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Quadratic phase mismatch in multisoliton interferograms based on time-stretched dispersive
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The time-stretched dispersive Fourier transform method (TS-DFT) has been widely used to analyze multisoli-
ton structures in ultrafast lasers, featuring shot-by-shot access to their spectral interferograms. Most exemplary
structures consist of two interacting solitons whose spacing and relative phase can be simply retrieved from
their interferograms mapped in time domain by TS-DFT. However, such analysis has not been elaborated for
structures with more solitons that could result in a complicated TS-DFT signal. Here we report our theoretical
inference of a deterministic discrepancy when retrieving structures consisting of more than two solitons with
their TS-DFT signal. We unveil the underlying source of these discrepancies as a result of the quadratic phase
mismatch induced by TS-DFT and correspondingly propose an improved retrieval method. Our work may
provide a theoretical guideline for conducting unambiguous analysis of complex multipulse structures using
TS-DFT, particularly when the dispersive stretching ratio is limited.
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I. INTRODUCTION

Multisoliton structures are ubiquitous in ultrafast lasers
and are epitomized by the so-called soliton molecules, which
feature compact structures that stem from direct interactions
between the particlelike optical solitons and host a series of
inspiring light-matter analogies [1–4] and nonbinary encoding
possibilities [5], therefore attracting interdisciplinary inter-
est. The dissipative nature of ultrafast lasers often makes the
interaction mechanism between optical solitons highly com-
plicated [6–8]. Nevertheless, the key parameters that indicate
the strength and direction of the interactions are simply the
spacing and relative phase of the interacting solitons, partic-
ularly when they interact directly through partial overlapping
[9,10], which can be controlled in different ways [5,11,12].

In practice, the dynamics of multisoliton structures have
been routinely analyzed using the time-stretched dispersive
Fourier transform (TS-DFT) method [13–15], which can pro-
vide direct time-frequency mapping for ultrafast laser fields.
Using dispersive temporal stretching, the TS-DFT method
enables shot-by-shot access to the spectral interferograms
of multisoliton structures mapped in the time domain, from
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which the spacing and relative phase between the solitons can
be retrieved simultaneously [2,3]. Previous reported studies
on multisoliton dynamics in ultrafast lasers mainly focused
on double-soliton structures [2,3] which produce simple in-
terferograms that can be linearly mapped in the time domain
by TS-DFT. The evolving soliton spacing and relative phase
can then be readily retrieved shot by shot from the period
and relative offset of the interferometric fringe beneath the
spectral envelope [16].

Recently, complex multisoliton structures in ultrafast lasers
that involve a greater number of solitons, e.g., triple-soliton
molecules [16–20] or beyond [21–25], have attract wide inter-
est due to the rich dynamics of collective soliton interactions
and extended flexibility in the manipulation of ultrafast laser
fields. However, the precise retrieval of these structures di-
rectly from their TS-DFT signal becomes challenging due to
the fact that structures consisting of more than two solitons
would result in complex interferograms with multiple inter-
leaved interferometric fringes beneath the spectral envelope,
leading to potential ambiguities during the retrieving proce-
dure. Here we report a theoretical finding that the TS-DFT
signal of triple-soliton structures (or even a greater num-
ber of solitons) is actually not a linear mapping of their
genuine spectral interferograms, even when the stationary
phase approximation [14,26] has been incorporated. We un-
veil that the quadratic phase profile induced by the dispersive
stretching could cause phase mismatch between each pair
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of solitons in these structures and, eventually, lead to de-
terministic discrepancies when retrieving the relative phases
between these solitons. Such discrepancies become prominent
especially when the stretching ratio is limited when using
the TS-DFT method. Both analytical and numerical analyses
are performed to clearly identify the cause and extent of this
discrepancy. Based on this analysis, we also propose an im-
proved retrieval method that can eliminate the quadratic phase
mismatch.

II. THEORETICAL ANALYSIS

A. The quadratic phase term induced by TS-DFT

Using the TS-DFT method, the spectral profile of ultrafast
pulses can be mapped in the time domain provided there is
sufficient temporal stretching in a length of dispersive fiber
[26]. The linear pulse propagation in an optical fiber with
group velocity dispersion β2 is governed by

∂U (ζ , τ )

∂ζ
+ i

2
sgn(β2)

∂2U (ζ , τ )

∂τ 2
= 0, (1)

in which U (ζ , τ ) is the normalized pulse profile that gives
a unit peak power, ζ = z/LD gives a normalized propaga-
tion distance, where LD is the dispersion length defined as
LD = T 2

0 /|β2|, and τ = T/T0 gives a normalized time in a
moving frame, with T0 the pulse duration. The analytic form
of U (ζ , τ ) can be obtained as

U (ζ , τ ) = 1

2π

∫ ∞

−∞
Ũ (0, ω̃) exp

[
i

2
sgn(β2)ζ ω̃2 − iω̃τ

]
dω̃,

(2)

where Ũ (0, ω̃) is the complex amplitude spectrum of U (0, τ ).
Here we use normalized angular frequency ω̃ defined as ω̃ =
T0(ω − ω0), where ω0 is the carrier frequency of the pulse.
Given large enough ζ that entails a stationary phase approx-
imation [26], the resultant pulse envelope can be obtained
assuming that the integral term in Eq. (2) is valuable only at
ω̃ = τ/[sgn(β2)ζ ], which gives

U (ζ , τ ) =
exp

[ − isgn(β2) τ 2

2ζ

]
[1 − isgn(β2)]

√
πζ

Ũ

[
0, sgn(β2)

τ

ζ

]
. (3)

Thus, it can be seen from Eq. (3) that the time-domain
waveform will be monotonically broadened to its frequency
spectrum Ũ (0, ω̃) with a linear mapping of frequency in the
time domain as

ω̃ = sgn(β2)
τ

ζ
. (4)

We can notice that there is a complex phase term
exp[−isgn(β2)τ 2/2ζ ] in Eq. (3) with a quadratic relation with
τ (quadratic phase) in addition to the complex amplitude spec-
trum Ũ (0, ω̃). When the intensity field is detected (e.g., using
a fast photodetector), this quadratic phase will disappear, lead-
ing to a simple intensity signal which is directly proportional
to the intensity spectrum profile, i.e.,

|U (ζ , τ )|2 = 1

2πζ

∣∣∣∣Ũ
[

0, sgn(β2)
τ

ζ

]∣∣∣∣
2

. (5)

It is critical to emphasize that the stationary phase approx-
imation used in the derivation from Eq. (2) to Eq. (4) is valid
only if the imaginary part of Ũ (0, ω̃) is ω̃ independent. As
a result, for a single pulse profile without any chirp in the
carrier phase, the TS-DFT signal [Eq. (5)] and its spectral in-
terferogram conform to a linear mapping relationship given by
Eq. (4), with the linear relationship sharing the same temporal
origin with the pulse profile U (0, τ ). However, for two or
more pulse structures, the spacing between the pulses brings
a ω̃-dependent linear phase shift to Ũ (0, ω̃), thus making
the stationary phase approximation condition invalid for the
above derivations. Consequently, the TS-DFT signal is no
longer a linear mapping of its genuine spectral interferogram.
This is the underlying reason for the complication of the
multipulse TS-DFT signal, as we will derive in detail below.
Therefore, in the following derivations, we apply the station-
ary phase approximation as a valid assumption only for each
single pulse when considering the TS-DFT signal for two- or
more-pulse structures, and consequent discrepancy between
the temporal and spectral interferograms can then be derived
as a result of the multipulse structure.

B. Multisoliton interferograms by TS-DFT

1. The case with double-soliton structure

In a double-soliton structure, the temporal profile of each
individual soliton Uj can be written as

Uj (0, τ ) = U (0, τ − τ j ) exp(−iϕ j ), j = 0, 1, (6)

where U (0, τ ) represents a soliton profile at origin with null
carrier phase, whose Fourier transform is Ũ (0, ω̃), while τ j

and ϕ j are the temporal position and carrier phase of two
pulses in the normalized time coordinate. The correspond-
ing spectral interferogram |Ũm|2 of the double-pulse structure
Um = ∑

j Uj can then be obtained as

|Ũm(0, ω̃)|2 = |Ũ (0, ω̃)|2[2 + cos (	τ10ω̃ − 	ϕ10)], (7)

where 	τ10 = τ1 − τ0 and 	ϕ10 = ϕ1 − ϕ0. Here the spec-
tral envelope and the interferometric fringe shared the same
frequency coordinate, both referring to zero normalized fre-
quency (or at the carrier frequency). However, when mapping
this interferogram in the time domain, the envelope and the
interferometric fringe of the TS-DFT signal do not necessarily
share the same temporal coordinate (i.e., with temporal offset
between each other), as we will derive below.

The complex amplitude of the TS-DFT signal of each
individual pulse can be written as [see Eq. (3)]

Uj (ζ , τ ) = exp(i
 j )

(1 + i)
√

πζ
Ũ

(
0,−τ − τ j

ζ

)
, j = 0, 1. (8)

Here we assume sgn(β2) = −1 for simplicity since we mostly
use the standard SMF-28 optical fiber, which has anomalous
dispersion for the TS-DFT method. The quadratic phase term

 j can be expressed as


 j = (τ − τ j )2

2ζ
− ϕ j

= τ 2

2ζ
− τ j

(
τ − 1

2τ j

ζ

)
− ϕ j, j = 0, 1. (9)
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FIG. 1. Double-soliton TS-DFT signal schematic. (a) A double-
soliton structure in the normalized time coordinate. The gray dashed
line gives the envelope profile. The two solitons are denoted as S0, S1,
with their temporal positions at τ0 and τ1, respectively. (b) The linear
part of the quadratic phase 
 j, j = 0, 1 [second plus third terms in
Eq. (9)]. S′

1 denotes the special case when ϕ1 = ϕ0 such that linear
parts of 
0 and 
1 intersect at τ̄10. In general, the phase difference
between S0 and S1 can be obtained at τ̄10 as the vertical distance
between the two lines. (c) The TS-DFT signal of the double-soliton
structure. The orange dashed curve gives the sinusoidal fringes when
	ϕ10 = 0. Given 	ϕ10 �= 0, the sinusoidal fringe shifts correspond-
ingly beneath the envelope (the gray dashed line), which is given by
the solid blue curve.

The first quadratic term τ 2/2ζ is the same for every pulse; thus
it plays no role in the TS-DFT signal that only concerns the
difference between these quadratic phase terms. The second
term represents a linearly changing phase difference across
the envelope profile, while the third term (the intrinsic carrier
phase) adds an offset upon it. These last two terms determine
the exact period and offset of the sinusoidal fringe in the result
[Figs. 1(b) and 1(c)]. After sufficient dispersive stretching,
the envelope width of the two pulses becomes much larger
than the initial pulses’ spacing and approximately merges at
the middle point of the two pulses, τ̄10 = (τ1 + τ0)/2, which
can be regarded as the center of the TS-DFT signal envelope.
The power of the TS-DFT signal of a double-soliton structure
can be expressed as

|Um(ζ , τ )|2 = 1

2πζ

∣∣∣∣Ũ
(

0,−τ − τ̄10

ζ

)∣∣∣∣
2

[2 + cos (
1 − 
0)],

(10)

where we replace both τ0 and τ1 of each soliton envelope
with τ̄10 due to the sufficient stretching. The phase difference

1 − 
0 between the two time-stretched envelopes can be

expressed as


1 − 
0 = −	τ10
τ − τ̄10

ζ
− 	ϕ10. (11)

By comparing Eqs. (10) and (7), we can notice that the
TS-DFT signal and spectral interferogram satisfy a linear
mapping relation, i.e.,

ω̃double = −τ − τ̄10

ζ
, (12)

which differs from Eq. (4) only by a temporal shift τ̄10 (the
middle point of the double-soliton structure). Here we put a
subscript to ω̃ to emphasize that such mapping relation is valid
only for a double-soliton structure. Using τ̄10 as the reference
point for analyzing the phase difference between pulses, 	ϕ10

can be retrieved without discrepancy.

2. The case with triple-soliton structures

Given more than two solitons in the structure, the TS-DFT
signal features multiple interleaved sinusoidal fringes that
lead to an intricate profile. Importantly, similar to the case
in the double-soliton case, we unveiled that the envelope and
each sinusoidal fringe in the TS-DFT signal actually refer to
different origins in the temporal coordinate due to the phase
mismatch. Such mismatch can no longer be removed by a
simple temporal offset and will eventually cause discrepancies
when still retrieving the relative phase by the form of its
spectral interferogram, as will be illustrated below.

The spectral interferogram of a triple-soliton structure can
be expressed as

|Ũm(0, ω̃)|2 = |Ũ (0, ω̃)|2
⎡
⎣3 + 2

2∑
j=1

j−1∑
k=0

× cos(	τ jkω̃ − 	ϕ jk )

⎤
⎦, (13)

where the interferometric fringes consist of three different
sinusoidal modulations, each corresponding to one pair of
solitons among the three solitons. The TS-DFT signal of the
triple-soliton structure, on the other hand, can be expressed as

Um(ζ , τ ) =
2∑

j=0

exp(i
 j )

(1 + i)
√

πζ
Ũ

(
0,−τ − τ j

ζ

)
, (14)

where 
 j satisfies Eq. (9). Similar to the case with a double
soliton, the stretched envelope centers approximately at the
averaged position of all three solitons, i.e.,

τ̄ = 1

3

2∑
j=0

τ j . (15)

Then, we can rewrite Eq. (14) as

|Um(ζ , τ )|2 ≈ 1

2πζ

∣∣∣∣Ũ
(

0,−τ − τ̄

ζ

)∣∣∣∣
2

×
⎡
⎣3 + 2

2∑
j=1

j−1∑
k=0

cos
(

 j − 
k

)⎤⎦, (16)
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where the phase difference term 
k − 
 j , similar to the case
in Eq. (11), can be expressed as


 j − 
k = −	τ jk
τ − τ̄ jk

ζ
− 	ϕ jk, (17)

in which

τ̄ jk = τ j + τk

2
. (18)

By comparing Eqs. (13) and (16), we can find out that the
signal envelope Ũ has a mapped frequency ω̃envelope in the time
domain expressed as

ω̃envelope = −τ − τ̄

ζ
, (19)

while the sinusoidal fringe generated by each pair of solitons
(with the middle point position at τ̄ jk) has its own mapping
relation with a different offset,

ω̃ jk = −τ − τ̄ jk

ζ
. (20)

Here, ω̃ jk denotes the mapped frequency for the sinusoidal
fringe produced by solitons j and k. Therefore, although
the envelope and fringes of the TS-DFT signal share the same
magnification ratio in a linear mapping relationship, they have
different temporal offsets due to the mismatch between the
averaged position of all pulses, τ̄ , and each pair of pulses, τ̄ jk .

We illustrate this mismatch visually in Fig. 2, in which
we can see the three lines with different slopes [Fig. 2(c)],
each representing the phase of one soliton caused by the
different temporal positions. Generally, these lines cannot
intersect at the same point and a mismatch will occur
when using the averaged position τ̄ as the mutual tempo-
ral offset for both the signal envelope and the sinusoidal
fringes beneath it. Although this mismatch has a trivial
effect upon the envelope profile given sufficient temporal
stretching, it can have a nontrivial effect upon the fast-
oscillating fringes beneath the envelope, which is sensitive
to the phase difference. In practice, the relative phases be-
tween the solitons are usually retrieved using numerical fitting
of the TS-DFT signal, while there is no prior temporal origin
for the TS-DFT signal in the coordinate. The temporal origin
of the TS-DFT signal envelope [τ̄ in Eq. (15)] is usually
obtained out of the numerical fitting in which the temporal
origin τ̄ is also set as a variable to be fitted (see Sec. III A).
Nevertheless, a single temporal origin of the envelope cannot
simultaneously coincide with the temporal origin of all the
sinusoidal fringes. As a consequence, when we use the gen-
uine interferogram profile given by Eq. (13) to retrieve the
structure, there would be deterministic discrepancies in the
relative phases. We can evaluate these particular discrepancies
by rewriting Eq. (17) as


 j − 
k = −	τ jk
τ − τ̄

ζ
− (	ϕ jk + 	ϕ′

jk ), (21)

where 	ϕ jk is the actual carrier-phase difference between two
solitons and 	ϕ′

jk is the phase discrepancy caused by the
mismatched offsets, which can be expressed as

	ϕ′
jk = 	τ jk

τ̄ − τ̄ jk

ζ
. (22)

FIG. 2. Triple-soliton TS-DFT signal schematic. (a) A triple-
soliton structure in the normalized time coordinate, with the three
solitons denoted as S0, S1, and S2 and their temporal positions at τ0,
τ1, and τ2. (b) The triple-soliton TS-DFT signal (blue curve) with
envelope plotted as a gray dashed line in the mapped-frequency (τ/ζ )
coordinate. τ̄ is the center of the entire envelope. (c) The linear term
of 
 for the three solitons [second term in Eq. (9)] depicted as three
lines that pairwise intersect at τ̄ jk . Their differences at τ̄ are the phase
mismatches 	ϕ′

jk in Eq. (22).

Equation (22) is an intrinsic consequence of the unmatched
mapping relations given in Eqs. (19) and (20). We can no-
tice that this discrepancy depends both on the mismatch in
the averaged positions, τ̄ − τ̄ jk , and on the soliton spacing
	τ jk which serves as a magnification coefficient. Therefore,
the retrieved relative phase is actually mixed-up information
of both the phase and position relations. Equation (22) also
suggests that when the dispersion broadening is insufficient
(i.e., a small ζ with respect to the soliton spacing 	τ jk), the
phase discrepancy also becomes obvious.

From the preceding analysis, we can realize that the TS-
DFT signal of a double-soliton structure is only a special case
in which a linear relationship between the TS-DFT signal and
the spectral interferogram can be reestablished by a simple
shift of the temporal origin [Eq. (12)]. For triple-soliton struc-
tures, the mismatch cannot be fixed in the same way since
the averaged position of each pair of solitons has a different
offset with the averaged position for all solitons (e.g., the
position of the overall envelope). Such mismatch also exists
for structures with more solitons, as we can readily expect. In
these structures, the mismatch will be particularly prominent
for adjacent solitons at the edge of the structures which has the
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largest mismatch with the averaged position with the overall
structure. The underlying source of such mismatch is actually
the quadratic phase term in Eq. (3) induced by the disper-
sive stretching. When dealing with a multipulse profile, this
quadratic phase term distorts the linear temporal mapping of
the TS-DFT signal by assigning a different temporal offset for
each sinusoidal fringe (for each pair of solitons) beneath the
stretched envelope. Therefore, relative phase mismatch occurs
when fitting the multisoliton TS-DFT signal with the form
of spectral interferogram, and this mismatch depends on the
relative positions of all the pulses.

Remarkably, we can also reveal that the phase mismatch
discussed above carries the symmetry information of the mul-
tisoliton structure. In fact, the spectral interferogram of a
triple-soliton structure and its mirrored structure are identical,
leading to inevitable ambiguities in structure retrieval (i.e.,
swapping 	τ10 and 	τ21, as well as 	ϕ01 and 	ϕ12, leads
to the same spectral interferogram). The phase discrepancy
caused by the quadratic phase term [Eq. (22)], however, has
opposite sign for mirrored structures, which therefore can be
regarded as an “indicator” left by the structure that distin-
guishes itself from its mirrored structure.

III. NUMERICAL ANALYSIS

A. Relative phase discrepancies based on TS-DFT
for triple-soliton structures

In practice, the TS-DFT signal obtained from multisoliton
dynamics can be fit numerically using their spectral interfer-
ogram profiles so as to simultaneously retrieve the soliton
spacing and relative phase. However, we have shown in the
preceding section that the TS-DFT signal of a multisoliton
structure is not a direct mapping of its spectral interferogram
when given more than two solitons in the structure, which can
lead to discrepancies in the relative phases. To demonstrate
the typical magnitudes of such discrepancies from direct nu-
merical fitting, we use a numerical example of a triple-soliton
structure and compare the actual structure parameters with
those retrieved from the TS-DFT signal.

The exemplary triple-soliton structure that we employed
was set to have individual soliton positions at τ0 = 0, τ1 = 10,
and τ2 = 30 (temporal positions normalized to the duration
of an individual soliton), each with a carrier phase of ϕ0 = 0,
ϕ1 = 4π/3, and ϕ2 = 2π/3, respectively. The normalized TS-
DFT signals of this particular triple-soliton structure at ζ =
50, 200, and 500 (propagation distance normalized to disper-
sion length, which is approximately the temporal stretching
ratio) are plotted in Fig. 3 using the time-frequency mapping
relation given in Eq. (19), together with the genuine spec-
tral interferogram. Here, both the spectral interferogram and
the TS-DFT signal are normalized in terms of their enve-
lope strength for easier comparison of their profiles. We can
notice that the TS-DFT signal has a significant difference from
the spectral interferogram when ζ = 50 due to the phase dis-
crepancies predicted above [see Fig. 3(a)]. Such discrepancies
can be mitigated with much larger stretching ratios, as we
can see in Figs. 3(b) and 3(c), where ζ has been increased
to 200 and 500. However, even with an excessive stretching
ratio [e.g., with ζ = 500 in Fig. 3(c)], the TS-DFT signal still

FIG. 3. The spectral interferogram (solid orange curves) and TS-
DFT signals (dashed blue lines) of the triple-soliton structure under
different ζ : (a) ζ = 50, (b) 200, and (c) 500. The dashed gray curve
gives the envelope of the TS-DFT signal. These curves are plotted
in the normalized frequency coordinate [with the time-frequency
mapping relation given by Eq. (19)].

exhibits some obvious discrepancies from the spectral inter-
ferogram in terms of detailed fringe structures, indicating that
the TS-DFT signal for a triple-soliton structure is intrinsically
not a linear mapping of the spectral interferogram, as we have
analytically predicted above.

We then evaluate the consequent discrepancies in the re-
trieved structures using the TS-DFT signal and compare the
results with our theoretical predictions given in Eq. (22). To
retrieve the soliton spacings and relative phases from the
TS-DFT signal, we employ the differential evolution (DE)
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algorithm to perform the numerical fitting, which is simple
and effective for solving the global optimal solution problem
in continuous space [27,28]. The soliton spacing alone can
also be retrieved based on the Wiener-Khinchin theorem [29],
i.e., by taking the Fourier transform of the TS-DFT signal
to obtain the autocorrelation function. Although the temporal
resolution of this method is limited, we can use this approach
to locate the optimal parameters faster during the numerical
fitting. The fitting function based on the genuine profile of the
spectral interferogram can be written as

Ffit (ζ , τ ) = Asech2

[
π

2ζ
(τ − τ̄ )

]

×
{

3 + 2
2∑

j=0

j−1∑
k=0

cos

[
	τ jk

ζ
(τ − τ̄ ) − 	ϕ jk

]}
,

(23)

in which A represents the amplitude of the signal envelope,
which equals unity for the normalized profile, and 	τ jk =
τ j − τk and 	ϕ jk = ϕ j − ϕk , which are the spacing and the
relative phase between the solitons located at τ j and τk with
carrier phases ϕ j and ϕk . τ̄ represents the temporal offset
of the signal envelope. In Fig. 3, we have neutralized this
offset using τ̄ to facilitate the comparison with the spectral
interferogram. The normalized propagation length ζ was set
to vary from 50 to 500. The optimal fitting parameters for
the spacings and relative phases after different propagation
lengths are plotted in Fig. 4. We can first notice from Fig. 4(a)
that the soliton spacings have been retrieved with high ac-
curacy, even with very limited propagation lengths (ζ = 50).
The retrieved relative phases, on the contrary, have prominent
discrepancies from the preset parameters (dashed lines), as
plotted in Fig. 4(b), which could reach π/2 at ζ = 50 and
only gradually decrease to ∼0.1π when ζ reaches 500. We
can then realize that the deviation of the TS-DFT signal from
the spectral interferogram in Fig. 3(b) is dominantly caused by
the phase discrepancy, while the retrieved spacings are largely
decoupled from the relative phases.

As predict by Eq. (22), the discrepancies in the relative
phases are deterministic, given a certain triple-soliton struc-
ture. Using the foreknown positions of each individual soliton
in our numerical example, the predicted relative phases (i.e.,
	ϕ jk + 	ϕ′

jk), which are combinations of the actual relative
phases and the position-dependent discrepancies, are plot in
Fig. 4(b) (solid line), which agree quite well with the numer-
ically retrieved results (solid diamonds). Therefore, we can
confirm that the mismatch in the quadratic phase term (thus
in the temporal origins for the envelope and the sinusoidal
fringes) is the real source of the relative phase discrepancy,
as we have predicted analytically.

B. Possible means to remove the relative phase discrepancies

Since the relative phase discrepancy in the multisoliton
TS-DFT signal stems from the mismatch of quadratic phase
terms induced by dispersive stretching, we can, in principle,
remove it by compensating the quadratic phase term before
the dispersive stretching. This can be achieved by using a
radio-frequency phase modulator that adds a temporal phase

,

,

S0 S1 S2

FIG. 4. (a) Fitted spacings and (b) fitted relative phases of the
triple-soliton TS-DFT signal under different ζ (from 50 to 500). We
use S0 as the reference and consider its spacing and relative phases
with the other two solitons. To indicate the corresponding results
for the two pairs of solitons, we use orange diamond-dots for the
results between S0 and S1, while using green circular-dots for the
results between S0 and S2. The dotted lines represent the preset values
of spacing and relative phases. The solid curves in (b) represent
the relative phases with the intrinsic discrepancies [	ϕ j0 + 	ϕ′

j0

in Eq. (21)], which well predicts the fitted relative phases based
on Eq. (23). The hollow diamonds and dots represent the corrected
fitting results using Eq. (25), which agree well with the preset values.

profile upon the multisoliton structure, which exactly cancels
out the quadratic phase term [i.e., exp[−isgn(β2)τ 2/2ζ ] in
Eq. (3)], turning the TS-DFT signal of the individual solitons
from Eq. (3) into

U (ζ , τ ) =
Ũ

[
0, sgn(β2) τ

ζ

]
[1 − isgn(β2)]

√
πζ

. (24)

In this way, the resultant TS-DFT signal will be a complete
linear mapping of the spectral interferogram despite having
more than two solitons in the structure. The compensating
phase profile depends on the duration of the individual soli-
tons, the group velocity dispersion (GVD), and the length
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of the dispersive fiber, which need to be known before-
hand. Actually, analogies can be found in spatial Fraunhofer
diffraction, where the far-field diffraction pattern also has a
quadratic spatial-phase term. By using a lens with a proper
focal length, we can remove this spatial-phase term, which
results in the spatial Fourier transformation by the Fresnel
diffraction [30,31].

The relative phase discrepancy can also be removed based
on the fact that the sign of the discrepancy is related to the
sign of the GVD of the dispersive fiber, as we can infer from
Eq. (22). Therefore, if we use two pieces of dispersive fibers
that can produce the same absolute value of group delay with
opposite sign, the discrepancy can be simply canceled out by
averaging the retrieved values.

At last, we also found that if we use a fitting function that
allows for a different temporal shift for each sinusoidal fringe
together with its own envelope in the TS-DFT signal, as given
in Eq. (20), we can also retrieve the correct values for the
relative phases. The general fitting function for an N-soliton
structure can be written as

Ffit (ζ , τ ) = A
N−1∑
j=0

j−1∑
k=0

sech2

[
π

2ζ

(
τ − τ̄ jk

)]

×
{

2 + 2cos

[
	τ jk

ζ

(
τ − τ̄ jk

) − 	ϕ jk

]}
, (25)

where we assign an independent offset τ̄ jk for each pair of
solitons in the structure that generates its own sinusoidal
fringe. We used this fitting function to retrieve parameters
from the same triple-soliton TS-DFT signal as analyzed in
Sec. III A. Although the numerical fitting process was found
to be slowed down significantly due to the more complicated
fitting process, the retrieved values actually agree very well
with the preset values, as we can see in Fig. 4(b) (hollow
diamonds); meanwhile, no additional measurements or mod-
ulations of the TS-DFT signal are required.

IV. DISCUSSIONS

In reality, the retrieval of multisoliton structures using the
TS-DFT method can be affected by a series of practical lim-
itations beyond the intrinsic quadratic phase mismatch, as
discussed in the preceding sections. For example, the fast
electronics used for recording the TS-DFT signal may have
a limited detection bandwidth and signal-to-noise ratio, which
can distort the interferometric fringes given large soliton spac-
ing or insufficient broadening, leading to discrepancies in the
retrieved values. The higher-order dispersion of the dispersive
fiber can become prominent when the optical bandwidth of the
soliton is relatively large, which can lead to a time-warp effect
[14] that causes nonlinear distortion of the TS-DFT signal and
thus potential discrepancies in retrieving the structures. The
multisoliton structure may also contain nonidentical solitons
(e.g., with different amplitude or bandwidth) or even nonsoli-
ton components (e.g., dispersive waves), which may cause

a blurred TS-DFT signal (with lower fringe contrast) that
cannot be simply retrieved based on the simple assumptions
as before. In light of all these practical limitations that require
further investigations, this work pointed out that even if all
of these limitations have been relieved, e.g., with improved
equipment, there still exists an intrinsic discrepancy in the
relative phases as a result of the dispersive propagation, which
is irrelevant to any particular experimental setup.

We also noticed an important fact from the numerical re-
sults above that in general, the soliton spacing can always be
retrieved with very high accuracy using the TS-DFT method.
This high accuracy is maintained even with a very limited
temporal stretching ratio, which is likely to occur in practice
when we would like to avoid overlapping between consecutive
shots given a high repetition rate, or to keep an adequate
signal-to-noise ratio given low pulse energy. In contrast,
the relative phase can have significant discrepancy using the
same retrieval methods. We expect that the same conclusion
may also hold with the influences from the various practical
limitations. Therefore, precise measurements of the relative
phases between the optical solitons probably demand further
improvement for the original TS-DFT method.

V. CONCLUSIONS

In conclusion, we have analytically inferred that the TS-
DFT signal of a multisoliton structure is not directly a linear
mapping of their spectral interferogram given more than two
solitons in the structure, which can lead to discrepancies when
we retrieve the relative phases between the solitons. The un-
derlying cause of this discrepancy is actually the mismatch
of the quadratic phase term induced by the dispersive stretch-
ing for each soliton, in analogy with the spatial Fraunhofer
diffraction, which leads to a different temporal offset for the
sinusoidal fringe generated by each pair of solitons within the
complicated TS-DFT signal. The discrepancy in the retrieved
values of the relative phases has been predicted analytically
and illustrated using numerical examples, which can be sig-
nificant given a limited stretching ratio. We also proposed a
means that can help to compensate for this discrepancy using
improved measurements and numerical fitting methods. This
work provides a theoretical prediction to the intrinsic discrep-
ancy of the TS-DFT method used for resolving multisoliton
structures, which can help to gain clearer insight of multi-
soliton dynamics in ultrafast lasers as well as other nonlinear
optical systems.
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