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Nonlinear continuous orbital-angular-momentum modulation of linearly polarized Bessel beams
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We numerically and experimentally demonstrate the nonlinear continuous modulation of orbital angular
momentum (OAM) of a linearly polarized high-order Bessel beam in a biased photorefractive (PR) crystal.
According to the simulation results, we identify three nonlinear dynamic regimes depending on the strength of
the applied electric field, and we successfully stabilize the OAM via the modulation of a background illumination.
As aresult, we predict a parabolic trend for the maximal OAM modulation range in the stable regime. In addition,
with the comparative analysis between vortex and differently truncated Bessel beams, we report the existence
of exploitable plateaus, enabling a more extensive modulation range in the unstable regime. The experimental
results are consistent with the simulations, confirming the practical realization of the flexible control of the
OAM in both stationary and dynamic regimes. These results contribute to new reconfigurable components in

OAM-based communications.
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I. INTRODUCTION

In recent years, orbital angular momentum (OAM) has
attracted considerable attention because of its potential for
classical and quantum information processing. The OAM
carrying light presents a helical phase front described by
exp(il¢), where ¢ is the azimuthal angle, and [ is the num-
ber of the 27w phase shift around the center of the beam
phase profiles, which also indicates the mode of the OAM
states. Different from spin angular momentum (SAM) as-
sociated with the circular polarization possessing only two
modes (s = £1), the OAM can take, in principle, unlimited
orthogonal modes (/ =0, =1, £2, ...) [1,2]. Thus, as a new
degree of freedom for encoding information, OAM-based
spatial modes provide a higher traffic capacity in optical net-
works [3]. Meanwhile, as multilevel quantum states, OAM
states permit higher transmission rates and security through
a high-dimensional quantum key distribution (QKD) system
in quantum communication [4—6].

For manipulating information encoded by the modes of
the OAM states, the key challenge lies in their modulation.
Thus, the OAM modulation of light beams becomes a current
research interest for structured light [7]. Several technologies
have been proposed, such as spiral phase plates [8], spatial
light modulators [9], and metasurfaces [10]. While these ap-
proaches have seen significant innovation and advancements
in recent years, they typically necessitate optical transfor-
mation before and following the modulation components,
thereby introducing complexities in their practical realization.
Moreover, they are always limited by nonreconfigurability and
high costs. According to these challenges, we propose to real-
ize the OAM modulation in an electro-optic crystal through
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phase modulation under nonlinear conditions. This method
also takes full advantage of all-optical control, effectively ad-
dressing issues such as time delays and data distortions arising
from the conversion between optical and electrical signals.
Some research of the OAM modulation based on nonlinear
effects has already been carried out recently. For example, in
2017, Mousavi et al. designed an integrated OAM states mod-
ulator due to the linear electro-optic effect in lithium niobate
(LiNbOs3) [11]. This technology is based on the mathemati-
cal transformation of the Laguerre-Gauss (LG) modes to the
Hermite-Gauss modes [12], so the modulator can only reverse
the handedness of OAM states and is also limited by the type
of the vortex beam. In 2020, Wu et al. realized the SAM-OAM
conversion in a strontium-barium niobate (SBN) crystal [13].
It is restricted to an input beam circularly polarized with a
propagation along the optical axis for a uniaxial condition.
These results demonstrate the feasibility of OAM modulation
under weak nonlinear conditions. Nevertheless, the research
remains at the simulation stage, and the discussions do not
concern the stability of the modulation. Moreover, the modu-
lation in these works strictly requires the circular polarization
state of the input beam, so the modulation value is limited
to Al =2. In 2022, Jiang et al. experimentally realized the
OAM conversion based on the sum frequency generation [14].
Despite an extensive range of modulation in this work, the
modulated values are restricted to the integer domain, and the
modulation requires a delicate choice of the pump beam.
Considering these limitations, it is intriguing to investigate
(1) whether it is feasible to continuously modulate the OAM
of a Bessel beam under nonlinear conditions, (2) whether the
input polarization state is important for the OAM modulation,
and (3) whether it is possible to realize such modulations in
experiments. In this paper, we use high-order Bessel beams for
conducting this research. The Bessel beam (BB) was proposed
by Durnin in 1987 [15], and its Gaussian truncated form, the
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so-called Bessel-Gauss beam [16], has been widely studied in
the last three decades. Due to their peculiar properties, such
as nondiffraction [17,18], self-healing [19], and self-trapping
behavior under the nonlinear propagating condition in the
Kerr or photorefractive (PR) crystal [20], it is attractive for
use in all-optical information processing, for example, the
light localization by BB-inducing photonic lattice [21], the
reconfigurable soliton network [22], and the photoinduction of
complex wave-guiding structures [23-25]. In addition, high-
order Bessel beams possess helical phase fronts and carry
OAM depending on the orders of the Bessel function [26],
which permits their use for classical optical and quantum com-
munications [27-29]. Meanwhile, in this domain, high-order
Bessel beams exhibit better robustness against turbulence and
outperform other OAM-carrying beams, such as LG beams, in
channel efficiency and bit error rates [30].

Accordingly, in this paper, contrary to other works, we
inject a linearly polarized high-order BB in the PR SBN
crystal, and study the electric field-modulated behavior of
OAM. In the simulations, by analyzing the influence of the
nonlinear conditions, we demonstrate the feasibility of such
continuous OAM modulations through the applied electric
field and identify three dynamic regimes of OAM variation
depending on the strength of the applied electric fields: the
stable state, the quasi-stable state with oscillations, and the
unstable state. Then, by adjusting an optical parameter such
as the background illumination in our crystal, we success-
fully determined the adapted intensity ratios to stabilize the
OAM for each calculated external electric field and reported
a parabolic modulating rule depending on the electric field.
In addition, the comparison between the high-order Bessel
beams and the vortex beam demonstrates the protection of
the multirings profiles against the erratic and violent decline
of the OAM under high nonlinear conditions. Subsequently,
by discussing the beam truncation, we present the transient
exploitable plateaus where the OAM is adjustable between the
minimum stable value and a value higher than the original one,
thereby expanding the modulation range. Finally, we conduct
experiments and exhibit two stages of the OAM variation over
time: the focusing and the relaxation stages. In both scenar-
ios, we conclude the concordance between the experimental
and simulation results, encompassing the OAM modulation
tendency, three nonlinear dynamic regimes depending on the
strength of the applied electric fields, and the extended modu-
lation range under high nonlinear conditions. The simulations
and experiments affirm the continuous OAM modulation of a
linearly polarized high-order BB in both stable and unstable
regimes with an extended range.

II. THEORY AND NUMERICAL MODEL

The typical scheme of a high-order Bessel beam propa-
gating in a SBN crystal is illustrated in Fig. 1(a). As the
OAM-carrying property is related to both intensity and phase
characteristics, it is essential to calculate the propagation in
the (2+1)D situation. We assume that the incident high-order
Bessel beam is linearly polarized along the optical axis (¢
axis) of the SBN crystal [x axis in Fig. 1(a)] and propagates
along the z axis (the crystal length is Ly = 2 cm). This incident
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FIG. 1. (a) Principle scheme of a high-order Bessel beam illu-
minating a SBN crystal. (b; and b,) Two-dimensional (2D) intensity
and phase distributions at the output face of the crystal for a fourth-
order Bessel beam (I =4, k, =0.2um™!, wy = 20ry, Iy/I; = 1)
linearly propagating in the 2-cm SBN crystal (E; = 0 V/cm).

Bessel beam profile is mathematically defined by

2

F(r,¢,z2=0) = FyJ;(k;r)exp <—:7) exp(ilg). (1)

0

r = /x% +y? and ¢ = arctan(y/x) are the radial distance and
the azimuthal angle, respectively, where (x, y) are transverse
coordinates. F; is the maximum electric field amplitude of the
incident beam related to the input intensity with I, = |Fy|%. J;
is the /th-order Bessel function, and %; is the transverse wave
number related to the beam size ry with k; = 2/rg. wy is the
waist of the Gaussian truncated beam, which determines the
number of rings and the diffracting-free distance of the Bessel
beam by Lp = wy/(k; /k) (k = 2mn/A is the wave number in
the crystal, n = 2.3 is the unperturbed refractive index of the
SBN crystal, and A = 532 nm is the wavelength of the beam)
[23]. The phase term exp(il¢) describes the helical wavefront
of the high-order Bessel beam related to its OAM mode as
mentioned in the Introduction.

When such a high-order Bessel beam propagates in the
SBN crystal, as described by the Kukhtarev-Vinetskii model,
the donors absorb the photons and ionize for the free elec-
trons [31]. The ionized donors and the excited electrons move
through diffusion and drift effect, which forms an internal
field called the space charge field. With the same assumptions
in Ref. [32,33], this process can be described by the normal-
ized Kukhtarev-Vinetskii equations:

q, = EU LW = Np)

., 2
7 )
Nf=1+p, 3)
0P - - kgT -
a—f = —VNIUE) - BTV([M]VNE). (4)

N, is the free electron density normalized to the acceptor
density N4. Np and N, are total and empty donor densities
normalized in the same way. /(x, y, z) presents the light inten-
sity distribution in the SBN crystal that varies over time in the
nonlinear process. I; is the intensity of the background illumi-
nation. p is the space charge density normalized to eN4, where
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e is the elementary charge of an electron. £ is the constant
proportional to the ratio of the photoexcitation probability
and the recombination probability. [] is the mobility tensor
taking account of the anisotropy of the electron mobility in
the SBN crystal. kg and T are the Boltzmann constant and the
absolute temperature, respectively.

E in Eq. (4) is the total electric field in the crystal, includ-
ing the space charge field E. and the external electric field Ej.
The space charge field E. can be calculated by the integration
of the charge density distribution p(r7) in the crystal volume

V:
! /f/ an——""_ . &)
47 v P r —r/3 ’

where € and [€] are the vacuum permittivity and the relative
permittivity in the material. With the same numerical method
presented in Ref. [33], we calculate the space charge field
for each time step Ar. This internal field induces a refractive
index change through the Pockels effect, which can be deter-
mined by

D(r) = eole] Ew(r) =

1
A(ﬁ) = riukx. (6)
ij k

where E; are the electric field components and r;j; are the
linear electro-optic coefficients. With the novel refractive in-
dex change distribution An, the beam propagation can be
described by the wave equation

1 k
i0,F + —V*F + —AnF =0, (7)
2k n

where F' is the complex field of the light calculated concur-
rently by the beam propagation method (BPM) in each time
step. In the following simulations, we set the total calcula-
tion duration to 57;, where T, is the relaxation time of the
PR crystal [34]. This duration ensures the achievement of a
stable state under weak nonlinear conditions, facilitating the
following identification and analysis of the dynamic behav-
iors. Furthermore, to ensure consistency between simulations
and experimental observations, all physical parameters of the
SBN:61 crystal ([e], [u], n, r;x) [35,36] were taken into
account in our simulations.

Then, according to Ref. [37], we can calculate the OAM
distribution along the propagation axis (z axis) by the follow-
ing definition:

ff (xa‘/f )’3‘//>|F|2dxdy
[[IF|?dxdy ’
where  is the phase of the field F.

l(z) = ®)

III. SIMULATION RESULTS
A. OAM modulation in the stationary regime

In the simulations, we first consider a fourth-order Bessel
beam: [ = 4, k, = 0.2um™', wy = 20ry, L, /I; = 1 propagat-
ing linearly (Ep = 0kV/cm) in an SBN crystal (2 cm) along
the z axis.

Figures 1(b;) and 1(b,) show the 2D intensity and phase
distributions at the back face of the crystal. As mentioned,
we observe in Fig. 1(b;) a dark region in the beam center
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FIG. 2. (a) Variation tendency of the available OAM values ver-
sus electric field E, for the high-order Bessel beam (I =1, 2, 3, 4)
with k, = 0.2um™", wy = 20ry, and I,,/I; = 1 propagating in the
2-cm SBN crystal. (b;j—d;) 2D output intensity and phase dis-
tributions of the fourth-order Bessel beam propagating under
the condition of (b;) and (by) Ey = 1kV/cm, (c;) and (cp)
Ey =1.5kV/cm, and (d;) and (d;) Ey = 2kV/cm. (e) The OAM
spectrum on the normalized intensity for the cases of Ey = 1 kV/cm,
Ey=1.5kV/cm, Ey = 2kV/cm.

characterizing the singularity of the OAM-carrying beam, and
four 2 -phase shifts around the beam axis (z axis) indicating
the beam order (I = 4) in Fig. 1(b,). By calculating Eq. (8),
we verify that such a Bessel beam maintains its OAM of [ = 4
during its linear propagation in the SBN crystal.

Subsequently, we fix the intensity ratio of Ij,/I; = 1 of
such a fourth-order Bessel beam and change only E, from
0kV/cm to 5kV/cm with a step of 0.5kV /cm. For each Ej
value, we simulate its propagation for up to 57, and calculate
the OAM value at the output face of the crystal (z = Ly) every
0.125T7;. Then, we select the minimum OAM value during
the 57 called the transient minimum in each case and plot
them in Fig. 2(a) [the diamond points in Fig. 2(a)]. The green
line is the fitting curve that depicts the tendency of these
transient minimum OAM values that varies with electric field
strength (Ep). Furthermore, we repeat the same process for
other orders (I = 1, 2, 3) and plot the points representing the
transient minimum OAM values with their fitting curves in
Fig. 2(a). The coefficient of determination (R?) for all these
fitting curves is the same (R> ~ 0.99).

053518-3



CHAIL MARSAL, AND WOLFERSBERGER

PHYSICAL REVIEW A 109, 053518 (2024)

As depicted in Fig. 2(a), each curve exhibits a minimum
at a specific Ey = Ey,;,. For example, for the fourth-order
Bessel beam [green line in Fig. 2(a)], the minimum is at
Eyp = 2kV/cm, where the exact minimum value is [y, &
1.53, indicated by the diamond point. Notably, when Ey <
Erin, the OAM value decreases in a monotonic way, indicating
the potential for OAM modulation through the applied electric
field Ey. This decreasing variation can be explained by the
conversion of the OAM to SAM within the biased PR crystal,
because the effective birefringence resulting from PR nonlin-
earity enables the transformation of linear polarization into
elliptical polarization [38,39], also measured experimentally.

For more details, we present output intensity and phase
distributions corresponding to the points at Ey = 1 kV/cm,
Ey = 1.5kV/cm, and Ey = 2kV/cm in Figs. 2(b;) and 2(b,),
2(cy) and 2(c;), and 2(d;) and 2(d,), respectively. Figure 2(b;)
still shows a well-defined dark region at the center of the
rotation pattern, while Figs. 2(c;) and 2(d;) show that the
singularity distribution of the intensity becomes more noisy as
Ey increases. This phenomenon corresponds to the diminution
of the OAM value. In addition, the phase distributions in
Figs. 1(by) and 2(b;)-2(d,) reveal an increasing number of
phase discontinuities emerging around the center of the beam
as Ej increases, for example, the phase step noted in the red
circle in Fig. 2(b;), which can be attributed to the self-phase
modulation effect in a nonlinear PR crystal [40]. These phase
discontinuities are consistent with the fractional OAM modes
[41]. Moreover, as stated in Ref. [42], the spiral phase term
of the high-order Bessel beam, exp(i/¢), can be represented
using its Fourier series as exp(il¢) = Ziooo C,(Dexp(ing),
where |C,(I)|> =1,(I) denotes the intensity weight of the
integer OAM state. Consequently, a beam featuring fractional
OAM is defined as the decomposition into several integer
OAM modes, each with their intensity weight (/). To specify
the variation of intensity weights versus the electric field,
we plotted the OAM spectrum on the normalized intensity
I,(l) for the cases corresponding to Figs. 2(b;)-2(dy) in
Fig. 2(e). The blue, orange, and yellow bars represent the in-
tensity weight of the OAM states in the cases Ey = 1 kV/cm,
Ey =1.5kV/cm, and Ey = 2kV /cm. Notably, the principal
mode moves from n = 4 to n = 1 orders as the electric field
strength increases, corresponding to the decrease in the av-
erage OAM value [the average OAM values calculated by
Eq. (8) are 3.80 (Ep = 1kV/cm), 3.21 (Ey = 1.5kV/cm),
and 1.53 (Ey = 2kV/cm), respectively]. Note that the modes
are distributed more equally for Ey = 2kV/cm because the
decimal part of the average value approaches 0.5. Remarkably,
as reported in Ref. [43], the fractional OAM modes enhance
the robustness of OAM-based communications against at-
mospheric turbulence, which will be meaningful in optical
communication. Furthermore, for the Bessel beam of other
orders, due to the similar OAM variation tendencies versus E
shown in Fig. 2(a), we can also conclude the feasibility of the
continuous OAM modulations under relatively weak electric
fields (Eyp < 2.5kV/cm for the first-order Bessel beam, and
Ep < 2kV/cm for the second- and third-order Bessel beam,
respectively).

So far, we have demonstrated the controllability of
the OAM of a linearly polarized high-order Bessel beam

through the applied electric field due to the linear electro-optic
effect in a SBN crystal. In this way, we can potentially modu-
late the OAM of the first-order Bessel beam from ! = 1 to !’ ~
—1, the second-order Bessel beam from [ =2 to I’ = 1, the
third-order Bessel beam from [ = 3 to I’ = 2, and the fourth-
order Bessel beam from / =4 to I’ = 1.53. Subsequently,
an important aspect that warrants further investigation is the
stability of the OAM. To address this concern, we take the
case of the second-order Bessel beam as an example (I = 2,
k, =02um™!, wy = 20ry, Lin/I; = 1) and individually plot
the OAM variation curve in Fig. 3(a) [same as the orange line
in Fig. 2(a)].

Depending on the temporal behavior of OAM under differ-
ent electric fields, we identify three distinct nonlinear regimes
in Fig. 3(a). The lightest shaded area on the left of Fig. 3(a)
with the relatively weak electric field corresponds to the sce-
nario where the OAM decreases monotonically versus time
and finally achieves a value around which the fluctuations are
less than 1% of their original OAM value. We define it as
a stable state. For example, as denoted with a black frame
in Fig. 3(b), at Ey = 1.6kV/cm, the OAM consistently de-
creases until 3.757; and then maintains the value around 1.49
with the fluctuations less than 0.02 (A < 0.02). Then, as E
increases, the output OAM no longer monotonically decreases
versus time. In the middle area in Fig. 3(a) 2kV/cm < Ey <
3.5kV/cm), such as the case at £y = 3kV/cm, as shown in
Fig. 3(c), there is always a duration of 17} (in the black frame)
where the OAM value oscillates around a certain value [about
1.6 in Fig. 3(c)], and the fluctuations are less than 15% of their
original OAM value (A < 0.3 for the second-order Bessel
beam). Such phenomena with slight fluctuations in a duration
longer than 17; are denoted quasi-stable states. To further
clarify different dynamic states, we plot the intensity distri-
butions at different moments indicated by the red triangles in
Fig. 3(c) (t = 1.25T; [Fig. 3(c1)], t = 1.625T; [Fig. 3(c2)],
and ¢t = 2.25T; [Fig. 3(c3)]). These figures are set with the
same color bar scale. Upon comparing Fig. 3 with Figs. 3(c)
and 3(c,), we discern more localized spots in the center in
Fig. 3(c3), indicating a substantially more significant variation
of the OAM in this case. This observation aligns with the fact
that Figs. 3(c1) and 3(c,) correspond to the time interval char-
acterized by minor perturbations, but Fig. 3(c3) is situated out
of this interval. Finally, when E( exceeds 3.5 kV /cm, the tem-
poral variation becomes completely irregular, the so-called
unstable state, as the example with Ey = 4kV /cm in Fig. 3(d).

The above discussion clarifies the temporal dynamic be-
haviors for different nonlinear regimes. It is essential to
note that all analyses are only based on the output OAM
states at z = Ly = 2cm. This observation raises the ques-
tion of whether the identified nonlinear regimes resist when
we change the propagation length. To address this ques-
tion, we focus on the quasi-stable case in Fig. 3(c) and
select several moments to plot the OAM variations along
the propagation length in Fig. 3(c4)). We observe that the
OAM value decreases from L = Ocm to L < 0.6 cm indepen-
dently of the considering time. Above L = 0.6cm, we can
identify four types of dynamic behaviors referring to the spa-
tiotemporal characteristics of the OAM:(1) the stable phase
with only monotonic reduction (¢ < 17;), corresponding
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FIG. 3. (a) The variation of the output OAM versus the electric
field E, for the second-order Bessel beam (I =2, k, = 0.2um™',
wo = 207y, Iiy/1; = 1) propagating in the 2-cm SBN crystal. (b—
d) Temporal behavior of the output OAM at (b) Ey = 1.6kV/cm,
(¢c) Ey = 3kV/cm, and (d) Ey = 4kV/cm. (c;—c3) The intensity dis-
tribution at the moments (c;) t = 1.257y, (¢c;) t = 1.625Ty, and (c3)
t = 2.25T;. (c4) The OAM variation along the propagation length at
different moments. (e) The achievable minimum stable OAM varying
with the electric field and the intensity ratio.

to the time interval with monotonic evolution in Fig. 3(c);
(2) the quasi-stable phase with slight oscillations (17; < ¢ <
2T,), coinciding with the time interval where the change in
OAM value is less than 15% in Fig. 3(c); (3) the quasi-
unstable phase with intense oscillations (27; <t < 3.5Ty);
and (4) the unstable phase characterized by irregular varia-
tions (¢t > 3.5T;). Importantly, these four stages correspond
to the temporal variation of the OAM at L = 2 cm illustrated
in Fig. 3(c), even though they are identified depending on

the overall propagation behavior. Thus, the chosen output
distances impact the final OAM value but not the identification
of the three nonlinear regimes.

According to the above analysis, it is worth noting that
the points depicted in Fig. 3(a), where Ey > 2kV/cm, are
all local minima in the temporal variation curves, which in-
dicate the unstable states of the OAM. Even though it is
possible to identify a quasi-stable state with a duration over
17, for 2kV/cm < Ep < 3.5kV/cm, the OAM value during
that period (I’ ~ 1.5) is close to the initial value (I = 2).
This phenomenon implies a limited range of adjustment for
the output OAM. Therefore, it is essential to stabilize the
output OAM at a value significantly different from the initial
one to break through this limitation. As we know, in a PR
system with a Gaussian beam, the background intensity plays
a significant role in the stability within the self-focusing and
solitonic regime [44]. Thus, in the following, we investigate
the influence of the background illumination /; and try to
stabilize the output OAM value to increase the parameter
range where OAM is stable.

For each Ey, we fix the input intensity and change the back-
ground illumination to achieve different intensity ratios. When
we find an intensity ratio value that permits the output OAM
to reach its minimum in the stable state [similar to the case
in Fig. 3(b)], we record the minimum value corresponding
to the points in Fig. 3(e). We do the same calculation for
Ey from 1kV/cm to 5kV/cm with a step of 1kV/cm. The
red curve corresponds to a second-order polynomial fitting
(R*> ~0.97) for all the points. It is worth noting that the
fitting curve exhibits the minimum [/(Ey = 3kV/cm) ~ 1]
at Ey = 3kV/cm with an intensity ratio of f,/I; = 0.38.
This value indicates the maximum achievable range of OAM
modulation within the stable regime. In addition, we notice
a significant difference in the light intensity ratios among
different cases (different Ey). Especially at Ey = 1kV/cm, the
output OAM achieves its stable minimum value at an intensity
ratio of I,/I; = 12, approximately 30 times greater than that
at Ey = 3kV/cm. Compared to the OAM value indicated
at Ey = 1kV/cm in Fig. 3(a) (I’ = 1.9 with [,,/I; = 1), the
OAM value with the intensity ratio of I, /I; = 12 in Fig. 3(e)
is much smaller (I’ & 1.4). This observation implies that the
high ratio ,/I; = 12 provides more free charges for the
drift effect in the crystal so that the OAM can be changed
more significantly due to a higher nonlinear effect. Even so,
this OAM value is still much higher than the stable value at
Ey = 3kV/cm shown in Fig. 3(e) because of the limitation
imposed by the weak electric field. On the other hand, for
higher electric field strengths, such as Ey = 5kV/cm, the
increased background illumination (lower intensity ratio) pro-
vides fewer free charges for the drift effect to achieve a stable
state. In this case, the OAM modulation based on the nonlinear
effect will be limited by the number of free charges in the
crystal. Thus, the stable OAM values exhibit an upward trend
beyond Ey = 3kV/cm.

In summary, we can stabilize the output OAM values
for any electric field strength with suitable background il-
luminations. Meanwhile, it is possible to identify a group
of nonlinear parameters (Ey = 3kV/cm, I,/I; = 0.38) to
achieve the minimum OAM at the stable state, which indi-
cates the maximum OAM modulation range in the stationary

053518-5



CHAIL MARSAL, AND WOLFERSBERGER

PHYSICAL REVIEW A 109, 053518 (2024)

regime. In addition, it is worth mentioning that although the
above analysis is based on the second-order Bessel beam, the
outcomes can be generalized to Bessel beams of any other
order.

B. OAM modulation in the unstable regime

In the prior section, we demonstrated the feasibility for
modulating the OAM of the light in a stationary regime by
comprehensively adjusting the intensity ratio (fi,/l;) and the
electric field strength (Ep) in the biased PR crystal. This
result paves the way for developing OAM-based commu-
nication components, for example, OAM-based modulators,
switchers, and routers. As stated above, in the case of high
electric field strengths, stabilizing the light OAM requires an
ultra-low ratio between the input beam intensity and the back-
ground illumination (f,/I; = 0.25 for Ey = 4kV/cm and
Lin/1; = 0.185 for Ey = 5kV/cm), which imposes practical
challenges. Therefore, it is interesting to investigate the intrin-
sic characteristics of Bessel beams for stabilizing their OAM
during the nonlinear propagation.

For this purpose, we begin with a comparative analysis
between a high-order Bessel beam and an ordinary vortex
beam, both possessing an OAM but the latter the simplest
profile among all OAM-carrying beams. This time, we focus
on the fourth-order Bessel beam because of its remarkable
potential adjustment range (Apam =~ 2), as shown in Fig. 2(a).
Following the same method for plotting Fig. 2(a), we change
the electric field strength (Ep) from Ey = 0kV/cm to Ey =
5kV/cm with a step of 1kV/cm. For each Ej, we simulate
the propagation of a fourth-order vortex beam (19 = 10 um)
throughout 57;. In each simulation, we calculate the OAM
value at the output face of the crystal every 0.257; and select
the minimum value within the whole simulation duration.
Then, we plot these points and their fitting curve in Fig. 4(a).
The blue line with the star points represents the OAM
variation tendency for this fourth-order vortex beam, and the
green line with the diamond points represents the fourth-order
Bessel beam (I =4, k, =0.2um™!, wy =207y, In/I; = 1),
which is the same as shown in Fig. 2(a) [also green line with
the diamond points in Fig. 2(a)]. It is worth noting that when
Ey < 3kV/cm, the OAM of the Bessel beam exhibits a faster
rate of decrease at the beginning concerning Ey and also
possesses a broader potential adjustment range (Aoam ~ 2).
As Ej increases (Ep > 3kV/cm), the OAM value of the
vortex beam declines rapidly to a negative value, whereas that
of the Bessel beam remains almost constant at around 2.

For visual comparison, we present the intensity and phase
distributions at the output face of the crystal at £y = 5kV/cm.
Figures 4(b;) and 4(b,) show the 2D output intensity and
phase distributions for the vortex beam at t = 4.757; cor-
responding to the star point plotted in Fig. 2(a) at Ey =
5kV/cm. Figures 4(c;) and 4(c;) present the 2D intensity
and phase distributions for the Bessel beams at the moment
t = 3.625T; corresponding to the diamond point plotted in
Fig. 2(a) at Ey = 5kV/cm. As observed in Fig. 4(b;), the
energy appears dispersed in the case of the vortex beam,
while in Fig. 4(c), the filament spots are all localized within
the rings. Similarly, we notice that the phase dislocations of
the vortex beam are also dispersed, as shown in Fig. 4(b,),
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FIG. 4. (a) Variation tendencies of the output OAM versus elec-
tric field E, for the fourth-order Bessel beam with k, = 0.2 um™"
and the fourth-order vortex beam with r, = 10 um propagating in
the 2-cm SBN crystal. (b; and b,) 2D output intensity and phase
distributions of the fourth-order vortex beam at Ey, = 5kV/cm at
the moment ¢t = 4.757,. (c, and c;) 2D output intensity and phase
distributions of the fourth-order Bessel beam at £, = 5kV /cm at the
moment t = 3.6257.

while those of the Bessel beam in Fig. 4(c;) are concentrated
around the center of the beam and surrounded by external
rings. This phenomenon indicates that the multiring struc-
ture effectively protects the beam from dislocations under
high nonlinear conditions, corroborating the results about LG
beams mentioned in Ref. [45].

Then, to further specify the influence of the multiring struc-
ture on the OAM modulation of a Bessel beam, we consider
the beam truncation characterized by the waist wy. For a
more straightforward discussion, we introduce a parameter
a;,= 1/wy to quantify the truncation strength. As discussed
in Ref. [23], beam truncation determines the number and
intensity distribution of the rings. In the following, we focus
on the fourth-order vortex beam discussed in the last sec-
tion and three fourth-order Bessel beams, respectively, with
the truncation of a,= 1/wy = 1/7rp, a;= 1/wo = 1/10ry, and
a;= 1/wy = 1/25r¢. Figure 5(a) exhibits the one-dimensional
profiles along the x axis of these fourth-order Bessel beams
(green solid line for a,= 1/7ry, gray dashed line for a,=
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FIG. 5. (a) 1D intensity profiles of fourth-order Bessel beams
truncated by the Gaussian term with a,= 1/7ry, a,= 1/10ry, and
a,= 1/25ry (normalized by their individual maximum intensities).
(b) Temporal behaviors of the fourth-order vortex beam (r; = 10 um)
and three fourth-order Bessel beams with the truncation parameter
of a,=1/7ry, a,=1/10ry, and a,= 1/25ry (I =4, k, = 0.2um™")
propagating in the 2-cm SBN crystal under the electric field of
Ey =5kV/cm.

1/10ry, red dotted line for a,= 1/25ry). Notably, as the trun-
cation increases (a; increases), there is a significant reduction
in the number of external rings, accompanied by a weakening
of their intensity (a,= 1/7rp).

To analyze the temporal behavior of multiring beam struc-
tures, we simulate their propagation under the electric field
of Ey = 5kV/cm throughout the 57 period and calculate the
OAM value at the output face of the crystal (Lo = 2cm) in
a time step of 0.257;. We plot these points and their fitting
curves in Fig. 5(b). The blue dash-dotted line (vortex beam),
the green solid line (Bessel beam with a,= 1/7ry), and the
gray dashed line (Bessel beam with a,= 1/10ry) all present
a plateau of duration above 17; [1.5T7; for the vortex beam
(t € [2, 3.5]) and the Bessel beam with a,= 1/10r; (t € [2.5,
4]), 1T, for the Bessel beam with a,= 1/7r (t € [3.5, 4.5])],
whereas, the red dotted line (Bessel beam with a,= 1/25r)
tends to be stable at the end of the calculation. This phe-
nomenon implies that the multiring structure stabilizes the
OAM of the light in a biased SBN crystal even under high
nonlinearity. In addition, we notice that the OAM value of the
plateau in the case of the higher truncated Bessel beam (a;=
1/7rp) is close to or even a little higher than the initial value
(I' ~ 4), while the value for the Bessel beam with wg = 10r,
(I' ~ 3.7) is smaller than the original one. Combined with
the case of weakest truncation (a,= 1/25ry), we can conclude
that it is possible to exploit a quasi-stable plateau with the

OAM value controllable by the truncation parameter, so by
the profile of the Bessel beam. Furthermore, as mentioned in
Ref. [20], in the linear case, the external rings of the Bessel
beam compensate for the diffraction of the internal structure,
so the Bessel beam exhibits the diffracting-free property. This
explanation implies the relation between the external rings’
profiles and the Bessel beam diffraction. Accordingly, the
occurrence of the OAM plateau can also be explained by
the diffraction of the Bessel beam related to the truncation
parameter, and the diffraction level can control the OAM level
of the plateau. Thus, considering the limiting case without
any external rings, i.e., the vortex beam, the most diffracted
during the linear propagation, presents a time plateau with
an OAM value (I’ ~ 5) much greater than the initial value
under the high nonlinear condition. This observation no longer
obeys the angular momentum conservation law discussed in
Ref. [13]. In our case, the beam propagates along the direc-
tion perpendicular to the ¢ axis of the crystal, so the applied
electric field, especially the high-strength field, can be con-
sidered as an external force onto the system to break the
conservation of the total angular momentum. Thus, the OAM
is generated despite using a linearly polarized beam (SAM =
0) with the intense nonlinear effect depending on the biased
PR crystal. This phenomenon permits a broader modulation
range through the beam truncation and a new function of using
the PR effect for manipulating OAM.

IV. EXPERIMENTAL RESULTS

So far, our simulations have synthetically demonstrated
that the OAM of a high-order BB can be modulated con-
tinuously in the PR crystal by the applied electric field. In
the preceding discussion, by analyzing different conditions,
including the background illumination and the beam trunca-
tion, we delimited the stability and the range of the OAM
modulation. To confirm these simulation results and explore
additional intriguing phenomena, using the identical setup de-
tailed in Ref. [24], we conducted experiments for propagating
the high-order BB in the biased PR crystal. By using a spatial
light modulation (SLM), it is easy to change the order of
the input beam by changing the number of discontinuities
in the phase mask applied on the SLM. Furthermore, to correct
the beam aberrations caused by the reflection angle of the
SLM, we introduce an elliptic parameter to the phase mask,
as explained in Ref. [46]. This procedure ensures that the
deformations of the beams and the variations in OAM arise
exclusively from the nonlinearity in the crystal.

Besides, to analyze the OAM of the output beam, referring
to Eq. (8), it is necessary to retrieve the optical electric field,
especially the phase distribution. Thus, according to Ref. [47],
we introduce a second arm in the setup made of a plane wave
to interfere with the output beam, employing off-axis digital
holography to retrieve its electric field.

Figure 6(a) plots the experimental analysis of OAM tem-
poral variations for a fourth-order BB propagating within
the 1-cm SBN crystal used in Ref. [24]. We keep several
beam parameters, including the beam power at 76 uW and
the dark hole center diameter at 56 um, corresponding to
k; = 0.2 um~'. We systematically varied the applied electric
field from 1 kV/cm to 6 kV/cm and recorded the interference
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FIG. 6. (a) Temporal behaviors of the OAM measured in the ex-
periments of the fourth-order BB propagates (k, = 0.2um™', [ = 4)
in the 1-cm SBN crystal under the nonlinear conditions with different
strength of the electric field. (b;—d,) Intensity and phase distribu-
tions: (by) and (by) under Ey = 1kV/cm att = 120 ms, (c¢;) and (c;)
under Ey =2kV/cm at t = 150ms, and (d;) and (d;) under Ey =
5kV/cm at t = 220 ms, corresponding to the blue crosses marked
in (a). (e and f) Intensity distributions: (e) under Ey = 2kV/cm at
t = 400 ms and (f) under £y = 5kV/cm at t = 500 ms, correspond-
ing to the red dots marked in (a).

patterns with the time separation of Ar &~ 25 ms in each case.
We retrieve the corresponding field through off-axis digital
holography and calculate the OAM at each step by Eq. (8).
Then, fitting curves, each representing a specific applied elec-
tric field, are depicted in distinctive colors, as indicated in the
legend of Fig. 6(a).

It is worth noting that each curve can be outlined in two
phases: the focusing stage, characterized by beam deforma-
tion and decreasing OAM, and the relaxation stage, during
which the beam deformation restores with an upswing in
OAM. For example, for the red curve (Ey = 1kV/cm), the
OAM value decreases before t = 150 ms, referred to as the
focusing stage, and after that, enters the relaxation stage with
an increasing OAM.

Firstly, we focus on the focusing stage. Considering the
minima in each case, the value decreases versus the strength
of the electric field before Ey = 4kV/cm and nearly per-
sists the same after 4 kV/cm. This variation tendency aligns
qualitatively with the green curve in Fig. 2(a). The retrieved
intensity and phase distributions corresponding to the cases
Ey=1kV/cm att = 120ms, Ey = 2kV/cm at t = 150 ms,
and Ey = 5kV/cm att = 220 ms are presented in Figs. 6(b;)—

6(d;). As shown in Fig. 6(b;), the center rings remain
complete under Ey = 1kV/cm, while under Ey = 5kV/cm
shown in Fig. 6(d,), they tend to split into four segments.

In addition, an increasing number of direct or inverse fork
structures become apparent in the phase distributions with
higher Ey, as indicated inside the red circles in Figs. 6(b,)—
6(dy). All these observations indicate the progressively
heightened deformation in both intensity and phase distribu-
tions as the applied electric field strengthens, consistent with
the simulation results in Figs. 2(b;)-2(d,).

Secondly, for thorough clarification regarding the relax-
ation stage, we specify two cases identified by the red dots
in Fig. 6(a): intensity distribution (1) under Ey = 2kV /cm at
t =400 ms in Fig. 6(e) and (2) under £y = 5kV/cm at t =
500 ms in Fig. 6(f). Compared to the intensity distributions in
the focusing stage [Figs. 6(c;) and 6(d;)], the center pattern
in each case gradually relaxes, returning to circles resembling
the initial state. We note that the rings under the high electric
field, as shown in Fig. 6(f), are more compact and retain
the splitting pattern, corresponding to the lower OAM value
indicated in Fig. 6(a). Thus, similar to the focusing stage, in
this regime, the intense applied electric field results in the
decrease of the OAM, thereby suggesting conformity with the
variation tendency in the simulation results in Fig. 2(a).

On the other hand, as we have stated three nonlinear
regimes with the simulation results in Fig. 3, we can similarly
identify three regimes depending on the relaxation behaviors
observed in the experiments. The first regime, characterized
by a relatively weak electric field (Eyp < 2kV/cm), corre-
sponds to the red (Ey = 1kV/cm), dark dashed blue (Ey =
1.5kV/cm), and green curves (Ep = 2kV/cm) in Fig. 6(a),
where the OAM value returns to and oscillates around the
initial value. The second regime, associated with the purple
dotted (Ep = 3kV/cm), yellow (Ey = 4kV/cm), and bright
blue (Ey = 5kV/cm) curves, achieve a final value around 3,
as indicated in the gray frame in Fig. 6(a). The last regime, in-
volving the unstable state, refers to the case of £y = 6kV/cm,
where the upswing of the OAM value is irregular, even
reaching a much higher value than the initial, which can be ex-
plained by the discussion about the beam truncation denoted
in Fig. 5.

These three nonlinear regimes also qualitatively conform
to those described in Figs. 3(b)-3(d). Nevertheless, by com-
paring the simulation results [Fig. 5(b)] and the experimental
results (Fig. 6), several quantitative disparities are observed,
especially the exact OAM values. Firstly, our calculation,
based on Eq. (4) for the temporal response of the crystal,
is sensitive to the choice of the time step. In our simula-
tions, we discretized “57;” into 1000 steps. This choice is
sufficient to observe the OAM modulation and its dynamic
behavior analysis while avoiding protracted computations due
to computational constraints. Nevertheless, this choice may be
insufficient for a precise theoretical value, potentially leading
to inaccuracies. Additionally, as we calculate the OAM value
at each 50-time step, there might be moments with lower
values that are not accounted for in the calculations. Secondly,
considering the experiments, several practical conditions con-
tribute to these differences—for example, the low value of
the background illumination. Besides, the phase extraction
relies on off-axis digital holography. As the interference is
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not always perfect in the transient regime, we unfortunately
introduce phase errors.

Regardless, since these limitations and errors do not influ-
ence our qualitative analysis of the feasibility and the dynamic
behavior of the OAM modulations, our experimental results
are in agreement with the above simulation results. Further-
more, referring to Fig. 6(a), reaching nearly zero value in the
focusing stage and surpassing the initial value in the relax-
ation regime both signify a notable expansion of the OAM
modulation range under high nonlinear conditions, break-
ing the limitations in the previous works indicated in the
introduction.

V. CONCLUSION

In conclusion, we numerically and experimentally demon-
strated the continuous OAM modulation in a biased PR crystal
by propagating a linearly polarized OAM-carrying beam un-
der nonlinear conditions. Firstly, in the simulations, taking
the second-order Bessel beam as an example, we analyzed its
temporal behavior under different electric fields and identified
three nonlinear dynamic regimes: stationary, quasi-stable, and
unstable state. We confirm the possibility of stabilizing the
light OAM for any electric field by adjusting the background
illumination. In this way, we determined the nonlinear param-
eters (Ey and I, /1;), which enable the minimum OAM value
in the stationary state, i.e., the maximum stable OAM modu-
lation range. The results are generalized for Bessel beams of
any other orders. Subsequently, by comparing a vortex beam
and different truncated Bessel beams, we demonstrated that
under high nonlinear conditions, the multiring profiles of the
Bessel beam protect its phase from dislocations and protect
its OAM from dramatic and irregular variation. We exhibit the
existence of an exploitable OAM plateau over 17; under high
electric field conditions, proposing the OAM modulation in
a broader range through the beam truncation control. Finally,
the experimental results qualitatively present good agreement
with the simulation analysis, involving the OAM variation
tendency versus the electric field, three nonlinear dynamic
regimes, and the extended OAM modulation range.

Furthermore, both numerical and experimental results con-
firm that the OAM modulation is achievable with a high-order
Bessel beam in the linear polarization state despite the SAM
being equal to 0. As indicated in Ref. [39], beam propagation
exhibits a nonlinear phenomenon as long as the input light
possesses a field component parallel to the ¢ axis to activate
the PR nonlinearity. Thus, the importance of the initial polar-
ization state is whether the input beam includes such a field
component for the focusing effect. For further research, it is
interesting to investigate OAM modulation with a different
polarized input Bessel beam.

Besides, it is worth mentioning that both numerical and
experimental results are based on the average OAM values
calculated by Eq. (8). Even though we have explored the
intensity weight change versus the electric field, the discus-
sion is insufficient for a rigorous quantitative demonstration.
Further exploration is considered to directly extract the inten-
sity weights from the output light field and investigate their
modulation. For this research, many techniques are available,
such as using the 2D multifocal array method outlined in
Ref. [42], the interferometric method described in Ref. [48],
and the Stokes fluctuations method denoted in Ref. [49]. This
research also offers the potential to discover more intriguing
phenomena for OAM communication applications.

All the results and discussions pave the way for de-
signing new reconfigurable OAM modulators for optic or
quantum communications. Furthermore, as we observe the
OAM-generation phenomenon under the high electric field
in both simulations and experiments, it is beneficial to study
its temporal stability to exploit it for designing the OAM-
generation components.
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