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Phase-modulated nonreciprocal photon blockade and transmission
via optomechanically induced Kerr nonlinearity
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We propose a scheme for implementing nonreciprocal transmission and a nonreciprocal photon blockade
(PB) in a whispering-gallery-mode optomechanical resonator. By decoupling the mechanical degree of freedom
under the Born-Oppenheimer approximation, the system is reduced to one incorporating Kerr-type nonlinearities
induced by optomechanical coupling, including self-Kerr nonlinearities of the clockwise (CW) and counterclock-
wise (CCW) modes and cross-Kerr nonlinearity between these two modes, thereby strong nonreciprocal PB and
transmission can be implemented. We demonstrate that the nonreciprocal PB and transmission are sensitive to the
relative phase θ between CW and CCW modes, allowing for switching between reciprocity and nonreciprocity of
PB and transmission through engineering the relative phase of external driving lasers. Numerical results obtained
with experimental parameters validate the feasibility of achieving perfect nonreciprocal PB and transmission.
Our paper presents a viable mechanism for the implementation of perfect nonreciprocal PB and transmission,
along with a versatile approach of phase modulation, which holds great promise in serving as a chiral single-
photon source in unidirectional quantum communications based on quantum nonreciprocal devices.
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I. INTRODUCTION

Single-photon sources play an important role in quantum
communication [1], quantum cryptography [2], and quantum
information processing [3]. One approach to achieve a single-
photon source is through the implementation of the photon
blockade (PB) effect, wherein the excitation of the first pho-
ton blocks the excitation of subsequent photons, resulting in
the antibunching distribution of photons. Conventional PB
is based on the anharmonicity of energy levels, which often
requires strong Kerr nonlinearity in the system. In 2010, Liew
et al. reported a new mechanism called unconventional PB and
demonstrated that strong photon antibunching can be achieved
in two coupled cavities with weak Kerr nonlinearity [4]. The
generated strong antibunching photons are originated from the
destructive quantum interference between different transition
pathways. Since then, abundant works on unconventional PB
have been studied in various systems, including those with
second- and third-order nonlinearities [5–8], nonlinear pho-
tonic molecules [9,10], quantum plexcitonic systems [11],
optomechanical systems [12–14], and a bimodal optical cavity
system [15,16].

Cavity optomechanics [17,18], based on radiation pres-
sure mediated light-matter coupling, has become a promising
research subject in quantum optics due to its important quan-
tum applications, such as precision sensing and measurement
[19–21], optomechanical cooling [22–24], and quantum in-
formation processing [25,26]. Compared with other systems,
the primary focus of optomechanics lies in quantum effects
induced by nonlinear optomechanical coupling. However,
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achieving a strong optomechanical interaction modulated by
radiation pressure poses a challenge in experiments. Con-
sequently, many efforts have been dedicated to enhancing
the nonlinear optomechanical coupling. Heikkilä et al. have
proposed to enhance the optomechanical coupling between
a mechanical and microwave resonator through the charge
tuning of the Josephson inductance [27]. Yin et al. have
demonstrated that the resonant optomechanical interaction
can be enhanced through periodic modulation [28]. Zhou
et al. have reported a scheme for enhancing nonlinearity
in an optomechanical system by utilizing atomic coherence
[29]. Lemonde et al. have experimentally shown the expo-
nential enhancement of the optomechanical coupling strength
using only additional linear resources [30]. The whispering-
gallery-mode (WGM) resonators have gained much attention
in cavity optomechanics due to the advantageous properties of
high-quality factors and a small optical mode volume. Some
substantial advancements have been made in exploring the
statistical properties of photons in WGM resonators [31–36].
Qu et al. investigated the photon statistical properties in a
WGM optomechanical system by driving two cavity modes
simultaneously [37]. Xu et al. demonstrated the nonreciprocal
transmission and nonreciprocal photon blockade of a weak
input optical field through the utilization of nonlinearity and
synthetic magnetism [38]. Meanwhile, the Sagnac effect in-
duced by a rotating WGM resonator is often employed to
engineer nonreciprocal devices, which enables signal trans-
mission in one direction while blocking it in the opposite
direction. Several nonreciprocal phenomena related to the
Sagnac effect have been deeply explored in spinning res-
onators, such as a nonreciprocal photon blockade [39–44],
nonreciprocal phonon blockade [45], nonreciprocal phonon
laser [46,47], nonreciprocal quantum entanglement [48,49],
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and nonreciprocal chaos [50]. These effects are essential for
engineering quantum devices, such as optical circulators [51],
isolators [52,53], amplifiers [54,55], and invisible sensing
[56,57], which play important roles in chiral information pro-
cessing networks.

Inspired by the above works, we investigate the control-
lable nonreciprocal photon blockade and transmission in a
WGM resonator optomechanical system which consists of
two counterpropagating optical modes [clockwise (CW) and
counterclockwise (CCW) modes] and a mechanical mode.
Distinguished from previous studies on nonreciprocity based
on the Sagnac effect, here we demonstrate that the optome-
chanically induced Kerr-type nonlinearity and the phase of
the driving field can be exploited to manipulate the non-
reciprocity of the system. Specifically, by employing the
Born-Oppenheimer (BO) approximation [58], the mechanical
mode is adiabatically decoupled from two optical modes, re-
sulting in the self-Kerr nonlinearity in both CW and CCW
modes, as well as the cross-Kerr nonlinearity between these
two modes through the radiation pressure. On the one hand,
we find that the PB effect can be observed simultaneously
for both the CW mode and CCW mode in the case of single
driving. On the other hand, the nonreciprocal transmission
and nonreciprocal PB can be realized by tuning the relative
phase between the two driving fields in the case of dou-
ble driving. Additionally, we also investigate the impacts of
backscattering-induced coupling and the Kerr-type nonlin-
earity on photon statistical properties. Our paper presents
an alternative regime for manipulating nonreciprocal PB and
nonreciprocal transmission, which does not rely on the rota-
tion of the resonator but instead utilizes the phase modulation
of the external driving field.

This paper is organized as follows. In Sec. II, we introduce
the system and derive the effective Hamiltonian by using the
BO approximation. In Sec. III, we present the quantitative
measures of the nonreciprocal PB effect and transmission, and
demonstrate the validity of the BO approximation by compar-
ing the dynamical evolutions of the second-order correlation
function under the original and effective Hamiltonians. Sec-
tion IV we focus on achieving a perfect nonreciprocal PB by
appropriately adjusting the relative phase between two driving
fields. In Sec. V, we study the impacts of backscattering
and Kerr nonlinearities on the PB effect and demonstrate the
high agreement between numerical simulations and analytical
results. Additionally, the bidirectional contrast ratio of non-
reciprocal PB is also examined. Finally, the conclusions are
presented in Sec. VI.

II. SYSTEM AND EFFECTIVE HAMILTONIAN
WITH BO APPROXIMATION

As shown in Fig. 1(a), we consider a WGM resonator
that supports two counterpropagating optical modes with an
identical frequency ωc, along with a mechanical mode with
frequency ωm. The CW and CCW modes can be excited by
injecting two external driving lasers from port 1 and port 2,
respectively, and both are coupled to the mechanical mode
via radiation pressure. Meanwhile, the presence of surface
roughness and material defects in WGM resonators can in-
evitably cause backscattering losses, resulting in the coupling

FIG. 1. (a) Schematic of a microdisk WGM resonator with
double-driving lasers from opposite directions. The driving fields
are evanescently coupled into the CW and CCW modes of the
microdisk resonator, where the two degenerate counterpropagating
optical modes interact with a mechanical mode through radiation
pressure, respectively. (b) A schematic diagram of the intermode cou-
plings of the system. (c) Diagram of the energy-level configuration
and the transition paths. The yellow arrows represent the excitations
of photons, and the red arrows denote the coherent coupling between
the CW and CCW modes.

between the clockwise (CW) and counterclockwise (CCW)
modes [59]. Figure 1(b) has illustrated the interactions in
the system. In the rotating frame with respect to driving
frequency ωL, the system can be described by the Hamiltonian
(h̄ = 1)

H1 = �a†
cwacw + �a†

ccwaccw + J (a†
cwaccw + acwa†

ccw)

+ ε(a†
cwe−iθ1 + a†

ccwe−iθ2 + H.c.) + Hm, (1)

Hm = ωmb†b + g(a†
cwacw + a†

ccwaccw)(b† + b), (2)

where Hm is the Hamiltonian relevant to the mechanical mode
including the interaction between the mechanical mode and
the coupled optical WGM modes, a (a†) and b (b†) stand
for the annihilation (creation) operators of optical modes
and mechanical mode, respectively, and the subscripts “cw”
and “ccw” represent two optical WGM modes. � = ωc −
ωL is the detuning of optical modes, J the strength of the
backscattering-induced coupling between the CW and CCW
modes, and g the optomechanical coupling strength. θ j ( j =
1, 2) and ε = √

2κPin/h̄ωL are the phase and amplitude of the
driving fields, with Pin being the input laser power and κ being
the optical decay rate. Noting that the cavity detuning � can
be tuned by controlling the frequency ωL of the external driv-
ing field so that it can be much smaller than the mechanical
frequency ωm. Under this condition, the mechanical mode can
be regarded as a fast variable, allowing for the application of
BO approximation to Hm [58].

By introducing the mechanical position and momentum

operators with effective mass m, x =
√

1
2mωm

(b + b†), and p =
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−i
√mωm

2 (b − b†), Hm can be rewritten as

Hm = p2

2m
+ 1

2
mω2

mx2 +
√

2mωmg(a†
cwacw + a†

ccwaccw)x

= p2

2m
+ 1

2
mω2

mX 2 − g2

ωm
(a†

cwacw + a†
ccwaccw)2, (3)

where X = x +
√

2
mω3

m
g(a†

cwacw + a†
ccwaccw) is the mechanical

displacement operator which includes a correction induced
by the radiation pressure. Then by defining the annihilation
operator A = √mωm

2 (X + ip
mωm

), Eq. (3) can be further written
as

Hm = ωmA†A − U1a†
cwacwa†

cwacw − U2a†
ccwaccwa†

ccwaccw

−Ua†
cwacwa†

ccwaccw, (4)

where U1 = U2 = g2

ωm
and U = 2g2

ωm
are the self- and cross-

Kerr nonlinearities induced by optomechanical coupling,
respectively. It can be seen that under the BO approxima-
tion condition, the mechanical mode has been decoupled
from these two WGM modes, and strong Kerr nonlinearities
can be achieved by varying optomechanical coupling. After
performing a unitary transformation V = exp[−iθ1a†

cwacw −
iθ2a†

ccwaccw], the effective Hamiltonian of the system can be
written as

Heff = �a†
cwacw + �a†

ccwaccw

+ J (a†
cwaccweiθ + acwa†

ccwe−iθ )

−U1a†
cwacwa†

cwacw − U2a†
ccwaccwa†

ccwaccw

−Ua†
cwacwa†

ccwaccw

+ ε(a†
cw + a†

ccw + H.c.), (5)

where θ = θ1 − θ2 is the phase difference of the two driv-
ing lasers. We can see from the above effective Hamiltonian
that the parts relevant to the optomechanical interaction in
the system are transformed into self-Kerr and cross-Kerr
nonlinearities by employing the BO approximation to adia-
batically eliminate the mechanical mode. Moreover, the phase
difference between the driving fields is also a controllable
parameter for implementing the nonreciprocal PB effect and
nonreciprocal transmission.

III. SECOND-ORDER CORRELATION FUNCTION AND
TRANSMISSION COEFFICIENT

According to the input-output relations [60], we have
a1(2),in = ε/

√
κ/2 and a3(4),out = √

κ/2acw(ccw) for photons
input from port 1(2) and output from port 3(4), then the
transmission coefficient can be defined by

T1(2)→3(4) ≡ 〈a†
3(4),outa3(4),out〉

〈a†
1(2),ina1(2),in〉

= κ2

4ε2
〈a†

cw(ccw)acw(ccw)〉. (6)

In addition, the quantum statistical properties of the trans-
mitted photons can be described by equal-time second-order
correlation functions in the steady state, i.e., for photons

FIG. 2. (a) The dynamical evolution of equal-time second-order
correlation functions g(2)(0). The red solid line and red dashed-
dotted line represent the correlation function governed by the initial
Hamiltonian H1 in two different cases: θ1 = θ2 = 0 and θ1 �= θ2,
respectively. On the other hand, the blue lines with dots and square
markers depict the correlation function governed by the effective
Hamiltonian Heff in the above two scenarios. (b) The dynamical
evolution of time-delayed second-order correlation function g(2)(τ )
in CW mode (CCW mode) when θ1 = θ2 = 0. The parameters are
taken as J/κ = 0.5, U/κ = 10, �/κ = 5, ωm/κ = 50, ε/κ = 0.01,
γ /κ = 0.01.

transmitted from port 1(2) to port 3(4)

g(2)
1(2)→3(4)(0) ≡ 〈a†

3(4),outa
†
3(4),outa3(4),outa3(4),out〉

〈a†
3(4),outa3(4),out〉2

= 〈a†
cw(ccw)a

†
cw(ccw)acw(ccw)acw(ccw)〉

〈a†
cw(ccw)acw(ccw)〉2

. (7)

The case of g(2)(0) < 1 corresponds to sub-Poisson statistics,
implying the photon antibunching effect. Conversely, the case
of g(2)(0) > 1 corresponds to super-Poisson statistics, referred
to as the photon bunching effect. In the limit g(2)(0) → 0, a
complete photon blockade can be observed.

The dynamical evolution of the equal-time second-order
correlation function can be obtained by numerically solving
the master equation

ρ̇ = −i[H, ρ] + κ

2
L[o]ρ, (8)

where L[o]ρ = 2oρo† − (o†oρ − ρo†o) (o = acw, accw) de-
notes a Lindblad term for operator o.

Here, we take the experimental parameters reported in
the Refs. [61,62] to satisfy the condition of BO approx-
imation, i.e., m = 10 ng, λ = 1550 nm, Q = 104–108, and
R = 20 µm. In Fig. 2(a), the dynamical evolution of the
equal-time second-order correlation function is depicted
governed by the initial Hamiltonian H1 and the effective
Hamiltonian Heff , respectively. It can be observed that the
correlation function gradually converges to a stable value
less than 1 over time, indicating the sub-Poisson statistics
of photons. Furthermore, the second-order correlation func-
tion governed by Heff exhibits excellent agreement with
that obtained from the initial Hamiltonian H1, irrespec-
tive of whether θ1 and θ2 are equal. This validates the
rationality of the effective Hamiltonian under the Born-
Oppenheimer approximation when all parameters are satis-
fied. Meanwhile, the time-delayed second-order correlation
function g(2)(τ ) = 〈a†(t )a†(t + τ )a(t + τ )a(t )〉/〈a†(0)a(0)〉2

is depicted in Fig. 2(b), indicating the conditional probability
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FIG. 3. Exploring the photon statistical properties in the CW mode and CCW mode for single- and double-driving cases. (a) and
(b) describe the logarithmic second-order correlation function g(2)(0) and transmission coefficient T vs the detuning �/κ under single driving.
(c) and (d) illustrate the same analysis for the double-driving case. The parameters are the same as in Fig. 2.

of detecting a second photon at t + τ given that a photon has
been previously detected at time t . Evidently, the antibunch-
ing state is observed when g(2)(τ ) > g(2)(0) and g(2)(0) � 1,
indicating that the delayed second-order correlation function
gradually approaches 1 as τ increases. This suggests that the
photon number distribution tends towards a coherent state at
longer time delays, providing clear evidence of photon anti-
bunching.

IV. PHASE-MODULATED NONRECIPROCAL
PB AND TRANSMISSION

In this section, we focus on the implementation of nonre-
ciprocal PB and transmission by applying the driving phase.
We first consider the case of single driving, i.e., only the CW
mode is driven by an external laser field with a phase θ1 = 0,
as illustrated in the first row of Fig. 3. The second-order
correlation function g(2)(0) and transmission coefficient T are
plotted as functions of the detuning frequency � for both
two optical modes in Figs. 3(a) and 3(b). The PB effect can
be observed simultaneously in both optical modes, but at the
optimal PB point �/κ = 5 these two modes exhibit reciprocal
transmission. Second, in the case of double-driving lasers with
the phase shift θ = 0, i.e., the CW and CCW modes are driven
simultaneously as shown in the second row of Fig. 3, both the
PB effect and transmission coefficient exhibit symmetric in
CW and CCW modes as shown in Figs. 3(c) and 3(d) due to
the symmetry of structure.

The occurrence of the photon antibunching effect can be
explained by destructive quantum interference between dif-
ferent transition pathways. As seen from Fig. 1(c), under
the condition of single driving on the CW mode, the in-

terference occurs between the pathway |1, 0〉
√

2ε−−→ |2, 0〉 and

|1, 0〉 J−→ |0, 1〉 ε−→ |1, 1〉
√

2J−−→ |2, 0〉 for the CW mode and be-

tween |1, 0〉 J−→ |0, 1〉
√

2ε−−→ |1, 1〉
√

2J−−→ |0, 2〉 and |1, 0〉
√

2ε−−→

|2, 0〉
√

2J−−→ |1, 1〉
√

2J−−→ |0, 2〉 for the CCW mode, thereby the
two-photon state |2, 0〉 and |0, 2〉 are suppressed. However, in
the case of simultaneous driving on both optical modes, addi-

tional transition pathways emerge, e.g., |1, 0〉 ε−→ |1, 1〉
√

2J−−→
|2, 0〉, |0, 1〉 ε−→ |1, 1〉

√
2J−−→ |2, 0〉, and so on, resulting in the

perfect symmetry of these transition pathways for CW and
CCW modes. Consequently, the two optical modes exhibit
reciprocity of the photon statistical properties for θ1 = θ2.

In order to achieve the quantum nonreciprocity of the pho-
tons, we modulate the relative phase of external driving fields
to implement nonreciprocal PB and transmission. In Fig. 4,
the correlation function g(2)(0) and transmission coefficient
T are illustrated as functions of the detuning frequency �

and the relative phase θ . Around the phase shift θ = π/2,
pronounced antibunching [g(2)

1→3(0) < 0.01] is observed in
the transmitted photons from port 1 to port 3 in the CW
mode, within the region indicated by the red dashed line
in Fig. 4(a), accompanied by high transmission (T1→3 ≈ 1)
within the same region as shown in Fig. 4(d). Conversely, a
contrasting behavior is observed around θ = 3π/2, depicted
by the red slender area in Fig. 4(a) and the blue slender area
in Fig. 4(d). Meanwhile, the photons transmitted from port
2 to port 4 in the CCW mode exhibit significant antibunch-
ing [g(2)

2→4(0) < 0.01] within the region indicated by the blue
dashed line around θ = 3π/2 in Fig. 4(b), along with high
transmission (T2→4 ≈ 1) within the region indicated by the
blue dashed line in Fig. 4(e). Similarly, a vice versa behavior is
observed around θ = π/2. Noticeably, the nonreciprocal PB
and nonreciprocal transmission can be achieved for a differ-
ent relative phase around �/κ = 5. The dark red and light
blue shadows in Figs. 4(c) and 4(f) visually demonstrate the
optimal nonreciprocity for θ = π/2 and 3π/2, respectively.
Physically, the phenomena of the strong antibunching effect
and high transmission are caused by the enhanced population

053526-4



PHASE-MODULATED NONRECIPROCAL PHOTON BLOCKADE … PHYSICAL REVIEW A 109, 053526 (2024)

(a) (b) (c)

(d) (e) (f)

FIG. 4. (a), (b) The logarithmic equal-time second-order correlation function g(2)
1(2)→3(4)(0) and (d), (e) transmission coefficient T1(2)→3(4)

as a function of the detuning �/κ and the relative phase θ/π . (c) g(2)
1(2)→3(4)(0) and (f) T1(2)→3(4) vs the phase difference of the double-driving

lasers with the detuning �/κ = 5. The dark red and light blue shades represent the optimal nonreciprocity regions. Other parameters are the
same as in Fig. 2.

of single-photon states in the two modes, which originates
from the destructive interference between different paths for
two-photon excitation.

In general, the physical mechanism of the photon anti-
bunching effect can be verified by the equal-time higher-order
correlation function

g(n)
i (0) = 〈a†n

i an
i 〉

〈a†
i ai〉n

(n > 2). (9)

It characterizes the n-PB with the condition of g(n)
i (0) � 1,

g(n+1)
i (0) < 1, or photon-induced tunneling with the condition

of g(n)
i (0) > 1, a phenomenon that the absorption of the first

photon contributes to the absorption of subsequent photons.
To verify the nonreciprocal single PB, the second-order and
third-order correlation functions are depicted versus the de-
tuning �/κ for a relative phase θ = π/2 in Fig. 5. Figure 5(a)

FIG. 5. Logarithmic equal-time second-order correlation func-
tion g(2)

i (0) and third-order correlation function g(3)
i (0) vs the

detuning �/κ for the CW mode in (a) and for the CCW mode in
(b) when the relative phase θ = π/2. Other parameters are the same
as in Fig. 2.

shows the values of g(2)(0) and g(3)(0) less than 1 around the
detuning �/κ = 5 for the CW mode, thereby demonstrates a
perfect single PB of the CW mode. Meanwhile, a bunching ef-
fect can be observed in the CCW mode as shown in Fig. 5(b),
implying photon-induced tunneling for the same condition.
In contrast, at a relative phase of θ = 3π/2, the CW mode

FIG. 6. Logarithmic equal-time second-order correlation func-
tion g(2)(0) in (a) and the transmission coefficient T in (b) as
functions of �/κ and U/κ for J/κ = 0.5. Logarithmic second-order
correlation function g(2)(0) in (c) and the transmission coefficient T
in (d) as functions of �/κ and J/κ for U/κ = 10. The white dotted
line denotes the analytical solutions in Eq. (11). Other parameters are
the same as in Fig. 2.
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FIG. 7. Influence of driving strength ε/κ in (a) and the Kerr nonlinear strength U/κ in (b) on the bidirectional contrast ratio C, where the
white dashed lines denote C = 0.9. (c) The equal-time second-order correlation function g(2)(0) and mean photon number N in logarithmic
scale vs the optical detuning for the CW (CCW) mode. Numerical results and analytical results are represented by blue circle markers and blue
solid lines for the correlation function, respectively. They are also represented by red square markers and red dashed lines for the mean photon
number, respectively. Other parameters are the same as in Fig. 2.

exhibits pronounced bunching behavior while the CCW mode
demonstrates an antibunching effect, which is not illustrated
here. The above features provide a valid method for achiev-
ing a unidirectional nonclassical light through external phase
modulation, which can be utilized as a quantum unidirectional
isolator in quantum networks.

V. ANALYTICAL RESULTS

The quantum statistics of photons can be obtained by
solving the Schrödinger equation with a non-Hermitian
Hamiltonian that incorporates cavity decay Hnon = Heff −
i κ

2 a†
cwacw − i κ

2 a†
ccwaccw. In the weak driving limit ε � κ , the

occupations for the steady state are obtained as

C10 = 2ε(2Jeiθ + A)

−4J2 + A2
,

C01 = 2ε(2Je−iθ + A)

−4J2 + A2
,

C20 = ε2[J2U + Jeiθ (Jeiθ + 2B)D + 2AB2]√
2[(4J2 − A2)(J2 − B2)B]

,

C02 = ε2[J2U + Je−iθ (Je−iθ + 2B)D + 2AB2]√
2[(4J2 − A2)(J2 − B2)B]

, (10)

where Cnm denotes the probability amplitude of the state
|n, m〉 with n photons in the CW mode and m photons in the
CCW mode and the parameters �′ = � − i κ

2 , A = U − 2�′,

FIG. 8. (a) The logarithmic equal-time second-order correlation
function g(2)(0) and (b) transmission coefficient T as a function of
the driving strength ε/κ , respectively. Other parameters are the same
as in Fig. 2.

B = U − �′, D = 3U − 4�′. Then the analytical expressions
of the second-order correlation functions can be calculated as

g(2)
1(2)→3(4)(0) = 2|C20(02)|2

|C10(01)|4 . (11)

From the above expressions, it is clearly that the second-order
correlation function g(2)(0) is dependent on the relative phase
θ of two external driving fields.

To study the effects of Kerr nonlinearity U and backscat-
tering coupling J on the nonreciprocal PB, the logarithmic
second-order correlation function g(2)(0) and transmission co-
efficient T are plotted versus �/κ and U/κ in Figs. 6(a) and
6(b) and versus �/κ and J/κ in Figs. 6(c) and 6(d) for the
CW mode as the relative phase θ = π/2, where the white
dashed lines represent the optimal parametric condition ob-
tained from Eq. (11). We noticed that the numerical results
exactly coincide with the analytical results, indicating the
perfect nonreciprocal PB and transmission can be achieved.
Moreover, a stronger nonlinearity strength U is beneficial for
enhancing the antibunching effect as shown in Fig. 6(a), while
Fig. 6(c) reveals that an overly strong backscattering coupling
(J > κ) between the two modes can weaken the destructive
interference between the different transition paths under the
current weak driving condition (ε < κ), leading to the decline
of the photon blockade. For the CCW mode, antibunching and
transmission occur as θ = 3π/2, which has not been plotted
here.

To further quantitatively describe the degree of nonre-
ciprocity, we define a bidirectional contrast ratio C (satisfying
0 � C � 1) with the form

C =
∣∣∣∣∣
g(2)

1→3(0) − g(2)
2→4(0)

g(2)
1→3(0) + g(2)

2→4(0)

∣∣∣∣∣, (12)

where C = 1 corresponds the ideal nonreciprocal PB effect
and C = 0 implies the reciprocity. From Fig. 7(a) in which
the bidirectional contrast ratio C is depicted versus the relative
phase θ/π and driving strength ε/κ , we can find weak driv-
ing is necessary for achieving a nearly perfect nonreciprocity
for the relative phase θ = π/2 or θ = 3π/2. Meanwhile, the
strong nonreciprocity at around U/κ = 5, 10 can be observed
as shown in Fig. 7(b). Moreover, the equal-time second-order
correlation function g(2)(0) and mean photon number N (N =
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〈a†a〉) in the logarithmic scale versus the optical detuning
for the CW (CCW) mode are plotted in Fig. 7(c). It can be
observed that the peak of the average photon number appears
at the detuning with the lowest second-order correlation func-
tion. These observations further provide support to the former
findings. Finally, the effect of driving strength on nonre-
ciprocity is investigated. As shown in Fig. 8, the second-order
correlation function g(2)(0) increases and the transmission
coefficient decreases with increasing driving strength ε, which
is unfavorable for the PB and transmission. This is attributed
to the fact that a strong driving field can introduce additional
noise in the resonator, which reduces the probability of the
system being in a single-photon state. A weak driving strength
also guarantees the optimal nonreciprocity, which is consis-
tent with Fig. 7(a).

VI. CONCLUSIONS

In conclusion, we propose an implementation of nonre-
ciprocal PB and transmission in a WGM optomechanical
system. Under the BO approximation, the self- and cross-Kerr
nonlinearities are resulted from the optomechanical coupling.

The nonreciprocal PB can be manipulated by adjusting the
phase shift θ between external driving fields. Numerical sim-
ulations demonstrate that reciprocal unconventional PB can
be implemented at θ = 0, while the nonreciprocal PB and
transmission can be switched on for the CW mode as the
relative phase θ = π/2 and for the CCW mode θ = 3π/2.
Notably, optomechanically induced Kerr nonlinearities play a
crucial role in generating antibunching effects, which can be
further enhanced by increasing the optomechanical coupling
strength. Finally, analysis of the bidirectional contrast ratio C
confirms that perfect nonreciprocal PB and transmission are
achievable. Our proposed scheme demonstrates an effective
regime for quantum nonreciprocity and provides a method of
phase manipulation that holds promising potential for applica-
tions in chiral single-photon sources, quantum switches, and
unidirectional quantum isolators.
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