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Generic quartic solitons in optical media
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Our analysis suggests strongly that stationary pulses exist in nonlinear media with second-, third-, and fourth-
order dispersion. A theory, based on the variational approach, is developed for finding approximate parameters
of such solitons. It is obtained that the soliton velocity in the retarded reference frame can be different from the
inverse of the group velocity of linear waves. It is shown that the interaction of the pulse spectrum with that of
linear waves can affect the existence of stationary solitons. These theoretical results are supported by numerical
simulations. Transformations between solitons of different systems are derived. A generalization for solitons in
media with the highest even-order dispersion is suggested.
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I. INTRODUCTION

A balance between second-order dispersion, or group ve-
locity dispersion (GVD), and cubic (Kerr) nonlinearity results
in a formation of optical solitons—stable pulses that prop-
agate without a change of parameters [1]. Moreover, these
pulses preserve their shapes and parameters after interac-
tions with each other. Additional effects, such as higher-order
dispersion, the Raman frequency shift, and self-steepening,
change the parameters of solitons (see, e.g., Ref. [1]).

Recently, it was found that stable pulses exist also in media
with quartic dispersion only and Kerr nonlinearity [2]. These
pulses are called “pure quartic solitons” (PQS). Such solitons
have been studied theoretically and experimentally in several
papers (see, e.g., Refs. [2–9]). Stationary and dynamical prop-
erties of PQS were presented in Ref. [5]. In particular, it was
shown that PQS have oscillating tails (see also Ref. [10]).
A realization of a laser on PQS was suggested in Ref. [6].
The dynamics of cavity solitons in pure quartic media was
considered in Refs. [4,7].

In the present paper, we consider general quartic media
described by the second-, third- (TOD), and fourth-order dis-
persion (FOD) terms. We demonstrate that such media also
admits the propagation of stable localized pulses. Since all
dispersion terms are involved, we call these pulses “generic
quartic solitons” (GQS) to distinguish them from PQS. The
parameters of stationary solitons are found approximately,
using the variational approach. Regions of the GQS existence
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in the space of the system parameters are obtained. A relation
between moving solitons in general quartic media and pure
quartic media is established. A generalization of results to
higher-order dispersion is discussed.

II. MODEL AND STATIONARY SOLITONS

The dynamics of optical pulses in nonlinear dispersive me-
dia is described by the modified nonlinear Schrödinger (NLS)
equation [1],

iψz − β2

2
ψττ − i

β3

6
ψτττ + β4

24
ψττττ + γ |ψ |2ψ = 0, (1)

where ψ (τ, z) is the envelope of the electric field, τ is the
time in the retarded frame, z is the propagation distance, β j

is the parameter of dispersion of the jth order, j = 2, 3, and
4, and γ is the Kerr nonlinearity parameter. We consider
dispersion terms of up to the fourth order only. We mention
that at β3 = β4 = 0, the standard NLS equation is completely
integrable [11], and has the soliton solution. At β3 = 0, there
is also an exact soliton solution [12]. Soliton solutions of
Eq. (1) for some sets of parameters β j are found in Ref. [3].
These solutions have smooth, nonoscillating tails.

The influence of higher-order dispersion on the dy-
namics of solitons was studied intensively (see, e.g.,
Refs. [1–10,12–16]). Usually, two extreme cases are in-
vestigated. Namely, either TOD and FOD are treated as
perturbation to the GVD effect [13–16], or the FOD effect is
considered as a dominant one [2–10,12]. The former (latter)
approach is valid far from (close to) zero dispersion points
(ZDPs). In particular, the consideration of a system as a
medium with pure quartic dispersion is only valid near a
specific ZDP, where both GVD and TOD are negligible. In
contrast to previous works, we make no assumptions on the
values of GVD, TOD, and FOD effects. We show also that
TOD does not result in the pulse asymmetry, if it acts together
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with FOD. Our results, based on the variational approach,
indicate clearly that the joint action of GVD, TOD, and FOD
can be balanced by Kerr nonlinearity, giving solitons with
symmetric shapes. Numerical simulations of Eq. (1) support
this conclusion.

The dispersion relation of linear waves, ψ (τ, z) ∼
exp{i[η(ω)z − ωτ ]}, of Eq. (1) at γ = 0 has the following
form:

η(ω) = β2

2
ω2 + β3

6
ω3 + β4

24
ω4. (2)

Then η1(ω) ≡ dη(ω)/dω = β2ω + β3ω
2/2 + β4ω

3/6 and
η2(ω) ≡ d2η(ω)/dω2 = β2 + β3ω + β4ω

2/2 are the inverse
of the group velocity and the second dispersion parameter of
linear waves at ω, respectively.

It is known [1] that in media with GVD only, β3 = β4 =
0, bright solitons do not exist when β2γ > 0. Following this
relation for dispersive media, when all β j , j = 2, 3, and 4,
are involved, one would expect that solitons do not exist when
η2(b)γ > 0, where b is the soliton frequency. Our theory gives
different conditions (see below).

Equation (1) has the following Lagrangian density:

L = i

2
(ψ∗ψz − ψψ∗

z ) + β2

2
|ψτ |2

+i
β3

12
(ψ∗

τ ψττ − ψτψ
∗
ττ ) + β4

24
|ψττ |2 + γ

2
|ψ |4, (3)

where the asterisk means the complex conjugation.
We use a trial function in the form of the Gaussian function:

ψ (τ, z) = A exp[−(τ − τc)2/(2a2)]ei[φ−b(τ−τc )+c(τ−τc )2]. (4)

Here, the parameters A, a, τc, b, c, and φ are the soliton am-
plitude, width, position of the center, linear phase parameter
(the soliton frequency), chirp parameter, and phase parameter,
respectively. All these parameters are assumed to be functions
of z. The minus sign of a term proportional to b is taken
for convenience. The actual form of solitons differs from
Eq. (4). In particular, a soliton can have oscillating tails [5,10].
However, numerical simulations show that trial function (4)
captures well the overall soliton shape, so the parameter val-
ues predicted are close to the actual ones.

The Lagrangian L = ∫ ∞
−∞ Ldτ is expressed in terms of the

pulse parameters, using trial function (4). The Euler-Lagrange
equations for L give the following equations:

a′ = −c

[
2η2(b)a + β4

2
(a−1 + 4c2a3)

]
, (5)

c′ = 1

2
η2(b)(4c2 − a−4) − E0γ

2
√

2π
a−3

+β4

8
(−a−6 + 16c4a2), (6)

τ ′
c = η1(b) + β3 + β4b

4
(a−2 + 4c2a2), (7)

φ′ = β2

2
(a−2 − b2) + β3

12
(3ba−2 − 4b3 − 12bc2a2)

+β4

32
(3a−4 − 4b4 + 8c2 − 32b2c2a2 − 16c4a4)

+ 5γ E0

4
√

2π a
, (8)

and b′ = 0, where the prime denotes d/dz. The parameter
E0 = √

πA2a = √
πA2(0)a(0) does not depend on z, and

represents the initial energy of the pulse. Equations, simi-
lar to Eqs. (5)–(8), have been obtained previously (see, e.g.,
Refs. [15,16]). However, these equations were used mainly
to analyze the influence of higher-order effects on the soliton
of the unperturbed NLS equation. Pure quartic solitons have
been studied by the same method in Ref. [9], but only for zero
soliton frequency. Here, we are interested in the existence of
stationary solitons in the presence of higher-order dispersion.

Equations (5) and (6) constitute a closed set because their
right-hand sides, fa(a, b, c) and fc(a, b, c, E0), do not depend
on τc and φ. The right-hand sides of Eqs. (7) and (8) corre-
spond to the soliton velocity 1/v in the retarded frame and
the phase coefficient δ, respectively. Equations (5) and (6)
have the invariant, which is the effective Hamiltonian of these
equations:

H (a, c) = 16β4a4c4 + 8c2[β4 + 4η2(b)a2] + 32η(b)

+ β4a−4 + 8η2(b)a−2 + 16γ E0√
2π

a−1. (9)

Using H (a, c) = H[a(0), c(0)], one can express variable c in
terms of a, and substitute it into the equation for a′, or a′′. In
the latter case, the equation for the soliton width describes the
motion of a particle with coordinate a in an effective potential.

Stationary solutions are found from conditions
fa(a, b, c) = 0 and fc(a, b, c, E0) = 0. From Eqs. (5) and
(6), it follows that stationary states exist only when c = 0.
Then, the stationary soliton width as > 0 is determined from
the following equation,

a3 + s1a2 + s2 = 0, (10)

where s1 = √
2π η2(b)/(γ E0), and s2 = √

2π β4/(4γ E0).
Applying the Sturm’s theorem for the number of positive roots
to Eq. (10), we obtain the following result:

(i) If (s1 > 0 and s2 > 0), or (s1 < 0 and s2 > s2,th ), then
Eq. (10) does not have positive roots, where s2,th = −4s3

1/27.
(ii) For any s1, if s2 < 0, then Eq. (10) has one positive

root.
(iii) If s1 < 0 and 0 < s2 < s2,th, then Eq. (10) has two

positive roots.
The first condition of case (i) is reduced to [η2(b)γ > 0

and β4γ > 0], cf. with the standard NLS equation. The sec-
ond condition of case (i) indicates that solitons do not exist
also for negative η2(b)γ and corresponding β4. Solitons for
parameters from case (iii) are mostly nonstationary due to
the interaction with linear waves (see the corresponding dis-
cussion below). Also, notice that solitons exist for any sign
of γ .

Though Eq. (10) can be solved analytically, this gives
a complicated dependence of as on the system parameters.
Therefore, it is useful to consider some limiting cases. First,
we consider the case of small β4, namely, if β4, β4b2a2 �
β̂ ≡ β2 + β3b, then

as ≈ −4β̂/p − (a2 + 32β̂2b2)β4/(16β̂2 p), (11)
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where p = 4γ E0/
√

2π . The second case is for small β2, β3,
and b, namely, if β2a2, β3ba2, β4b2a2 � β4, then

as ≈ (−β4/p)1/3 − 4η2(b)/(3p). (12)

Therefore, for large |β4|, solitons exist when β4γ < 0. Hav-
ing root as of Eq. (10), the stationary amplitude is found as
As = [E0/(

√
π as)]1/2. Then (As, as, b) and c = 0, together

with 1/vs and δs, correspond to stationary parameters of a
GQS.

The theory predicts that in the absence of β3 and β4, the
stationary soliton velocity 1/vs coincides with the inverse of
the group velocity η1(b) of linear waves. The inclusion of
higher-order dispersion breaks this relation [see Eq. (7)]. In
particular, even at the extremum of the dispersion relation,
at b = 0, we have solitons, moving due to β3. This result
is supported by numerical simulations of Eq. (1). A related
observation is that a static soliton with 1/vs = 0 can have
a phase dependence on time, b 
= 0. The difference of the
soliton velocity 1/vs from η1(b) can be used for slow light
and fast light applications of solitons.

Equations (5)–(8) describe the adiabatic dynamics of a
soliton. These equations do not take into account the interac-
tion of the soliton with linear waves. However, this interaction
can be accounted for qualitatively, using the following argu-
ments. One can distinguish two different ways of generation
of linear waves by solitons. When an initial pulse differs
slightly from the stationary profile, the pulse adjusts its form
to the stationary one, radiating the excess as linear waves.
This adjustment is observed as damped oscillations of the
soliton width and amplitude. Such a type of interaction is
accounted for, to some extent, in Eqs. (5)–(8) by the inclusion
of the chirp parameter c. Namely, if the chirp is absent in trial
function (4), c ≡ 0, width a is constant on z, even when a(0) is
different from the stationary value. The variational approach
with the chirp included treats the interaction with linear waves
as a modulation of the soliton phase [17]. In contrast to the
actual dynamics, the method gives undamped oscillations of
the soliton shape, but predicts reasonably well the frequency.

The second type is due to the resonance interaction
of a soliton with linear waves [13]. It occurs at frequen-
cies where the soliton dispersion relation intersects with
the dispersion relation of linear waves. The soliton dis-
persion relation is usually a straight line obtained from
the following procedure. Let the stationary soliton has the
form ψs(τ, z) = As f (τ − z/vs) exp[i(δsz − bτ )] [see Eq. (4)],
where real f (τ ) describes the soliton profile. Then, the soliton
spectrum �s(ω, z), obtained from the Fourier transform, is
written as �s(ω, z) = AsF (ω − b) exp{i[δs + (ω − b)/vs]z},
where F (ω) is the Fourier transform of f (τ ). This expres-
sion indicates that the soliton dispersion relation, or the
dependence of the soliton propagation constant ηsol(ω) on
frequency, is determined as the following:

ηsol(ω) = δs + (ω − b)/vs. (13)

The linear dependence (13) means that a soliton propagates
without dispersion, d2ηsol(ω)/dω2 = 0, since it is balanced
by nonlinearity. At frequencies ωr , defined by

ηsol(ωr ) = η(ωr ), (14)

FIG. 1. (a)–(c) The dynamics of solitons for (a) (β2, β3, β4) =
(−1, 0.2, −0.2), (b) (−0.2, 0.2, −1), and (c) (0.2, 0.2, −1). Other
parameters are γ = 1 and E0 = 2. (d) The dynamics of As on
z for parameters from (a) (solid line), (b) (long-dashed line),
and (c) (short-dashed line). Horizontal dotted lines correspond
to values of stationary amplitudes predicted by the variational
approach.

resonance linear waves are generated due to the phase-
matching condition (see Refs. [13–16]). The rate at which the
soliton energy goes to linear waves depends on the values
of the soliton spectrum at these resonant frequencies. The
arguments presented above are valid for media with an ar-
bitrary order of dispersion. Resonance condition (14) can be
obtained rigorously from the analysis of small modulations of
the soliton (see, e.g., Refs. [13,15]).

In the absence of higher-order dispersion (β3 = β4 = 0),
the parameter 1/vs = η1(b) = dη(b)/db [see Eq. (7)]. There-
fore, for media with quadratic dependence only, ηsol(ω) is a
straight line that is parallel to the tangent to the dispersion
relation of linear waves at frequency b, and shifted up by the
amount depending on peak power A2

s [13,15,16]. In presence
of higher-order terms (β3 
= 0, β4 
= 0), the soliton velocity
1/vs differs from η1(b), therefore ηsol(ω) is not parallel to the
tangent [see Eq. (7)].

In media with quadratic and cubic dispersion terms (β4 =
0), resonant linear waves are always generated because ηsol(ω)
intersects η(ω). Though the theory developed predicts the
presence of solitons in media with cubic dispersion, these
solitons are not stationary due to the continuous transfer of
energy from solitons to linear waves. The lifetime of such
solitons can be large if the resonant frequency is far from
center b of the soliton spectrum. In contrast, when the quartic
term is included, one can find a range of frequencies b, for
which ηsol(ω) does not intersect with η(ω). For example, such
frequencies can be found near the extrema of η(ω).

The discussion above can be generalized with the fol-
lowing statement. Localized pulses are possible in nonlinear
media with any order of dispersion. If the highest-order
dispersion term is odd, then these pulses are nonstationary
(quasistationary) due to the continuous radiation of linear
waves. If the highest-order dispersion term is even, stationary
stable pulses may exist. A necessary condition in the latter
case is that the soliton dispersion relation does not intersect
with the dispersion relation of linear waves.
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We mention also the embedded solitons. The spectrum of
these localized waves is located within the spectrum of linear
waves (see, e.g., Refs. [18,19]). Embedded solitons appear
mainly in multicomponent systems [19], though they also
exist in scalar systems with cubic-quintic nonlinearity [18].
However, these solitons exist for particular relations of the
system parameters. To the best of our knowledge, embedded
solitons are not found for a system with cubic nonlinearity
only. Extensive numerical simulations of Eq. (1) show that
when the intersection of spectra occurs (with the soliton pa-
rameters found from the variational approach), no stationary
solitons exist for β4γ > 0.

To summarize, Eqs. (5)–(8) are valid when ηsol(ω) does
not intersect with η(ω). As it follows from Eq. (8), δs has
a contribution ∼γ E0. Line ηsol(ω) is shifted up with the
increase of E0 for γ > 0. Then, for β4 > 0 and large E0,
ηsol(ω) most likely intersects with η(ω). Therefore, case β4 <

0 is more favorable for the existence of stationary solitons,
when γ > 0.

III. NUMERICAL SIMULATIONS
AND TRANSFORMATIONS

In order to check theoretical predictions, we perform nu-
merical simulations of Eq. (1). For this purpose, we take all
variables as dimensionless. We consider three cases: (i) small
|β4|, (ii) small |β2|, and (iii) β2 > 0. We take such values of
parameters that there is no intersection of ηsol(ω) and η(ω).
The split-step Fourier method [1] is used. The size of the
computational window is Tnum = 30–50, and the number of
discretization points is 512–1024. Absorbing boundary con-
ditions are used to prevent the reflection of linear waves from
edges. Initial conditions are in the form of Eq. (4). A relatively
small value of β3 = 0.2 is taken for convenience to restrict the
size of the computational window because 1/v grows with an
increase of β3 [see Eq. (7)]. Theoretical predictions have a
similar accuracy for larger β3 as well.

Figures 1(a)–1(c) show the dynamics of solitons for the
three sets of parameters, and E0 = 2. Since initial profiles
are approximate, solitons adjust their shapes, emitting lin-
ear waves. In Fig. 1(c), the field at large z has oscillating
tails. Though trial function (4) is different from this form,
the theory gives acceptable values for stationary parameters
with a deviation of 10%–20%, even for larger values of β2

(�0.5). In Fig. 1(d), variations of the soliton amplitudes
for the dynamics in Figs. 1(a)–1(c) are presented. The am-
plitudes tend to stationary values via damped oscillations.
Also, Fig. 1 demonstrates the stability of solitons to small
modulations.

Dependencies of As and 1/vs on E0 and b are presented
in Fig. 2. Soliton velocity 1/vs is found as the average
velocity over range z ∼ 20–50 after the adjustment pro-
cess. There are small deviations of the predicted values
from those found from numerical simulations. However, the
theory gives correctly the overall trend of all dependen-
cies in Fig. 2. The soliton amplitude increases on E0, and
correspondingly, the soliton width as decreases on E0. Con-
tributions of the dispersion terms can be compared using the
characteristic lengths [1] LGVD = a2

s /|β2|, LTOD = a3
s /|β3|,

and LFOD = a4
s /|β4|. The smaller the length is, the more

FIG. 2. Soliton parameters as functions of (a) and (b) E0 at b = 0,
and (c) and (d) b at E0 = 2. Solid lines (circles): (β2, β3, β4) =
(−1, 0.2, −0.2); dashed lines (triangles): (−0.2, 0.2, −1); and dot-
ted lines (squares): (0.2, 0.2, −1). Points corresponds to parameters
found from numerical simulations of Eq. (1).

important is the contribution of the corresponding effect.
Since as varies on E0 and b, relative contributions of
the dispersion terms are changed as well. For example,
for (β2, β3, β4) = (−1, 0.2,−0.2), the corresponding lengths
are LGVD = 1.67, LTOD = 10.8, and LFOD = 13.9 at E0 = 2,
while at E0 = 10, LGVD = 0.124, LTOD = 0.218, and LFOD =
0.0767. Therefore, as E0 increases, the influence of TOD and
FOD increases as well.

Ratios of |β2| and |β4|, as in Figs. 1 and 2, can be
obtained in optical media at wavelengths close to zero dis-
persion points. We consider, as an example, the structure in
Ref. [2]. To find values of β3 and β4, we fit the dependence
β2(λ) in Fig. 1(d) of Ref. [2], therefore obtained values of
β3 and β4 can be slightly different from the original val-
ues. At λ = 1547.7 nm, we get β2 = −2.7 ps2 mm−1, β3 =
−3.4 ps3 mm−1, β4 = −0.40 ps4 mm−1. Then |β2/β4|a2

s =
LFOD/LGVD ≈ 5 [see Fig. 1(a)], where as = 0.85 ps is found
from Eq. (10) for E0 = 2 pJ and γ = 4.1 × 103 (W m)−1.
At λ = 1548.5 nm, we get β2 = −0.79 ps2 mm−1, β3 =
−2.8 ps3 mm−1, β4 = −1.5 ps4 mm−1. Then |β2/β4|a2

s ≈ 0.2
[see Fig. 1(b)], where as = 0.58 ps is found for the same E0

and γ .
The standard NLS equation, i.e., Eq. (1) with β3 = β4 = 0,

is invariant under the Galilean transformation. It means that a
moving solution of the NLS equation can be obtained from
a static solution by a corresponding change of variables. In
contrast, the full Eq. (1) is not Galilean invariant. The shape
of the soliton can be altered as the velocity changes. This
property is ignored in trial function (4). Nevertheless, this
function gives a reasonable approximation for solitons.

It is possible to establish relations between exact solu-
tions with different velocities of the two related models. For
a particular choice of β2, namely β2 = β2

3/(2β4), solutions
of Eq. (1) are related to solutions of the pure quartic NLS
equation. Let ψ (τ, z) be a solution of Eq. (1), then u(T, Z ),
defined from ψ (τ, z) = [u(T, Z )/g2] exp[i(KZ − T )], is a
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solution of the pure quartic NLS equation,

iuZ + β4

24
uT T T T + γ |u|2u = 0, (15)

where T = τ/g − z/(V g4) and Z = z/g4, g is a free parame-
ter, and

V = −6β2
4/

(
β3

3 g3), β2 = β2
3/(2β4),

 = −β3g/β4, K = −β4
3 g4/

(
24β3

4

)
. (16)

Alternatively, if u(T, Z ) is a solution of Eq. (15), then ψ (τ, z),
defined from u(T, Z ) = [ψ (τ, z)/g2] exp[i(Kz − τ )], is a
solution of Eq. (1), provided that τ = T/g − Z/(V g4), z =
Z/g4, and

β2 = β4
2/2, β3 = β4,

V = 6/(β4
3), K = −β4

4/8, (17)

where g and  are free parameters. Transformations (17) have
been obtained also in Ref. [8]. Therefore, static and moving
(in the retarded reference frame) solutions of Eq. (1) can be
obtained from solutions of Eq. (15) that move, in general, with
different velocities, and vice versa.

IV. CONCLUSIONS

In conclusion, we have demonstrated that stationary pulses,
generic quartic solitons, can propagate in media with GVD,

TOD, and FOD. Numerical simulations of Eq. (1) show that
these pulses are stable for sufficiently long distances. Condi-
tions in terms of the system parameters have been identified
for the existence of GQS. In particular, these solitons exist
both for the positive GVD and negative GVD parameters.
The parameters of stationary solitons for different energies
and soliton frequencies have been found approximately. The
values of these parameters are close to those found numer-
ically. It has been demonstrated that the soliton velocity in
general quartic media differs, in principle, from the inverse
of the group velocity of linear waves. It has been shown that
the resonance interaction of a pulse with linear waves can
prevent the existence of stationary solitons. Transformations,
that connect solutions of Eq. (1) with those of Eq. (15), have
been obtained. Our analysis provides strong support for a con-
jecture that stable solitons can exist in media with a general
form of dispersion if the highest-order dispersion term is even.

Our results suggest an alternative view on the dynamics of
pulses in dispersive nonlinear media, in particular, during su-
percontinuum generation. Usually, the dynamics is considered
as a perturbation of solitons of the standard (with GVD only)
NLS model. However, the dynamics can also be treated as
an adjustment of pulses to stationary solitons associated with
higher-order dispersion.
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