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Modulation-instability analysis of axial-azimuthal modes
in surface nanoscale axial photonic microresonators
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We study the initiation of primary comb generation in surface nanoscale axial photonic (SNAP) microcavities
within the framework of modulation instability theory. In such cylindrical microcavities, the whispering gallery
modes exhibit different effective volumes as well as varying overlap integrals with the excitation field, which
poses a challenge to the process of nonlinear mode generation. We derive the threshold power for the nonlinear
generation and find it considerably diverse for modes with different sideband numbers. We also suggest special
dispersion control, effectively reducing the threshold and simplifying the generation in cylindrical cavities.
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I. INTRODUCTION

The surface nanoscale axial photonics (SNAP) platform
is aimed at creating cylindrical microcavities of whispering
gallery modes made of standard optical fiber [1]. As with the
other types of microresonators with small mode volumes and
low losses, SNAP cavities are eligible for consideration for
Kerr optical frequency comb generation under continuous-
wave laser pumping.

Owing to a tiny disturbance of the cylinder radius that
can be precisely introduced to the fiber cladding [2], SNAP
mode structure possesses two sets of almost equidistant modes
with extremely different free spectral ranges (FSRs), which
may undergo four-wave mixing due to Kerr nonlinearity [3].
Firstly, there is a set of modes with one radial and one axial
number, having the same field distribution along the cylinder
axis but different azimuthal numbers m [see Fig. 1(a)]. The
FSR is determined by the fiber radius and has a typical value
on the order of 500 GHz.

The second set includes modes with the same azimuthal
and radial numbers but different axial quantum numbers q.
Axial distributions depend on the shape of the effective radius
variation and are determined from the Schrödinger equa-
tion [1]. In the particular case of the parabolic shape of the
variations, the axial mode series becomes equidistant [see
Fig. 1(b)]. The FSR is regulated by the width and height of the
radius variation and can be squeezed down to �100 MHz [4].
Thus, the SNAP system in principle can be used to generate
optical frequency combs with both high and low repetition
rates [3,5].

At the same time, there are peculiarities complicating the
observation of Kerr nonlinear mode generation in SNAP mi-
crocavities, possibly explaining the absence of experimental
evidence of nonlinear interactions in such cavities. This is
likely due to the larger volume of SNAP cavity modes com-
pared with other microcavities as well as the different mode
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volumes for different axial modes that are expected to increase
the nonlinear generation threshold.

The arising of the primary comb as a result of degener-
ate four-wave mixing is well described within the theory of
modulation instability (MI). Theories of MI in microcavi-
ties with an equidistant set of azimuthal modes have already
been proposed previously [6–11]. The theories were success-
fully applied to the study of nonlinear generation for various
types of microcavities, for example, ring GaP microresonators
[12], crystalline MgF2 microresonators [8,13], planar SiN
microresonators on a photonic chip [14], Si3N4 microring
resonators [8], microresonators with backscattering [15,16],
and bottle microresonators [17]. However, these theories are
not suitable for describing the MI of axial modes. Indeed,
the theories for azimuthal modes are derived by assuming
equal mode volumes and equal coupling strengths for different
azimuthal numbers, a condition that is not satisfied for a series
of axial modes.

The first steps toward describing nonlinear interactions
between axial modes were made by Oreshnikov and Skryabin
[18]. Their work demonstrates the theory of MI of axial modes
in a bottle microcavity considering differences in the volume
of axial modes. Nevertheless, there is another feature of the
SNAP cavities that should be considered [19]. As modes are
extended differently along the microcavity axis z, the dif-
ferences in the overlap integrals of those with a mode of a
coupling element become noticeable. As a result, the coupling
strength between different modes can differ by an order of
magnitude as well as the loaded quality factor. This strongly
complicates nonlinear dynamics [19].

Finally, the smallness of the radius variations utilized in
a SNAP cavity makes it strongly sensitive to external distur-
bances. The exciting element, i.e., a taper, has a noticeable
influence: In most of the implemented experiments with
SNAP cavities, the taper introduces additional effective radius
variations [20] and, as a result, an alternating shift of the
axial mode frequencies, that is, to additional dispersion [1,19].
Thus, to describe the formation of the primary axial comb in
a SNAP resonator, a more complete model is demanded.
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FIG. 1. Surface nanoscale axial photonics (SNAP) system: Mi-
croresonator based on the standard optical fiber with an effective
radius variation coupled with an input/output taper. Insertions are
the spatial distribution of microcavity modes. (a) Azimuthal-radial
mode with m = 50 and p = 1 in the cross-section of the fiber with
radius r0 = 62.5 µm. (b) Axial modes with q = 0, . . . , 9 in a micro-
cavity with a parabolic radius variation along the z axis; the resonant
frequencies of axial modes are on the ordinate axis.

In this paper, we propose a theory of MI of axial-azimuthal
modes, which includes the dependence of mode volume and
coupling strength on the axial mode number. Within the
framework of the theory, a relation between the power thresh-
old for the nonlinear generation of modes and mode dispersion
has been found. Importantly, the derived model relies on
the experimentally observable parameters, thus predicting the
actual thresholds and paving the way to ease the experi-
mental achievement of the nonlinear generation in SNAP
cavities.

In Sec. II, we introduce a system of coupled equations de-
scribing the nonlinear dynamics of axial-azimuthal modes
with external continuous-wave pumping. Section III describes
the nonlinear amplitude-frequency response of the strongly
pumped mode. Section IV presents the theory of MI of
two sidebands with the detailed derivation in Appendix and
separately discusses the generation of azimuthal and axial
primary combs since the nature of generation is fundamentally
different.

II. SYSTEM OF COUPLED MODE EQUATIONS

To obtain a system of coupled equations for axial-
azimuthal modes, we use the representation of the electric
field as follows:

E (�r, t ) =
∑

μ

aμ(t )eμ(�r) exp (iωst ) + c.c. (1)

Here, eμ(�r) = em,p(r, ϕ)Zq(z) is the spatial distribution of a
mode with azimuthal number m and axial number q, such
that max |eμ(�r)| = 1. Also, em,p(r, ϕ) is defined by the Bessel
function, with the exact expression given in Ref. [21]. Here-
inafter, only one radial mode will be considered with the radial
quantum number p = 1.

Further, Zq(z) is the spatial distribution of an axial mode,
which depends on the form of a fiber radius variation, ωs is
the frequency of the source. In the following, we replace the

indexes (m, q) by one index μ = (m − m0, q − q0) ≡
(mμ, qμ), which is the side mode number, defined concerning
a pumped mode with m0 and q0.

Using the representation in Eq. (1), from Maxwell’s equa-
tions, and following the derivations [19], we obtained a system
of coupled modes:

i
∂aμ(t )

∂t
− �ωμaμ(t ) + iδμ(z0)aμ(t ) − 3ωμχ (3)

2Kmn2
mVμ

Fμ

( �A)

= δμμ0

√
Pinδcμ

(z0)

ε0n2
mVμ

. (2)

Here, z0 is the point of the taper position, δcμ
(z0) =

|Cm|2Z2
q (z0)/Lq is the decrement that determines coupling

between the mode of the exciting element (taper) and the
microresonator mode, δμ(z0) = Im(Dm)Z2

q (z0)/Lq + 	 is the
decrement, including the internal losses of the microresonator
	 and taper-induced losses that depend on the overlapping
of all radiative modes of the taper with the cavity mode,
Dm and Cm are the coupling parameters [19], Lq = ∫

Z2
q (z)dz

is the effective mode length, Vμ = Lq
∫ |em(r, ϕ)|2d2r is the

effective mode volume. and δμμ0 is the Kronecker delta.
Here, χ (3) is the nonlinear susceptibility, ε0 is the vac-

uum permittivity, Km = 1 + ω(az)
m
nm

∂n
∂ω

[ω(az)
m ] is the coefficient of

material dispersion, nm ≡ n[ω(az)
m ] is the refractive index, and

ω(az)
m is the resonance frequency of azimuthal mode m in the

case of infinite cylinder.
Moreover, �ωμ = ωp − ωμ − 
μ(z0) is the pump fre-

quency detuning from the axial-azimuthal resonant frequency
ωμ, 
μ(z0) = Re(Dm)Z2

q (z0)/Lq is the resonant frequency
offset associated with the taper, which introduces additional
radius variation as a result of the mode shifts. Also, Pin is the
pump power. The nonlinear term is determined as

Fi
( �A) =

⎛
⎝Viiii|ai|2 + 2

∑
j �=i

Vj jii|a j |2
⎞
⎠ai +

∑
j �=i
k �=i

Vi jkl a jaka∗
l .

(3)

Here, Vi jkl = ∫
e∗

i (�r)e j (�r)ek (�r)e∗
l (�r)d3r is the overlap integral

of modes involved in four-wave mixing.

III. PUMPED MODE EQUATION

This is the equation for the central mode with pumping and
quantum numbers m0 and q0:

i
∂a0

∂t
− �ω0a0 + iδ0a0 − g0|a0|2a0 = F. (4)

Here, the coefficient of nonlinearity is g0 = 3ω0χ
(3)V0000

2Km0 n2
m0

V0
, F =

√
Pinδc

ε0n2
m0

V0
. In the stationary case, after multiplying Eq. (4) by

the complex conjugate, we get

F 2 = g2
0A3 + 2g0�ω0A2 + (

δ2
0 + �ω2

0

)
A. (5)
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Here, A = |a0|2. This equation defines the nonlinear fre-
quency response (NFR) of the pumped central mode:

�ω = −g0A ±
√

F 2

A
− δ2

0 . (6)

This expression coincides with the theory of a simple coupling
model [22] except for the nonlinearity coefficients g0. In this
case, the frequency is the resonant frequency of the azimuthal
mode, and there is a correction factor Km associated with the
material dispersion.

The presence of two branches leads to the bistability of the
system [9]. The stable state of the central mode is the upper
branch of the NFR with a plus sign in Eq. (6).

IV. PRIMARY COMB GENERATION

To find the pump power that is sufficient to induce primary
comb generation, let us consider a pair of modes with ±μ =
±(m − m0, q − q0) in the presence of the strongly pumped
mode. Linearization of the system of Eq. (2) for sideband
modes yields

∂aμ

∂t
+ i�ωμaμ + δμaμ + i2gμ,μ|a0|2aμ + igμ,−μa2

0a∗
−μ = 0,

∂a∗
−μ

∂t
− i�ω−μa∗

−μ + δ−μa∗
−μ − i2g−μ,−μ|a0|2a∗

−μ − ig−μ,μa∗
0

2aμ = 0. (7)

Here, gi, j = 3ωiχ
(3)Vi j00

2Kmi n
2
mi

Vi
, where i, j ∈ (−μ,μ). Further, we use

g±μ,±μ ≡ g±μ.
The generation of the first pair of modes will start when

the amplitude a0 of the pumped mode is sufficiently large
to ensure the instability of the system of linear differential
equations [9]. In other words, a part of the NFR must lie
inside the region of instability. A detailed derivation of the
boundaries of the instability region is given in Appendix. As
a result, we obtain

�ω0 = −(gμ + g−μ)A + D(int)
μ + D(int)

−μ

2

±
√

(δμ + δ−μ)2

4δμδ−μ

(gμ,−μg−μ,μA2 − δμδ−μ). (8)

Here, D(int)
±μ is the mode dispersion term, determined as ω±μ =

ω0 ± D1μ + D2μ
2 + . . . = ω0 ± D1μ + D(int)

±μ , including the
additional dispersion from the taper.

The pump power P(th)
in required for nonlinear generation

is determined by the situation when the maximum amplitude
|a0|2 = F 2/δ2

0 , which is achievable at the given Pin, reaches
the minimum amplitude required for the MI of the modes,
which is defined by the positive sign of the radicand in Eq. (8):
|a0|2 = √

δμδ−μ/(gμ,−μg−μ,μ).
Then the minimal power threshold reads

P(th)
in � δ2

0ε0n2
0V0

δc

√
δμδ−μ

gμ,−μg−μ,μ

. (9)

Note that the condition in Eq. (9) is necessary but not suf-
ficient. To determine the real threshold, one needs to consider
the position of the boundaries of the instability region relative
to the NFR and to demand their not-empty intersection. This
consistency condition for Eqs. (6) and (9) might be solved
graphically.

A. Azimuthal modes

To more clearly emphasize the features of the nonlinear
generation of axial modes, let us first consider the classical
case of azimuthal modes with the same axial quantum number,

like the nonlinear generation in other microcavities such as
microspheres, ring microcavities, with the detailed analysis
presented in Ref. [9].

In this case, we can neglect the difference between decre-
ments and the effective volume of different modes; thus,
the power threshold becomes independent of the sideband
number μ:

P(th)
in = δ3

0ε0n2
0V0

δcg0
. (10)

The boundary of the instability region in Eq. (8) is correspond-
ingly simplified to the following form [9]:

�ω0 = −2g0A + D(int)
μ + D(int)

−μ

2
±

√
g2

0A2 − δ2
0 . (11)

We illustrate the rather tolerant requirements for the disper-
sion for the generation of the azimuthal mode by analyzing the
instability region and NFR on the (�ν; A) plot. To determine
azimuthal dispersion in SNAP cavities D(int)

μ , we use the ap-
proximation formula for resonant frequencies of the modes of
infinite cylinders [21], considering material dispersion of sil-
ica (see Fig. 2). Note that, corresponding to Eq. (11), the shape
of the boundary does not depend on the sideband number μ.
Growing of the dispersion shifts the boundary along the �ν
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FIG. 2. Dispersion of the azimuthal modes for the various radii
of the fiber; �ν = �ω0/(2π ) is frequency detuning from 193 THz.
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(a)

(b)

FIG. 3. The instability regions for azimuthal sidebands with
number μ = 1–4, and the nonlinear frequency response (NFR) of
a mode pumped with Pin = 1W for different cylinder radii: (a) r0 =
62.5 µm, m = 354 (normal dispersion, generation is impossible) and
(b) r0 = 200 µm, m = 1152 (anomalous dispersion, generation is
possible).

axis only (see Fig. 3, the instability region lies inside the hy-
perbolalike branches). Accordingly, the number of modes that
can be potentially involved in degenerate four-wave mixing
is determined only by the dispersion value. Negative disper-
sion yields no intersection between the NFR and instability
region [Fig. 3(a)] and thus prohibits the generation, while
positive dispersion, which is realized for silica fibers with a ra-
dius >80 µm, ensures the intersection between the instability
region boundary and the NFR. As an example, we consid-
ered commercially available fiber with a radius r0 = 200 µm
[Fig. 3(b)]. Notably, there are many sidebands that can be
generated.

It is also worth noting that, for an arbitrary low level of
positive dispersion, the stable branch of the NFR partly falls
into the instability region for some sidebands. That is, an
arbitrarily small positive dispersion is sufficient for nonlinear
generation.

B. Axial modes

The primary comb generation of axial modes with the same
azimuthal number appears to be a more intricate process with
additional constraints. The modes with different axial num-
bers q possess different effective volumes (gμ �= g−μ �= g0)
that cannot be neglected in the analysis. The second important
feature is that different axial modes have different overlap
integrals with the radiation source, which leads to different
coupling strengths and thus loaded quality factors of the
modes at the same taper position (δμ �= δ−μ �= δ0).

Foremost, inequalities of gμ, δμ make the nonlinear gen-
eration threshold in Eq. (9) dependent on mode number μ,
which is a fundamental distinction from the generation of
azimuthal modes. As the value of μ increases, the power
threshold also increases.

As an illustration, we analyze the threshold power for
axial modes, appearing in the fiber with the radius of r0 =

5 10 15 20
0

50

100

P
in(t

h)
 (

W
)

2 4
0

0.5
1

1.5

FIG. 4. Power threshold for nonlinear generation of axial modes
depending on the sideband number μ.

62.5 µm with considerable parabolic effective radius variation
�r (eff) = δr[1 − (z/l )2], where δr = 7 nm and l = 2000 µm.
Such variation dimensions are practically achievable, for
instance, with strong bending of an optical fiber [4], and
should contain ∼100 axial modes, thus being attractive for
low-repetition rate optical frequency comb generation. We
assume pumping the mode with quantum numbers m = 354,
q = 45 corresponding to the wavelength 1.55 µm. The cou-
pling parameters correspond to the parameters measured in
Ref. [19] and have the following values: Im(Dm) = 8 ×
104 m/s, Re(Dm) = −105 m/s, |Cm|2 = 2 × 104 m/s, and in-
ternal losses 	 = 9 × 106 s−1. The minimum threshold for
the nonlinear generation with the coupling parameters se-
lected from Ref. [19] is P(min)

th = 0.4 W for μ = 1 (see Fig. 4).
It is noteworthy that such a high threshold is attributed to the
moderate efficiency of the not-single-mode taper used in the
experiments [19].

At the given pump power, only the pairs of modes closest
to the pump are allowed for generation. For instance, in the
case of pumping with power Pin = 1 W, it is fundamentally
possible to generate only sidebands with numbers μ = 1, 2, 3
[see Fig. 5(a)]. Modes with a higher number do not become
unstable with such pump power [instability regions for μ � 4
lay above the NFR curve, see Fig. 5(a)]. This is in contrast
with azimuthal modes, which have instability regions located
at the same pump level (see Fig. 3).

Importantly, to achieve primary comb generation, a cer-
tain dispersion value is required. With increasing number μ,
the instability region shifts to the negative detunings even in
the absence of the dispersion [see Fig. 5(a)]. Therefore, the
presence of anomalous dispersion itself does not guarantee
sideband MI, as it did for azimuthal modes. To move the
instability regions to the right and ensure their intersection
with the NFR curve and thus MI, it is necessary to create an
anomalous dispersion of sufficient magnitude.

We obtain dispersion for nonlinear generation at a mini-
mum threshold in Eq. (9) achieved for sideband with μ =
1. At this power, the maximum frequency response is A =√

δ1δ−1/(g1,−1g−1,1) when �ν = −g0A. For MI, the fre-
quency response and the instability region must intersect at
this maximum point of NFR; that is, in addition to the am-
plitudes, the detuning �ν must be equal: −g0A = −(g1 +
g−1)A + D2. From this condition, we obtain an expression for
the necessary level of the second-order dispersion:

D(th)
2 = (g1 + g−1 − g0)

√
δ1δ−1

g1,−1g−1,1
. (12)
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(a)

(b)

(c)

FIG. 5. Instability regions of axial sidebands with number μ =
1–4 relative to the nonlinear frequency response (NFR) at pump
power Pin = 1W with dispersion of axial mode determined by
anharmonic term to parabolic potential: (a) No anharmonicity
[D2/(2π ) = 0 MHz], (b) α = 0.48 [D2/(2π ) = 0.5 MHz], and (c)
α = 2.4 [D2/(2π ) = 2.5 MHz].

For the potential considered here with δr = 7 nm and l =
2000 µm, Eq. (12) gives a dispersion D(th)

2 /(2π ) = 2.15 MHz.
In a parabolic potential, the energy levels are equally spaced,
yielding D2 = 0. Axial mode dispersion can be introduced by
adding anharmonicity to the parabola. Thus, the anharmonic
term proportional to z4 leads to second-order dispersion in the
first order of perturbation theory [23]. The value given here
is an estimate since introducing dispersion into the parabolic
potential will change the distribution functions of the axial
modes, so several iterations are necessary to accurately calcu-
late the actual value.

The threshold dispersion depends on the strength of the
coupling between the taper and the microcavity and can be
further reduced for the undercoupling regime. It is possible
to estimate the minimum threshold dispersion, assuming that
the microcavity is unloaded. The estimation gives D(th)

2 =
1.43 MHz, i.e., of the same order with the threshold dispersion
for the well-loaded quality.

Moreover, by selecting the dispersion, it is possible to
select the modes involved in the generation. To illustrate this,
we performed calculations for the instability region for ax-
ial modes with small second-order dispersion. For this, an
anharmonic distortion was added to the parabolic potential

2 4 6 8
D

2
 (MHz)

0

0.5

1

1.5

2

P
in

 (
W

)

231

12

1
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3241 2314

213

321 32

23

3421

2341

21

No MI

FIG. 6. Modulation instability (MI) map for axial modes. The
sequence of numbers corresponds to the order in which side modes
μ are involved into the process of degenerate four-wave mixing as
the pump frequency decreases.

determined by the shape of an effective radius variation:

Vm(z) = 2β2
m

δr

r0

[
1 −

( z

l

)2
+ α

( z

l

)4
− α

]
. (13)

Here, α is the anharmonicity coefficient, defining the
second-order dispersion D2 of the axial modes: α =
D2ω

(az)
m n2

mKml2/(3c2) [1,5,23]. Anharmonicity also leads to a
change in the axial mode distribution functions and therefore
their volumes, which results in a weak dependence of the NFR
on dispersion (see Fig. 5).

In the case of low dispersion of D2/(2π ) = 0.5 MHz, re-
gions with μ = 2, 3 do intersect the upper branch of the
NFR [see Fig. 5(b)]. With the larger dispersion D2/(2π ) =
2.5 MHz, generation of a mode with μ = 3 becomes impos-
sible; at the same time, closer sidebands μ = 1, 2 meet the
generation requirements [see Fig. 5(c)]. Importantly, increas-
ing dispersion results in lower thresholds for the nonlinear
generation: The generation of the sideband μ = 2 is available
at a lower amplitude of the pump mode A = 640 V2/ µm2

than A = 950 V2/ µm2 at D2/(2π ) = 0.5 MHz. If we stop the
frequency tuning, for example, at �ν = −6 MHz, only μ = 2
will be generated. Then as a result of nondegenerate four-wave
mixing, only every second mode will appear.

The analysis may be generalized on the instability map (see
Fig. 6). The map in the (D2; Pin) space indicates the region
where MI may occur. This region is subdivided into distinct
areas based on which particular modes are amplified under the
specified D2 and Pin parameters. Note that different sidebands
appear at different detunings of the pump frequency when it
is scanned toward the long-wavelength wing of the nonlinear
resonance of the pump modes. Thus, we can indicate specific
sequences of sideband numbers in the order in which they
appear as the pump frequency decreases.

Figure 6 highlights the potential for mode selection during
the primary comb formation. For instance, at a pump power
of 1 W and a dispersion of 6 MHz, MI can give rise to μ = 2
sidebands at a specific detuning, while the appearance of μ =
1 sidebands occurs with a greater redshift of the pump. At the
same time. adjusting dispersion to a smaller value of 0.5 MHz
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helps in altering the primary comb formation: The same pump
power induces the μ = 3 sidebands in the first instance.

We suppose that the mode selection in a degenerate pro-
cess defines the further formation of the comb spectrum. For
instance, the MI amplifying the third sideband μ = 3 might
bring the spectrum with comb teeth being harmonic to the
primary sideband [9], giving rise to combs with multiple FSR
spacings [24,25] and leading to multisoliton solutions. We
presume that the different mode distributions for different
axial modes may suppress the nonlinear four-wave mixing,
strengthening this tendency.

V. CONCLUSIONS

We investigate the primary comb generation in a cylindri-
cal microresonator with an effective radius variation. Such a
system has two sets of equidistant modes: one with only a
different axial number and one with only a different azimuthal
number. We provide the MI analysis for axial-azimuthal side-
bands and determine the threshold for nonlinear generation.

We reveal that the MI of sidebands with different axial
quantum numbers has a fundamental difference compared
with the generation of azimuthal modes, which is classical for
other types of microresonators used for optical comb genera-
tion. Inequalities in mode volumes and coupling strengths for
different axial modes increase the nonlinear generation thresh-
old with the sideband number, while for azimuthal modes, it

is constant. The minimum power threshold is achieved for
the first axial sideband and has a value of 400 mW for the
investigated microresonator. The dependence of threshold on
sideband number leads to the fact that, for a given pump
power, the modes closest to the pump mode are involved in the
generation, and the gain spectrum includes only a few modes.
However, for azimuthal modes, the gain spectrum can include
dozens of modes, and its maximum can be far from the pump.

Importantly, to achieve axial mode nonlinear generation at
threshold power, a certain dispersion value is required. In con-
trast with the case of azimuthal modes, in which an arbitrarily
small anomalous mode dispersion is sufficient for generation,
the gain of axial modes will not begin with any anomalous
dispersion. We obtain the expression of the necessary disper-
sion for nonlinear generation at a minimum threshold for the
first sideband. For the microresonator under consideration, it
amounts to 2.15 MHz.

In addition, we have shown that the developed theory helps
in determining the dispersion necessary for the selection of
modes involved in the formation of the primary comb at a
certain pump power.
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APPENDIX: BOUNDARIES OF THE INSTABILITY REGION

Let us find the roots of the characteristic equation for the system of linear equations in Eq. (7):

(−i�ωμ − δμ − i2gμ|a0|2 − λ)(i�ω−μ − δ−μ + i2g−μ|a0|2 − λ) − gμ,−μg−μ,μ|a0|4 = 0. (A1)

The characteristic equation is

λ2 + 2λ

[
δμ + δ−μ

2
+ i(gμ − g−μ)A + i(�ωμ − �ω−μ)

2

]
+ �ωμ�ω−μ + δμδ−μ

+ 2i(gμδ−μ − g−μδμ)A + (4gμg−μ − gμ,−μg−μ,μ)A2 + 2(gμ�ω−μ + g−μ�ωμ)A

+ i(�ωμδ−μ − �ω−μδμ) = 0. (A2)

The roots of the characteristic equation are defined as

λ = −δμ + δ−μ

2
− i(gμ − g−μ)A − i(�ωμ − �ω−μ)

2

±
{

− (�ωμ + �ω−μ)2

4
+ (δμ − δ−μ)2

4
− (gμ + g−μ)2A2 − (�ωμ + �ω−μ)(gμ + g−μ)A

− gμ,−μg−μ,μA2 + i
(
δμ − δ−μ

)[
(gμ + g−μ)A + �ωμ + �ω−μ

2

]}1/2

. (A3)

The instability condition is Re λ > 0:

Re λ = −δμ + δ−μ

2
± Re

√
ζ . (A4)

Here, ζ = −(�ωμ + �ω−μ)2/4 + (δμ − δ−μ)2/4 − (�ωμ + �ω−μ)(gμ + g−μ)A − [(gμ + g−μ)2 − gμ,−μg−μ,μ]A2 + i(δμ −
δ−μ)[(gμ + g−μ)A + (�ωμ + �ω−μ)/2].
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Considering that Re(
√

ζ ) = ±√
[|ζ | + Re(ζ )]/2, we obtain the condition for the onset of instability:

(δμ + δ−μ)4

4
− (δμ + δ−μ)2 Re(ζ ) − Im(ζ )2 < 0. (A5)

We introduce the notation: δ+ = (δμ + δ−μ)/2, δ− = (δμ − δ−μ)/2, �ω+ = (�ωμ + �ω−μ)/2, g = gμ + g−μ, and g(2) =
gμ,−μg−μ,μ. In this case, Re(ζ ) = −(�ω+)2 + (δ−)2 − 2�ω+gA − [g2 − g(2)]A2, Im(ζ ) = 2δ−(gA + �ω+):

(δ+)4 − (δ+)2{−(�ω+)2 + (δ−)2 − 2�ω+gA − [g2 − g(2)]A2} − [δ−(gA + �ω+)]2 < 0. (A6)

Now it is necessary to find the boundaries of the instability region expressed in terms of the parameters �ω0 and
A, considering �ω+ = �ω0 + [2ω0 − ωμ − ω−μ − (2
0 − 
μ − 
−μ)]/2 = �ω0 − [D(int)

μ + D(int)
−μ ]/2. Let us denote D+ =

[D(int)
μ + D(int)

−μ ]/2. Thus, we obtain the quadratic equation for �ω0:

[(δ+)2 − (δ−)2]�ω2
0 + 2[(δ+)2 − (δ−)2](gA − D+)�ω0 + [(δ+)2 − (δ−)2](gA − D+)2

− (δ+)2[(δ−)2 + g(2)A2] + (δ+)4 = 0. (A7)

The discriminant of the quadratic equation is

D = [(δ+)2 − (δ−)2]{(δ+)2[(δ−)2 + g(2)A2] − (δ+)4}
= (δ+)2[(δ+)2 − (δ−)2][(δ−)2 + g(2)A2 − (δ+)2]. (A8)

The boundaries of the stability region are

�ω0 = −gA + D+ ±
√

(δ+)2[(δ−)2 + g(2)A2 − (δ+)2]

(δ+)2 − (δ−)2
, (A9)

when we go back to the previous notation and obtain Eq. (8).
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