oscil-
lation amplitude of xφ is apparently larger than that of φ = 0,
whereas at the dip, xφ oscillates at significantly high frequen-
cies associated with a small amplitude of the slow variations,
because the varying phase φ corresponds to the superposition
of the real and imaginary parts of α with different weights.
These dynamical behaviors are consistent with the values
of Qφ .

IV. CONCLUSION

In this study, the VR phenomenon in a Kerr nonlinear
optical cavity with multiple signals was thoroughly analyzed.
Contrary to the majority of prior research regarding VR,
we incorporated the phase in the investigation of VR. More
specifically, we analytically and numerically studied the en-
hancement in the amplitude and phase quadratures of the
system response to a weak low-frequency optical signal by
manipulating a high-frequency optical signal. We clarified the
optimal parameter regimes required to achieve an effective
VR effect. In addition, we generalized our study to an arbitrary
quadrature of the system response and found that the system
response sensitively relies on the phase of the local oscilla-
tor in the homodyne detection. Our study provides a better
understanding of the VR mechanism as well as a theoretical
guidance for amplifying a weak optical signal by controlling
another optical field based on the Kerr nonlinearity.
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