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Generation of unipolar electromagnetic pulses in semiconductor nanocrystals
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We show that excitation of a semiconductor nanocrystal with a short pulse of electromagnetic field can result
in the generation of a unipolar electric pulse, which is the distribution of field with a nonzero electric pulse
area. The effect is caused by the exciton nonlinearity in a nanocrystal. The microscopic theory of the effect
is presented. We also discuss related proposals of unipolar pulse generation, including the optical rectification
effect and electric field-induced interband ionization of a nanocrystal.
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I. INTRODUCTION

In recent decades, impressive progress has been made
in obtaining increasingly shorter electromagnetic (optical)
pulses, marked by the awarding of Nobel Prizes in 1999 for
the use of femtosecond laser pulses to study the motion of
atoms in molecules and in chemical reactions [1], and in
2023 for methods of generation and application of attosecond
(as) (1 as = 10−18 s) pulses [2]. The already achieved pulse
duration of 43 as [3] is noticeably shorter than the Bohr period
of electron revolution around the nucleus of a hydrogen atom;
there are proposals for obtaining even shorter pulses. This
opens up the opportunity to “look inside the atom,” that is,
to trace the manifestations of the intra-atomic movement of
electrons. An important issue for such short pulses is the effec-
tiveness of their impact on micro-objects. A large number of
works [4–14] show that this efficiency depends significantly
on the electrical pulse area

SE =
ˆ ∞

−∞
E(t )dt, (1)

where E is the electric field strength and t is time. Indeed,
pulses with a nonzero electric area, which we call unipolar,
have a unidirectional effect on charges, in contrast to the
multidirectional effect of bipolar pulses.

Currently obtained attosecond pulses are multicycle; their
electrical area is close to zero due to multiple oscillations of
the electric field. Unipolar electromagnetic pulses have been
obtained experimentally in a number of works [15–21]; there
are various proposals for more effective methods for their
generation; see, e.g., Refs. [22,23].

Still, it is highly desirable to have a compact source of
unipolar pulses that is compatible with current technologi-
cal platforms. In this respect, application of semiconductor
nanosystems, particularly nanocrystals, also known as quan-
tum dots, seems beneficial. Since their discovery [24–26],
nanocrystals have been actively studied both from techno-
logical and physical standpoints [27–29]. Their fascinating
electronic, spin, and optical properties [30–35] pave the way
to various applications, including those in nonlinear optics
[36,37] and attosecond physics [38,39].

The aim of this paper is to analyze the possibility of
converting zero-area pulses into unipolar ones using the non-
linear response of semiconductor nanocrystals. We show that
a multicycle pulse with zero electric area can be converted
by a nanocrystal to a unipolar pulse of a sizable magnitude.
After brief introduction, in Sec. II we present a model of a
nanocrystal as a nonlinear oscillator, provide a general ex-
pression for the spatial distribution of the electrical area of
a driven nanocrystal, and show the possibility of obtaining a
pulse with a nonzero area with the proper driving pulse shape.
Numerical results are also presented here for a realistic shape
of driving pulses when varying the parameters of a nanocrys-
tal with cubic nonlinearity in a wide range. In Sec. III, we
provide estimates of quantities, and we discuss the case of
nanocrystals with quadratic nonlinearity and the achievability
of experiments. The main findings are summarized in Sec. IV.

II. THEORY

A. Model

We consider a semiconductor nanocrystal (quantum dot)
subject to the propagating electromagnetic field E i(t ) (Fig. 1)
in the form of the zero-area pulse, SE ,i ≡ ´∞

−∞ E i(t )dt = 0
[cf. Eq. (1)]. This means vanishing of a zero-frequency com-
ponent of the pulse spectrum. The size of the nanocrystal is
typically much smaller than the light wavelength, thus we
disregard the coordinate dependence of the incident field and
consider its interaction with the nanocrystal in the dipole
approximation. In what follows, we assume for simplicity that
the field is linearly polarized along one of the main crystalline
axes of the nanocrystal, e.g., along the x-axis. This allows
us to take into account only the x-components of the field
and dielectric polarization in the nanocrystal, consequently we
omit Cartesian subscripts in what follows.

We describe the exciton polarization in a quantum dot that
arises due to the transition of an electron from the valence
band to the conduction band within a nonlinear oscillator
model in the form [31,40]

d̈ + 2γ ḋ + ω2
0d + βd3 = λ(1 − ξd2)Ei(t ), (2)

where Ei(t ) is the incident field, d ≡ d (t ) is the time-
dependent dipole moment of the exciton, dots denote the
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FIG. 1. Schematics of the proposed effect. The nanocrystal
(green ball) is subject to a zero-area electromagnetic pulse E i(t ).
As a result of the temporary separation and subsequent merging of
negative and positive charges in the nanocrystal, a temporal profile of
the dipole moment with a nonvanishing zero-frequency component
dS �= 0 is formed, which serves as a source of a unipolar electromag-
netic pulse.

time derivatives, ω0 = (Eg − Eb)/h̄ is the exciton resonance
frequency with Eg and Eb being the quantum dot band gap and
exciton binding energy, respectively, and γ > 0 is the exciton
damping rate that includes both radiative and nonradiative
recombination processes; the physical meaning and micro-
scopic expressions for the nonlinearity coefficients, β and ξ ,
and the exciton-field coupling constant, λ, will be specified
below. Note that the field that appears as a result of radiative
decay has a zero electric area, and it plays no role in what
follows. The extension of the model to fully account for a
reduced symmetry of a nanocrystal is straightforward: one has
to allow for an anisotropy of the restoring force and dipole
field coupling. It does not bring novel physics in the case of
cubic nonlinearity considered here, but becomes important if
other effects, related, e.g., to quadratic nonlinearity, come into
play; see Sec. III.

We recall that within a two-band model, the exciton dipole
moment is related to the system parameters as [31,41]

d (t ) = −C(t )
iepcv

ω0m0

ˆ
�∗(r, r)d3r + c.c. (3)

Here e < 0 is the electron charge, pcv is the interband mo-
mentum matrix element, m0 is the free-electron mass, �(r, r)
is the smooth envelope of the exciton wave function taken
at coinciding electron and hole coordinates re = rh ≡ r, C(t )
is the decomposition coefficient of the nanocrystal state as
|0〉 + C(t )|exc〉, where |0〉 is the ground state of the crystal
and |exc〉 is the state where one exciton active in a given linear
polarization is excited, and the integration in Eq. (3) is carried
out over the nanocrystal volume. We introduce

Dx =
∣∣∣∣ epcv

ω0m0

ˆ
�∗(r, r)d3r

∣∣∣∣, (4)

which is the microscopic dipole moment of the exciton lo-
calized in a quantum dot: Dx gives the amplitude of the
oscillating (at the resonant frequency ω0) dipole induced by
one exciton confined in a nanocrystal. The parameter λ =
2ω0D2

x/h̄ in Eq. (2) describes the coupling strength of the
exciton with the electric field, and the coefficients β and
ξ stand for the two key nonlinearities in the system: The
constant β describes the nonlinearity related to the exciton
energy shift due to the exciton-exciton interaction (also known

as the anharmonic oscillator nonlinearity), and the constant
ξ describes the oscillator strength saturation effect (or the
two-level system nonlinearity) [31,42]. The simplified form of
the oscillator strength saturation nonlinearity, 1 − ξd2, is valid
for the polarization being much below its saturation value,
|ξd2| � 1. The form of nonlinearity in Eq. (2) is quite generic
and it is not related to a particular type of semiconductor, its
crystalline symmetry, or the shape of the nanocrystal.

The parameters responsible for the nonlinearities depend
on the nanocrystal parameters and, in particular, on the re-
lation between the quantum dot size a and the exciton Bohr
radius aB in the bulk material, which also governs the exciton
statistics [43]. For a � aB (small quantum dots), the Coulomb
correlations between the electrons and holes are negligible
[44,45], and the exciton forms a natural two-level system.
In that case, β → 0 and the oscillator strength saturation de-
scribed by ξ dominates the nonlinear response. In the opposite
limit where a 	 aB, the exciton is localized in the quantum
dot as a whole. In that case, the main nonlinearity results from
exciton-exciton interactions, while ξ can be set to 0. In the fol-
lowing, we consider the latter case assuming that the quantum
dot is sufficiently large [40,43], setting ξ = 0. Importantly,
in this case the microscopic exciton dipole moment Dx is
enhanced by a large factor (a/aB)3/2 (for spherical quantum
dots) as compared to the “atomic” value of |epcv/(m0ω0)|
[46]. Thus, Eq. (2) reduces to the Duffing-like equation. While
generally Eq. (2) is used to describe resonant or quasireso-
nant response [31], see also Refs. [42], it can be justified for
sufficiently short incident pulses provided that the oscillator
strengths of excited excitonic states are small compared to that
of the ground state, as is usually the case [47] and if the details
of the band structure, e.g., the presence of remote bands, is
unimportant. Hence, Eq. (2) represents the simplest possible
model to account for a nonlinear response of a nanocrystal.
Note that the nonlinear Eq. (2) can also describe a response
of small (subwavelength) dielectric or metallic nanoparticles
in a single-mode approximation where the polarization can
be related to the excitation of, respectively, Mie or plasmon
modes [48–52]. For example, in the case of a plasmonic
nanoparticle, the cubic nonlinearity in Eq. (2) is related to the
action of ponderomotive force on the plasma [53,54].

We now show that the nonlinear dynamics of the exciton
polarization given by Eq. (2) can give rise to a zero-frequency
component of the exciton dipole moment,

dS =
ˆ ∞

−∞
d (t )dt, (5)

even if the incident pulse has no zero-frequency contribution,ˆ ∞

−∞
Ei(t )dt = 0. (6)

The presence of dS �= 0 results in the unipolar electric pulse
produced by the nanocrystal. Indeed, we use the explicit ex-
pression for the field produced by the oscillating dipole in the
free space [55]:

E(t ) =
[(

3d
r5

+ 3ḋ
cr4

+ d̈
c2r3

)
· r

]
r

−
(

3d
r5

+ 3ḋ
cr4

+ d̈
c2r3

)∣∣∣∣∣
t−r/c

(7)
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where r is the vector connecting the point where the field is
measured and the center of a nanocrystal, and the values of
the dipole d and its derivatives are taken at the earlier time
t ′ = t − r/c. Integrating E(t ) over time, we obtain the electric
pulse area in agreement with Ref. [23],

SE = 3(ndS )n − dS

r3
. (8)

The part with nonzero pulse area corresponds to a combina-
tion of first terms, 1/r3, in each of the parentheses of Eq. (7),
while the usual dipole radiation is related to the last, 1/r,
contributions. The expression (8) coincides with the dipole
component of the far-field of a static system of electric charges
[56]. Note that the electric pulse area decays as 1/r3 in free
space. In different geometries, the decay can be suppressed;
for instance, in coaxial waveguides without a cutoff frequency,
the unipolar pulse can propagate conserving its shape [57].

It is instructive to demonstrate explicitly that Eqs. (7) and
(8) are compatible with Gauss’s law for electrodynamics. To
that end, it is convenient to calculate the electric flux through
a closed surface encompassing the nanocrystal:

�E (t ) =
‹

E(t ) · dA, (9)

where dA is the surface area element. In particular, integrating
Eq. (9) over time, we obtain

ˆ ∞

−∞
�E (t )dt =

‹
SE · dA ≡ 0, (10)

where we explicitly used Eq. (8) for SE . In fact, �E (t ) also
vanishes as one can readily see from Eq. (7). (Derivation
becomes particularly simple for a spherical surface, taking
into account that the radial component of the field Er ∝ cos θ ,
where θ = ∠dS, r.) This is consistent with the fact that we
do not have any free charges in the system. The charges in
the nanocrystals separate in space only temporarily and on
the distances � a where a is the nanocrystal size to produce
time-dependent d(t ). We discuss this issue in more detail in
Appendix A.

To prove that the pulse with the zero electric area can
generate a pulse with a nonzero area, let us rewrite Eq. (2)
in the form

λEi(t ) = 1

1 − ξd2

(
d̈ + 2γ ḋ + ω2

0d + βd3
)
. (11)

This equation shows which shape of the incident pulse Ei(t )
is required to form the exciton dipole moment profile d (t ).
We now determine what restrictions the condition (6) imposes
on the parameters of the pulse and the quantum dot to have
dS �= 0. First, note that the magnitude of the damping term in
Eqs. (2) and (11) does not affect the incident pulse electrical
area at a given d (t ). Indeed, when integrating Eq. (11) over
time, this term enters the electric pulse area as

2γ

λ

ˆ ∞

−∞

ḋ (t )

1 − ξd2(t )
dt = γ

λ
√

ξ
ln

1 + √
ξd (t )

1 − √
ξd (t )

∣∣∣∣
t→+∞

t→−∞
= 0,

(12)

FIG. 2. Dipole d (t ) (dark red solid line) taken in the form of
Eq. (14) with ϕ = 0 and corresponding incident pulse shape f (t )
(blue dotted line) and found from Eq. (11) for the parameters where
dS �= 0 and

´∞
−∞ Ei(t )dt = 0. The dashed curve is calculated account-

ing for both third- and fifth-order nonlinearities, βd3(t ) + β5d5(t ), in
Eq. (2). Other parameters are indicated in the figure legend.

since for a quantum dot with any damping, d (t → ±∞) = 0.
Coming back to the case of ξ = 0, i.e., neglecting the satura-
tion effects, we obtain from Eqs. (5), (6), and (11)

ω2
0dS + β

ˆ ∞

−∞
d3(t )dt = 0. (13)

Let us take a time dependence d (t ) with dS �= 0, for example,

d (t ) = d0e−αt2
cos (�t + ϕ), (14)

with the parameters d0, α, �, and ϕ �= ±π/2. Substituting it
into Eq. (11), we obtain the field Ei(t ) that corresponds to this
dipole moment dynamics, as illustrated in Fig. 2; compare
the solid curve for d (t ) and the dotted curve for Ei(t ). The
condition (13) of the vanishing zero-frequency component in
Ei(t ) yields the following relation between the dipole moment
and pulse parameters:

β

ω2
0

d2
0 = − 4

√
3 exp

( − �2

4α

)
cos ϕ

exp
(− 3�2

4α

)
cos 3ϕ + 3 exp

(− �2

12α

)
cos ϕ

. (15)

If Eq. (15) holds (this can be readily done by choosing the
amplitude d0 in Eq. (14) and having other parameters fixed),
then there exists such Ei(t ) [the explicit expression follows
from Eq. (2) and is too cumbersome to be presented here] that
Eq. (6) is satisfied while dS �= 0 in Eq. (5). Then according to
Eq. (8), SE �= 0. Generally, it is possible both for positive and
negative coefficients of nonlinearity β. In the particular case
in which � = 0, ϕ = 0, corresponding to a Gaussian shape
of the dipole dynamics, Eq. (15) gives βd2

0 = −√
3ω2

0. For a
Gaussian profile of the polarization, the nonlinearity coeffi-
cient should be negative. The perturbative analysis shows that
inclusion of higher order, e.g., ∝ d5, in Eq. (2) terms leads
only to small quantitative corrections of the results. This is
illustrated in Fig. 2 by the dashed curve, which shows Ei(t )
producing the same d (t ) pulse with dS �= 0 in the presence of
the additional nonlinear term β5d5(t ) in Eq. (2).

053523-3



M. M. GLAZOV AND N. N. ROSANOV PHYSICAL REVIEW A 109, 053523 (2024)

(a) (b)

(c) (d)
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FIG. 3. (a) Incident pulse shape f (t ) (blue dashed line) and induced dipole d (t ) (dark red solid line) found from numerical solution of
Eq. (2). (b)–(d) Zero-frequency component of the dipole moment dS , Eq. (5), calculated from numerical solution of Eq. (2) (solid lines) and
from the third-order perturbation theory, Eq. (20) (dots) as a function of β (b) and ω (c), (d). Other parameters are indicated in the figure legends.

B. Numerical results

The analysis above presents the general proof of the pos-
sibility to generate a unipolar pulse (strictly speaking, the
pulse with a nonzero area) from the zero-area pulse via a
nonlinearity. To demonstrate that a nanocrystal can indeed
produce a unipolar field in a more realistic and experimentally
relevant case, we consider the incident pulse in the form

E i(t ) = E0 f (t ), (16)

where E0 is the amplitude of the incident pulse, and f (t ) is
the pulse shape function

f (t ) = exp

(
− t2

τ 2

)
sin (ωt ). (17)

In the case of multicycle pulses, ωτ 	 1, ω is the pulse
carrier frequency and τ is the pulse duration. We take the
pulse in the form of Eq. (17) to provide the simplest and most
straightforward illustration of the effect.

Figure 3 presents the key results of the numerical solution
of Eq. (2) with ξ = 0. Panel (a) of Fig. 3 shows the incident
pulse and the induced dipole moment d (t ) of the nanocrys-
tal: The dynamics d (t ) is delayed with respect to the pump

pulse, and the response is slightly stretched in time due to
the dispersive response of the nanocrystal. The zero-frequency
component of the dipole moment dS , Eq. (5), calculated from
the d (t ) profile, is shown in Figs. 3(b) and 3(d) by solid lines
as a function of the nonlinearity β with the incident field
amplitude E0 being fixed [panel (b) of Fig. 3], and a function
of the incident pulse “carrier frequency” ω for different values
of the nonlinearity β and damping γ [panels (c) and (d) of
Fig. 3, respectively].

Naturally, dS �= 0 appears only if exciton-exciton interac-
tions are taken into account, β �= 0 [Fig. 3(b)]. Indeed, in the
linear regime the Fourier components of the incident pulse
and dipole are proportional to each other, and the zero-area
incident pulse cannot result in the unipolar response. The
absolute value |dS| increases with an increase in |β| for other
parameters being fixed. The asymmetry in the dS (β ) depen-
dence is related to specific asymmetry in the driving force
amplitude response of an oscillator with cubic nonlinearity;
cf. Ref. [58].

As expected, the zero-frequency dipole component dS

demonstrates resonant behavior as a function of the incident
pulse “carrier frequency” [Figs. 3(c) and 3(d)]. The width of
resonance is controlled by the inverse pulse duration τ−1 and
the exciton decay rate γ . Decreasing γ also results in the
enhancement of the response as illustrated in Fig. 3(d).

It is instructive to develop a semianalytic approach to de-
scribe the formation of dS based in the perturbation theory.
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Introducing the linear polarizability of a nanocrystal in the
frequency domain by solving Eq. (2) in the absence of non-
linear terms (cf. Ref. [58]),

χ (ω) = λ

ω2
0 − 2iωγ − ω2

, (18)

we find the induced dipole moment in the form

d (t ) =
ˆ ∞

−∞
χ (ω)Eωe−iωt dω

2π
, (19)

where Eω = ´∞
−∞ exp (iωt )Ei(t )dt is the Fourier transform of

the incident pulse. The cubic nonlinear term βd3(t ) in Eq. (2)
is then used as a nonlinear driving force. As a result, we obtain
in the linear-in-β order

dS = −χ (0)β

λ

ˆ ∞

−∞
dt

[ˆ ∞

−∞
χ (ω)Eωe−iωt dω

2π

]3

= −χ (0)β

λ

ˆ ∞

−∞

dω1

2π

ˆ ∞

−∞

dω2

2π
χ (ω1)χ (ω2)χ (−ω1 − ω2)

× Eω1 Eω2 E−ω1−ω2 . (20)

The results of dS calculation by perturbative Eq. (20) are
shown in Figs. 3(b)–3(d) by dots. They are in very good agree-
ment with full numerical calculations, particularly if dS is not
too large, |dS|/(ω−1

0 Dx ) � 0.1, i.e., where the perturbation is
indeed small.

Importantly, the perturbative result (20) is not limited
to a simple anharmonic oscillator model of the nanocrys-
tal response. It is valid for arbitrary linear susceptibility of
a nanocrystal provided that the nonlinearity is βd3. This
expression is particularly useful for determining the gener-
ated pulse area in the case in which the incident pulse is
strongly off-resonant, |ω − ω0| � ω0, and the single-mode
approximation, Eq. (2), becomes insufficient. Particularly, in a
quasi-zero-frequency regime where ω, τ−1 � ω0, the suscep-
tibility χ (ω) ≈ λ2/ω2

0, and Eq. (20) is reduced to

dS = −βλ3

ω4
0

ˆ ∞

−∞
E3

i (t )dt . (21)

Interestingly, in this regime dS vanishes for odd-in-time
pulses, Ei(t ) = −Ei(−t ). [It follows from Eq. (20) that
the accounting for γ �= 0 is crucial for having dS �= 0 for
odd-in-time pulses where Eω is imaginary. At zero γ , the
susceptibility is real, making the right-hand side of this ex-
pression purely imaginary. Since the left-hand side is real, the
imaginary part should vanish, resulting in dS = 0 in Eq. (20).]
However, dS �= 0 if the zero-area incident pulse has an asym-
metric shape, e.g.,

Ei(t ) = E0

{
exp

(
− t2

τ 2

)
sin ω1t + exp

(
− (t − δt )2

τ 2

)

× sin [ω2(t − δt )]

}
. (22)

The incident pulse (22) is simply a sum of two zero-area
pulses with different “carrier frequencies” ω1 �= ω2 delayed

by δt . In that case, a zero-frequency component

dS = −β(λE0)3

ω4
0

(ω2 − ω1)δt τ

√
π

3
exp

(
−3

4
ω2

1τ
2

)

×
[

1 + exp

(
2

3
ω2

1τ
2

)(
2

3
ω2

1τ − 1

)]
. (23)

We stress that Eq. (23) is valid at |ω1 − ω2| � ω1, ω2, |δt | �
τ, ω−1

1,2. The appearance of dS �= 0 is similar to the ratchet
effect in mechanics and in electronic transport where a uni-
directional motion appears as a result of asymmetry [59–63].
In the general case, however, as shown in Fig. 3, the unipolar
pulse can be produced for odd-in-time incident pulses.

III. DISCUSSION

We have demonstrated that a nonlinear, cubic response of
a nanocrystal results in the generation of a unipolar pulse of
a dipole moment (5) and, consequently, electric field with a
nonzero pulse area, Eq. (8), even if the incident pulse has
a zero area. Let us present the estimates of the effect. For
large quantum dots, as mentioned in Sec. II A, the nonlinearity
coefficient β stems from exciton-exciton interactions. The
estimate of the parameter β can be conveniently done based
on the exchange interaction model successfully applied to
quantum wells, two-dimensional materials, and microcavity
structures [64–67]. In this case,

β
D2

x

2ω0
= C

EB

h̄

(
aB

a

)δ

, (24)

where C ∼ 1 is the numerical constant depending on the
geometry of the system, and the exponent δ depends on the
geometry of the nanocrystals: δ = 2 for planar dots and δ = 3
for spherical dots. The estimate (24) has a clear physical
meaning: if two excitons are within the Bohr radius aB from
each other, than their energy increases by the binding energy
EB. Thus, realistic values of the dimensionless parameter are

β
D2

x

ω2
0

∼ EB

h̄ω0

(
aB

a

)δ

∼ 10−3, . . . , 10−1. (25)

For instance, for planar dots made of transition-metal
dichalcogenide monolayers [68] δ = 2, EB/h̄ω0 ∼
0.1, . . . , 0.3, depending on the environment, and the
localization radius can be a ∼ 10aB. The dimensionless
parameter characterizing the field strength can be recast as

λE0

ω2
0Dx

= 2
DxE0

h̄ω0
= Dx

ea0

E0

e/a0
. (26)

In the last estimate we introduced a0, the atomic Bohr radius
(of the order of lattice parameter). Thus, the dimensionless
field λE0/(ω2

0Dx ) can be of the order of unity or even larger
for the field amplitude E0 being much smaller than the atomic
field e/a0 due to enhancement of Dx as compared to the
atomic value ∼ea0 discussed in Sec. II A. Thus, values of

dS ∼ (10−5, . . . , 10−3)
Dx

ω0
(27)

can be easily attainable; see Fig. 3(d). Combining Eq. (27)
with Eq. (8), we obtain the estimate for the generated pulse
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area in the form

SE ∼ (10−5, . . . , 10−3)
Dx

ea0

1Ry

h̄ω0

(
a0

r

)3

SE ,0, (28)

where SE ,0 = h̄/(ea0) is the “atomic” pulse area [13,69], Ry
is the Rydberg unit of energy, and we recall that r is the
distance from the nanocrystal to the observation point. For
Dx/(ea0) ∼ (a/aB)3/2 ∼ 10 and h̄ω0 ∼ 1 eV we have pulses
with SE/SE ,0 ∼ (10−3, . . . , 0.1)(a0/r)3.

Let us now discuss this effect from a more general view-
point, but remaining in the perturbative regime, introducing
the third-order nonlinear susceptibility χ (3)(ω1, ω2, ω3) in
such a way that the induced dipole moment of the nanocrys-
tal dω = χ (3)(ω1, ω2, ω3)Eω1 Eω2 Eω3 (as before, we omitted
Cartesian indices assuming collinear geometry) [70–72]. The
zero-frequency component of the polarization can thus be
written as [cf. Eq. (20)]

dS =
ˆ ∞

−∞
dω1

ˆ ∞

−∞
dω2 χ (3)(ω1, ω2,−ω2 − ω3)

× Eω1 Eω2 E−ω2−ω3 . (29)

One can see that for pulses in the form of Eq. (17), the
significant dS can appear only for sufficiently short incident
pulses where ωτ is not too high. Otherwise, at least one
of the Fourier components of the incident field Eω1 , Eω2 ,
or E−ω2−ω3 in the product (29) is vanishingly small. In this
respect, the selection of the incident pulses in the form of a
superposition of two pulses, as in Eq. (22) with the frequen-
cies ω2 = 2ω1, is preferable. This ω1 − 2ω1 configuration is
also known to be efficient for generation of dc currents in
centrosymmetric semiconductors and nanosystems [73–76].
Tailoring the composition of the nanocrystal and its shape,
one can achieve a close-to-parabolic confinement potential
and equidistant spectrum of size-quantized electronic states
that results in a sharp resonance in χ (3)(ω,ω,−2ω) where h̄ω

and 2h̄ω simultaneously coincide with the transition energies
h̄ω0 and 2h̄ω0 in the nanocrystal. We stress that allowance for
the nanocrystal anisotropy in this mechanism does not bring
about novel effects. It can be readily allowed for by including
Cartesian subscripts in fields, dipole, and susceptibility. Nu-
merical analysis presented in Appendix B shows that unipolar
pulses can be generated also in a framework of a more general
two-level model [33,84] which is widely used to describe the
optical response of nanocrystals.

Going beyond the third-order nonlinearity, we suggest that
efficient generation of unipolar pulses can be achieved in
nanocrystals with pronounced quadratic nonlinearity. The lat-
ter requires the absence of an inversion center in the point
symmetry group of the structure that is usually the case for
the conventional III-V or II-VI materials or the interplay of
electric and magnetic dipoles or electric quadrupole transi-
tions enabled by the magnetic field of the incident radiation
or its wave vector [77,78]. This is an analog of the optical
rectification effect [79–82] where the induced dipole d (t ) is
proportional to 〈E2

i (t )〉 with angular brackets denoting the
averaging over the fast oscillations at the carrier frequency.
While typically in experiments either the radiated electromag-
netic field ∝ d̈ (t ) or the transient current ∝ ḋ (t ) is measured,
the optical rectification also results in a zero-frequency

component of the polarization,

dS ∝
ˆ ∞

−∞
E2

i (t )dt, (30)

and, correspondingly, in the unipolar pulse of electric field,
Eq. (8). A significant rectification effect can be achieved for
exciton quantum dots for tailored confinement potentials such
as semiparabolic ones [83].

Interestingly, in nanocrystals with an asymmetric heteropo-
tential or a built-in electric field, the exciton envelope wave
function �(re, rh) introduced in Eqs. (3) and (4) has no def-
inite parity. As a result, the charge distribution in the exciton
is asymmetric and the exciton itself possesses a nonzero static
dipole moment,

D0 = e
ˆ

(re − rh)|�(re, rh)|2drhdrh. (31)

If the nanostructure is excited by a short (compared to the
exciton lifetime) resonant (with the carrier frequency ω = ω0)
π -pulse [84–86], then the dipole moment related to the ex-
citon envelope d(t ) = D0 exp (−2γ t ), and a zero-frequency
component of the dipole moment takes the form

dS = D0

2γ
. (32)

It gives rise, according to Eq. (8), to the unipolar pulse with the
electrical pulse area SE ∼ dS/r3. Taking into account that the
electron-hole separation in the exciton can be of the order of
the nanocrystal size for asymmetric nanocrystals, the induced
pulse area can be estimated as

SE ∼ D0

2γ

1

r3
∼ a

a0

Ry

h̄γ

(
a0

r

)3

SE ,0. (33)

Due to a huge factor Ry/h̄γ ∼ 106 [for typical exciton life-
times (2γ )−1 ∼ 100 ps], the pulse area can be comparable to
the atomic one, SE ,0, near the nanocrystal surface.

In this respect, two related configurations can be preferable
from the experimental viewpoint. First, we consider a metallic
nanocrystal (plasmonic nanoparticle) that is excited by a short
laser pulse, which, due to quadratic nonlinearity, results in
opposite velocities of the conduction electrons and lattice
ions. It can be achieved, e.g., via the dynamic Hall effect that
results in the ∝ [E i × Bi] current generation [77,87–91]. As
a result, after the incident pulse at t = 0 the many-body wave
function of electrons takes a form [92]

�({ri}, t = 0) = �0({ri}) exp

(
i
m0v0

h̄

∑
i

ri

)
. (34)

Here {ri} are the electron coordinates, m0 is the free-electron
mass, �0({ri}) is the ground-state electronic wave function in
the nanocrystal, and v0 is the velocity of electrons in the refer-
ence frame where the nanocrystal lattice is at rest. Assuming
that v0 is small as compared to the atomic velocities e2/h̄,
|pcv/m0|, the exponent in Eq. (34) can be decomposed in the
power series. Keeping the linear-in-v0 contribution, we obtain

�({ri}, t = 0) ≈ �0({ri})

(
1 + i

m0v0

h̄

∑
i

ri

)
. (35)
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Note that such a wave function corresponds to a situation
in which the nanocrystal had been subjected, at t = 0, to an
extremely short unipolar electric pulse with the electric area

SE ,0 = m0v0

eh̄
. (36)

At the large distance from the nanocrystal, as before, only
the dipole component of the fields is important. The zero-
frequency component of the induced dipole moment of the
nanocrystal reads

dS =
ˆ

d(t )dt = χ (0)SE ,0. (37)

The area of the generated unipolar pulse is given by Eq. (8).
Note that in this model, effectively a conversion of the incident
pulse area SE ,0 to that of the induced one SE takes place,
and the conversion coefficient can be roughly estimated as
χ (0)/r3. Naturally, the effect is largest in metallic particles
where χ (0) = a3, where a is the nanocrystal radius. For di-
electric nanoparticles the efficiency is smaller since χ (0) =
a3[1 − 3/(2 + ε)] < a3, with ε being the zero-frequency di-
electric susceptibility [70].

As a second setting, we consider an interband or impurity-
band ionization of a semiconductor nanocrystal where the
incident electric field E i(t ) results in conduction- to valence-
band transitions [93] (in very strong fields the electrons may
leave nanocrystals [38,39], but we do not discuss such a sit-
uation here). These photogenerated carriers can be separated
by the built-in electric fields or other sources of asymmetry in
a nanocrystal yielding dS ∼ ena4T , where n is the density of
photogenerated electrons and holes and T is their lifetime.

IV. CONCLUSION

To conclude, we have demonstrated that semiconductor
quantum dots can serve as efficient sources of unipolar elec-
tromagnetic pulses. The omnipresent third-order nonlinearity
related to, e.g., exciton-exciton interaction, converts a zero-
area bipolar or multicycle pulse to a unipolar one. The theory
of the effect is developed in the framework of the Duffing-like
equation describing a nonlinear polarization dynamics in a
nanocrystal within a single-mode approximation. Numerical
results are well described by a perturbative analytical ap-
proach. We have discussed other possible realizations of the
unipolar pulse generation related to the second-order non-
linearity, the asymmetric shape of the nanocrystal, and the
ionization effect. Our estimates show that the effect can be
sizable. For instance, for asymmetric nanocrystals the electric
area of the generated unipolar pulse can be comparable to
the atomic one, h̄/(ea0), near the nanocrystal surface. This
opens up avenues for experimental observation of the effect
and studies of unipolar pulses in a solid-state environment.
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APPENDIX A: EFFECT OF A FINITE NANOCRYSTAL SIZE

The model formulated in the main text and, in particular,
Eqs. (7) and (8) are derived assuming that the nanocrystal
size is negligible and the studied transition corresponds to a
point dipole, d(t ). Here we demonstrate that accounting for
a finite size of a nanocrystal does not change any conclusions
of our analysis. We introduce the dipole density P(r, t ) (polar-
ization) with d(t ) = ´

P(r, t )d3r; see Eq. (3). The distribution
of P(r, t ) in space is described by the envelope function of the
electron-hole pair in the nanocrystal [31]. P(r, t ) is a smooth
function of coordinates that rapidly vanishes at r > a, where
a is the nanocrystal radius.

Combining Maxwell’s equations for the curls of electric
and magnetic fields, we obtain [31,41]

�Eω(r) − grad div Eω(r) = −
(

ω

c

)2

[Eω(r) + 4πPω(r)],

(A1)

where we introduced the Fourier components of the field
Eω(r) = ´

E(t ) exp (iωt )dt and of polarization Pω(r) =´
E(t ) exp (iωt )dt . For simplicity, we neglected the contrast

between the background dielectric constant of the nanocrystal
and vacuum. It follows from Gauss’s law,

div [Eω(r) + 4πPω(r)] = 0, (A2)

that grad div Eω(r) = −4π grad div Pω(r). It is instructive to
introduce the matrix Green’s function of Eq. (A1) in the form
[31,94]

Gαβ (r) =
(

δαβ + c2

ω2

∂2

∂rα∂rβ

)
exp (iωr/c)

4πr
, (A3)

where α, β = x, y, z are the Cartesian components, and we
express the field as

Eω,α (r) =
(ω

c

)2
ˆ

d3r′Gαβ (r − r′)Pβ,ω(r′). (A4)

Equation (A4) can be recast in the form

Eω(r) =
ˆ

d3r′eiωR/c

[(
ω

c

)2 [R × Pω(r′)] × R
R3

+
(

1

R3
− iω

cR2

)(
3[R · Pω(r′)]R

R2
− Pω(r′)

)]

− 4π

3
Pω(r), (A5)

where R = r − r′.
Note that the last term ∝ Pω(r) describes the field inside

the nanocrystal where P(r) �= 0 (this term describes the field
“between” separated charges). By construction, Eq. (A5) sat-
isfies the Maxwell equations and, particularly, Gauss’s law,
Eq. (A2).

The pulse area is given by the ω = 0 component of
Eq. (A5), namely

SE (r) =
ˆ

d3r′

R3

(
3[R · P0(r′)]R

R2
− P0(r′)

)
− 4π

3
P0(r).

(A6)
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FIG. 4. Zero-frequency component of the dipole moment dS in-
duced in a “two-level” quantum dot model by a zero-area pulse
(shown in the inset) as a function of the incident field amplitude E0.
The incident pulse is taken in the form of Eq. (17) with ω = ω0 and
ωτ = 1. In actual numerical calculation, the excited-state damping
in the form of −γψe(t ) was introduced to the right-hand side of
Eq. (B1a) with γ /ω0 = 1.

At large distances from the nanocrystal, Pω(r) vanishes, R ≈
r, and integration over r′ can be readily performed by virtue of
dS = ´

d3r′P0(r′), resulting in Eq. (7). Naturally, the zero-ω
component of Eω is given by Eq. (8) of the main text.

In fact, the actual displacements of the charges in the
nanocrystal are small and are limited by the nanocrystal size
a. Outside the nanocrystal, Pω(r) decays exponentially in
space, because charges are confined by the potential barrier
in the nanocrystal: According to Eq. (3), Pω(r) ∝ �(r, r) ∝
exp (−κr), where κ is related to the barrier height and the
carrier’s mass, which is typically on the order of Å−1 for
nanocrystals in free space. At the same time, the electric area

of the induced field ES decays as 1/r3; see Eqs. (A5) and
(8). Hence, no macroscopic charge separation and breaking
of charge neutrality is needed to generate a field distribution
with nonzero SE .

APPENDIX B: TWO-LEVEL MODEL

Here we show that the pulse with nonzero area can be
generated by a two-level model which is often used to describe
the response of a nanocrystal. In this model, the dynamics is
governed by a set of equations

iψ̇e(t ) = ω0ψe(t ) + V (t )ψg(t ), (B1a)

iψ̇g(t ) = V (t )ψe(t ). (B1b)

Here ψg and ψe are the coefficients of the wave function of
the nanocrystal:

|�〉 = ψg(t )|0〉 + ψe(t )|exc〉, (B2)

where |0〉 is the ground state of the nanocrystal (no exciton),
|exc〉 is the excited state of the quantum dot (with exciton),
and V (t ) ∝ Ei(t ) is the perturbation induced by the electric
field. The dipole moment induced in the quantum dot reads
[cf. Eq. (3)]

d (t ) = −ψe(t )ψ∗
g (t )

iepcv

ω0m0

ˆ
�∗(r, r)d3r + c.c. (B3)

Figure 4 shows the dependence of the zero-frequency com-
ponent of the exciton dipole moment dS [Eq. (5)] calculated
using d (t ) in Eq. (B3) found from numerical solution of the
system (B1). One can readily see that dS �= 0 appears in this
model as well. The oscillations of dS as a function of E0 result
from the Rabi effect inherent to two-level systems. Naturally,
in agreement with general analysis in the main text, dS ∝ E3

0
for weak incident pulses.
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