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Optical response of a dissipative optomechanical system with a weak mechanical drive
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We study the propagation of a weak probe field through a dissipative optomechanical system, in which
an additional weak mechanical drive is acting directly on a vibrating waveguide. In the presence of a strong
coupling field, when the frequency of the mechanical drive precisely matches the frequency difference between
the probe and coupling fields, we show that the nearly perfect absorption, complete transmission, and significant
amplification of the probe field can be achieved by adjusting the amplitude and phase of the mechanical drive and
the power of the coupling field. Moreover, by appropriately choosing the amplitude and phase of the mechanical
drive, the group delay of the output probe field is tunable from a large negative value to a large positive value
and vice versa. Our study offers an alternative way to control and manipulate the propagation of a weak probe
field in a dissipative optomechanical system.
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I. INTRODUCTION

Cavity optomechanics has made rapid progress in recent
years and played an important role in quantum information
processing [1]. In a dispersive optomechanical system, a
single-mode cavity field exerts a radiation pressure force on
a macroscopic mechanical oscillator, and the motion of the
mechanical oscillator changes the cavity resonance frequency
[1]. Recently, the electromagnetically induced transparency
(EIT) was demonstrated in a dispersive optomechanical sys-
tem in both theory [2] and experiment [3–6]. The EIT was
first observed in three-level atomic systems [7–9]. It is an
unusual phenomenon in which a strong coupling field makes
an opaque atomic system transparent to a weak probe field
in a narrow range of frequencies due to the destructive in-
terference between the probability amplitudes associated with
two excitation pathways [7–9]. In contrast, the electromag-
netically induced absorption (EIA) is a coherent phenomenon
due to the constructive interference between the probability
amplitudes associated with two excitation pathways in atomic
systems [10]. The EIA was reported in a dispersive optome-
chanical system experimentally [4,11] and theoretically [12].
In addition, the electromagnetically induced amplification was
demonstrated in a dispersive optomechanical system experi-
mentally [4,6,11]. Meanwhile, it has been reported that the
EIT is accompanied by a rapid change in the phase of the
output probe field, which leads to a positive or negative group
delay of the output probe field, thereby producing slow light
or fast light [4,5]. The slow light has potential applications in
optical buffering [4] and light storage [13].

Besides the dispersive optomechanical system, there exists
a dissipative optomechanical system, in which a single-mode
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cavity field exerts a reactive optical force on a macroscopic
mechanical oscillator, and the motion of the mechanical os-
cillator changes the external decay rate of the cavity field
[14,15]. The dissipative optomechanical coupling exists in
several different experimental setups [15–18], such as a
microdisk cavity coupled to a vibrating waveguide [15],
a Michelson-Sagnac interferometer with a vibrating mem-
brane [16], a nanometer-scale carbon nanotube coupled to a
micrometer-scale optical cavity [17], and a pair of identical
silicon photonic crystal nanobeams [18]. Recently, theoretical
analysis and experimental observations have demonstrated
that the dissipative optomechanical coupling can cool a me-
chanical oscillator to near its quantum ground state in the
unresolved-sideband limit [16,19–22]. The cooling of the
mechanical oscillator offers the possibility to observe many
physical phenomena in such a system, such as high-precision
sensors [23,24], self-oscillation in the red detuning regime
[25], squeezed light [26–29], mechanical squeezing [30,31],
normal mode splitting in the output fields [32,33], and EIT
phenomenon [18,33]. In Ref. [25], it has been reported that the
self-oscillation in the red detuning regime is due to the anti-
damping effects of dissipative optomechanical coupling on the
mechanical oscillator, and the transmission of the cavity field
is affected by the vertical offset of the mechanical oscillator
in the presence of the dissipative optomechanical coupling. In
Ref. [33], the existence of EIT in the output probe field in a
dissipative optomechanical system in the presence of a strong
coupling field has been shown, and the EIT peak becomes
wider for a larger power of the coupling field.

Recent studies have shown that the optical response of
a dispersive optomechanical system can be modified by an
additional mechanical field acting on a mechanical oscillator
[34–37]. In a linearly coupled dispersive optomechanical sys-
tem with a weak mechanical pump [34,35], it has been found
that the nearly perfect absorption, transparency, and ampli-
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fication of a weak probe field can be achieved by adjusting
the amplitude and phase of a weak mechanical pump and the
effective optomechanical coupling strength [34,35], and the
group delay of the output probe field can be changed from
−20 µs to 20 µs by varying the amplitude of the weak mechan-
ical pump [35]. Moreover, in a multimode linearly coupled
dispersive optomechanical system [36], which is formed by
a cavity mode and two coupled mechanical modes with dif-
ferent frequencies, and where the high-frequency mechanical
mode is driven by a mechanical pump, it has been shown that
a cascaded EIT effect can be observed, and the group delay of
the output probe field can be changed from 5 µs to −1.03 µs
by changing the detuning of the mechanical pump acting on
the high-frequency mechanical oscillator. It is noted that the
group delay 5 µs (−1.03 µs) corresponds to 5000π (−1030π )
times the photon lifetime κ−1 in the cavity, where κ is the
cavity decay rate and κ = 2π × 0.5 GHz [36]. In addition, in a
quadratically coupled dispersive optomechanical system with
a mechanical degenerate parametric drive [37], it has been
shown that the opacity and amplification of a weak probe field
can be obtained by varying the amplitude and phase of a weak
mechanical drive.

In this paper, we study the response of a dissipative op-
tomechanical system to a weak probe field in the presence of
a strong coupling field and a weak coherent mechanical drive.
We find that a proper choice of the amplitude and phase of
the mechanical drive and the power of the coupling field can
lead to nearly prefect absorption, full transmission, and ampli-
fication of the probe field in both the critical coupling regime
and the undercoupling regime. We show that it is possible to
observe the EIT-like feature and the EIA-like feature in the
intensity of the output probe field. In addition, we show that
the group delay of the output probe field can be tuned from a
large negative value to a large positive value and vice versa by
controlling the amplitude and phase of the mechanical drive.

The remainder of this paper is structured as follows. In
Sec. II, we describe the model under investigation, derive the
equations of motion for the cavity and mechanical modes,
and calculate the output probe field and its group delay. In
Sec. III, we discuss the effects of the mechanical drive and
the coupling field on the intensity of the output probe field
in the purely dissipative optomechanical system. In Sec. IV,
we show the influence of the mechanical drive on the group
delay of the output probe field in the purely dissipative op-
tomechanical system. In Sec. V, we compare the impacts of
the mechanical drive on the intensity and group delay of the
output probe field with and without the dispersive coupling.
In Sec. VI, we summarize the results.

II. MODEL

The system under consideration consists of a free-standing
waveguide and a microdisk [15], as shown in Fig. 1. An in-
tense coupling field with frequency ωc and a weak probe field
with frequency ωp are sent into the waveguide. The evanescent
field from the waveguide is coupled into the microdisk and
back through a small gap between them, and a single cavity
mode c is generated inside the microdisk. The waveguide
is modeled as a damped harmonic oscillator with mass m,
resonance frequency ωm, and damping rate γm. The photons

FIG. 1. Sketch of an optomechanical system with a waveguide
coupled to a microdisk resonator. An intense coupling field with
frequency ωc and a weak probe field with frequency ωp are injected
into the waveguide, and a single cavity mode c is generated in the
microdisk. A weak mechanical pump with frequency ωd is applied
to the waveguide.

from the microdisk cavity exert a radiation pressure force and
a reactive optical force on the waveguide, thereby causing
it to oscillate. Moreover, a weak coherent mechanical drive
with amplitude εd , frequency ωd , and phase φ is applied to
the waveguide. The weak mechanical drive can be realized by
using a piezoelectric drive [36]. The displacement q of the
waveguide not only modulates the resonance frequency of
the optical cavity mode, denoted by ω0(q), but also changes
the external decay rate of the cavity field due to the microdisk-
waveguide coupling, denoted by κe(q).

In a frame rotating with the frequency ωc of the coupling
field, the total Hamiltonian of the coupled system can be
written as

H = h̄[ω0(q) − ωc]c†c + 1

2

(
mω2

mq2 + p2

m

)
+ ih̄

√
2κe(q)

× [c†(εc + εpe−iδt + cin ) − c(εc + ε∗
peiδt + c†

in )]

+ ih̄εd (e−iωd t−iφb† − eiωd t+iφb), (1)

where the first term is the energy of the cavity field in the
microdisk; the second term is the center-of-mass energy of
the waveguide; the third term describes the couplings of the
cavity field with the strong coupling field, the weak probe
field, and the incident optical vacuum noise cin; and the last
term represents that the waveguide is driven by a weak me-
chanical pump. The c and c† are the annihilation and creation
operators of the intracavity photons. The δ is the frequency
difference between the probe and coupling fields (δ = ωp −
ωc). The displacement and momentum operators (q, p) of
the waveguide can be expressed in terms of the annihilation
and creation operators (b, b†) of the phonons in the waveg-
uide by q =

√
h̄

2mωm
(b + b†) and p = −i

√
h̄mωm

2 (b − b†). The
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amplitudes εc and εp of the classical coupling and probe fields
are proportional to the square root of their respective powers
℘c and ℘p by εc =

√
℘c

h̄ωc
and εp =

√
℘p

h̄ωp
, respectively. The

quantum noise cin has zero mean value. If the displacement q
of the waveguide from its equilibrium position is very small,
ω0(q) and κe(q) can be approximately expanded to first order
in the displacement q of the waveguide,

ω0(q) ≈ ω0 + gω0q,

κe(q) ≈ κe + gκ0q, (2)

where ω0 and κe denote the resonance frequency and the
external decay rate of the cavity field when q = 0, respec-
tively, and the parameters gω0 and gκ0 represent the strengths
of the dispersive and dissipative optomechanical interactions,
respectively. Besides, when the mechanical displacement q is
very small,

√
2κe(q) can be approximated to first order in q by√

2κe(q) ≈ √
2κe(1 + gκ0

2κe
q). We assume κe = ηκ , where κ is

the total decay rate of the cavity field (κ = κe + κi), and κi is
the intrinsic decay rate of the cavity field inside the microdisk.
Thus, the Hamiltonian of the system has the form

H = h̄

[
ω0 − ωc + gω√

2
(b + b†)

]
c†c + h̄ωm

(
b†b + 1

2

)
+ ih̄

√
2ηκ

[
1 + gκ

2
√

2ηκ
(b + b†)

]

× [c†(εc + εpe−iδt + cin ) − c(εc + ε∗
peiδt + c†

in )] + ih̄εd (e−iωd t−iφb† − eiωd t+iφb), (3)

where gω = gω0qzpf , gκ = gκ0qzpf , and qzpf =
√

h̄
mωm

is the zero-point fluctuation of the waveguide.
Applying the above Hamiltonian to the Heisenberg equation of motion, we obtain the two coupled first-order differential

equations for the operators c and b

ċ = −
{
κ + gκ√

2
(b + b†) + i

[
ω0 − ωc + gω√

2
(b + b†)

]}
c +

√
2ηκ

[
1 + gκ

2
√

2ηκ
(b + b†)

]
(εc + εpe−iδt + cin ),

ḃ = −
(

γm

2
+ iωm

)
b − i

gω√
2

c†c + gκ

2
√

ηκ
[c†(εc + εpe−iδt + cin ) − c(εc + ε∗

peiδt + c†
in )] + εd e−iωd t−iφ + √

γmbin, (4)

where we have included the damping and noise terms, and bin is the annihilation operator of the thermal Brownian noise of the
waveguide with zero mean value.

We assume that the coupling field is much stronger than the probe field (εc � εp), and the amplitude εc of the coupling field
and the amplitude εd of the mechanical drive satisfies

√
2ηκεc � εd . From Eq. (4), we obtain the mean values of the operators

c and b at the steady state

cs = μ

κ + i� + gκQs
εc,

bs =
gκ

2
√

ηκ
(c∗

s − cs)εc − i gω√
2
|cs|2

γm

2 + iωm
, (5)

where μ = √
2ηκ (1 + gκ

2ηκ
Qs), and � = ω0 − ωc + gωQs is the effective cavity detuning with respect to the coupling frequency

ωc, depending on the steady-state displacement Qs = 1√
2
(bs + b∗

s ) of the waveguide. The cs and bs are the steady-state amplitudes
of the cavity and mechanical modes, respectively, and they are dependent on each other.

Under the assumptions of εc � εp and
√

2ηκεc � εd , the system operators c and b can be expressed as o = os + δo (o = c, b),
where δo is the time-dependent fluctuation operator, and is small in comparison with the average value os. Thus, the nonlinear
equation (4) can be linearized. Only keeping the first order in the small fluctuation operator, we obtain the linearized differential
equations for the fluctuation operators δc and δb,

δċ = −(κ + gκQs + i�)δc + A(δb + δb†) + μ(εpe−iδt + cin ),

δḃ = −
(

γm

2
+ iωm

)
δb + F ∗δc† − Fδc + gκ

2
√

ηκ
[c∗

s (εpe−iδt + cin ) − cs(ε
∗
peiδt + c†

in )] + εd e−iωd t−iφ + √
γmbin, (6)

where A = gκ (− cs√
2

+ εc
2
√

ηκ
) − i gωcs√

2
, F = gκ

2
√

ηκ
εc + i gω√

2
c∗

s .
Following the same approach as in Ref. [34], we introduce
the slow varying operators defined by δc = δc̃e−iδt , cin =
c̃ine−iδt , δb = δb̃e−iωd t , and bin = b̃ine−iωd t . We assume that
the coupling field is red-detuned with respect to the cavity
resonance frequency ω0 by one mechanical resonance fre-
quency ωm (� = ωm), and the frequency ωd of the mechanical
drive matches the frequency difference δ between the probe
and coupling fields (ωd = δ). Meanwhile, we assume that the
resonance frequency ωm of the waveguide is much larger than

κ + gκQs, |A|, γm, |F |, and | gκ

2
√

ηκ
cs|. After making the rotating

wave approximation to remove the rapidly oscillating terms
with e2iδt , we obtain the equations for the fluctuation operators
δc̃ and δb̃,

δ ˙̃c = −(κ + gκQs − ix)δc̃ + Aδb̃ + μ(εp + c̃in ),

δ ˙̃b = −
(

γm

2
− ix

)
δb̃ − Fδc̃ + gκ

2
√

ηκ
c∗

s (εp + c̃in )

+ εd e−iφ + √
γmb̃in, (7)
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where x = δ − ωm is the detuning of the probe field from the
cavity resonance frequency. It is noted that both the input
vacuum noise c̃in and the thermal noise b̃in have zero mean
values. Thus, at the steady state, the expectation values of the
fluctuation operators δc̃ and δb̃ are found to be

〈δc̃〉 = 1

d (x)
[J (x)εp + Aεd e−iφ],

〈δb̃〉 = 1
γm

2 − ix
[B1(x)εp + B2(x)εd e−iφ], (8)

where J (x) = A gκ

2
√

ηκ
c∗

s + μ( γm

2 − ix), d (x) = (κ + gkQs −
ix)( γm

2 − ix) + AF , B1(x) = −F J (x)
d (x) + gκ

2
√

ηκ
c∗

s , and B2(x) =
−F A

d (x) + 1. Note that the amplitude 〈δc̃〉 of the cavity

excitation and the amplitude 〈δb̃〉 of the mechanical excitation
are oscillating at frequency ωp − ωc in the rotating frame at
the coupling frequency ωc, respectively.

The output field cout from the cavity is related to the cavity
field c through the input-output formalism cout = √

2κe(q)c −
εc − εpe−iδt − cin [38]. Thus, the fluctuation δcout of the out-
put field is given by

δcout = μδc + gκ

2
√

ηκ
(δb + δb†)cs − εpe−iδt − cin. (9)

Furthermore, we introduce the slow varying operators defined
by δcout = δc̃oute−iδt , δc = δc̃e−iδt , cin = c̃ine−iδt , and δb =
δb̃e−iωd t , and assume δ = ωd . After dropping the fast oscil-
lating term which contains e2iδt , we obtain the expectation
value of the fluctuation δc̃out of the output field at the probe
frequency ωp

〈δc̃out〉 = μ〈δc̃〉 + gκ

2
√

ηκ
cs〈δb̃〉 − εp

=
[
μ

J (x)

d (x)
+ gκcsB1(x)

2
√

ηκ
(

γm

2 − ix
) − 1

]
εp

+
[
μ

A

d (x)
+ gκcsB2(x)

2
√

ηκ
(

γm

2 − ix
)
]
εd e−iφ. (10)

The first term in Eq. (10) is the contribution from the regular
EIT [18,33]. When the coupling field at frequency ωc interacts
with the mechanical phonons at frequency ωm, the Stokes
and anti-Stokes fields are generated. In the resolved-sideband
regime (ωm � κ), the Stokes field at frequency ωc − ωm is
highly off-resonant with the cavity field, leading to the strong
suppression of the Stokes field. Thus, the Stokes field can be
assumed to be zero, and only the anti-Stokes field at frequency
ωc + ωm builds up in the cavity. The generated anti-Stokes
field and the input probe field are degenerate, and the destruc-
tive interference happens between them, thus the absorption
of the probe field goes to zero, resulting in the regular EIT
for the probe field [3]. The second term in Eq. (10) is the
contribution from the phonon-photon parametric process in-
volving the mechanical drive acting on the waveguide. These
two terms show that there are three pathways for the probe
field passing through the system: (1) directly transmitting
through the microdisk cavity, (2) interfering with the anti-
Stokes field generated by scattering of the coupling field from
the coherent mechanical oscillation induced by the radiation

pressure force and the reactive cavity optical force, and (3)
interfering with the anti-Stokes field generated by scattering
of the coupling field from the coherent mechanical oscillation
induced directly by the mechanical drive. Thus, the output
probe field is determined by the interference between these
two terms or among these three pathways. If the system is
in the unresolved-sideband regime, the Stokes field is not
suppressed, thus the Stokes field cannot be assumed to be
zero, and the output field contains the Stokes and anti-Stokes
components.

We proceed by analyzing the output probe field normalized
by the amplitude of the probe field tp(x) = 〈δc̃out〉

εp
. It consists

of two components,

tp(x) = tp1(x) + tp2(x), (11)

where tp1(x) = μ J (x)
d (x) + gκ csB1(x)

2
√

ηκ ( γm
2 −ix) − 1, and tp2(x) =

[μ A
d (x) + gκ csB2(x)

2
√

ηκ ( γm
2 −ix) ]

εd
εp

e−iφ . For convenience, the ratio

of the amplitude of the mechanical drive to that of the probe
field is defined as εd

εp
= u

√
2ηκ , where u is the amplitude

parameter of the mechanical drive. In the absence of the
coupling field and the mechanical drive (℘c = 0 and u = 0),
the output probe field tp(x) becomes

tp(x) = 2ηκ

κ − ix
− 1. (12)

At the exact two-photon resonance x = 0, the output probe
field is tp(0) = 2η − 1, and the intensity of the output probe
field is |tp(0)|2 = |2η − 1|2. When the external and intrinsic
decay rates of the cavity field are exactly equal (κe = κi), the
microdisk cavity is critically coupled to the waveguide (η =
1
2 ). In this case, the intensity |tp(0)|2 of the output probe field
reaches its minimum value 0, thus the probe field is totally
absorbed by the system.

It has been shown that the presence of the strong coupling
field not only modifies the transmission of the weak probe
field near resonance x = 0, but also leads to a very steep
variation in the phase θ (x) = arg[tp(x)] of the output probe
field near resonance x = 0, resulting in the group delay τg(x)
of the output probe field [3–5]. The group delay of the output
probe field can be calculated by

τg(x) = ∂θ (x)

∂x
. (13)

The positive (negative) group delay of the output probe field
corresponds to the slowing (advancing) of the output probe
field.

We use the parameters from a recent experiment [15],
which mainly discusses the reactive cavity optical force on
the waveguide: the wavelength of the coupling field λ =
1564.25 nm, the mass of the waveguide m = 2 pg, the res-
onance frequency of the waveguide ωm = 2π × 25.45 MHz,
the damping rate of the waveguide γm = ωm/5000, and the
total cavity decay rate κ = 0.1ωm, thus the system is well
within the resolved-sideband regime (ωm � κ).
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FIG. 2. The intensity |tp(x)|2 of the output probe field as a func-
tion of the normalized probe detuning x/κ for different values of
the amplitude parameter u of the mechanical drive when η = 0.5,
℘c = 10 µW, and φ = 0, π/2, π , 3π/2. (a) φ = 0, (b) φ = π/2, (c)
φ = π , (d) φ = 3π/2. The black solid, blue dotted, red dot-dashed,
and green dashed curves represent u = 0, 0.29, 0.59, and 1, respec-
tively. The flat dotted line represents |tp(x)|2 = 1.

III. THE INTENSITY OF THE OUTPUT PROBE FIELD IN
THE PURELY DISSIPATIVE OPTOMECHANICAL SYSTEM

In this section, we show how the amplitude parameter u
and phase φ of the weak mechanical drive and the power ℘c

of the coupling field affect the intensity |tp(x)|2 of the output
probe field in the purely dissipative optomechanical system
in both the critical coupling regime and the undercoupling
regime. The dissipative optomechanical coupling strength is
chosen to be gκ = −2π × 26.6 MHz/nm × qzpf [15].

A. Perfect absorption, EIT-like effect, amplification
for the probe field in the critical coupling regime

It is noted that the critical coupling (η = 0.5) between
the microdisk cavity and the waveguide is achievable in the
experiment [15]. When the system is in the critical coupling
regime, and the power of the coupling field is ℘c = 10 µW,
the steady-state displacement qs of the waveguide is found
to be about −3.37 × 10−13 m, which is very small, thus the
approximation of κe(q) in Eq. (2) is reasonable. Figure 2
plots the intensity |tp(x)|2 of the output probe field against
the normalized probe detuning x/κ for different values of the
amplitude parameter u of the mechanical drive when η = 0.5,
℘c = 10 µW, and φ = 0, π/2, π , 3π/2. Without the mechan-
ical drive (u = 0) (Fig. 2), the intensity |tp(x)|2 exhibits a
transparency peak at x = 0, and the peak value |tp(0)|2 is
approximately equal to unity, which is when the EIT effect
occurs [18,33]; thus, the input probe field is almost totally
transmitted through the system, and the absorption of the

FIG. 3. Energy-level diagram for the optomechanical system.
The transition |nc, nm〉 → |nc + 1, nm〉 is the cavity excitation (pho-
ton) at frequency ω0, and the transition |nc, nm〉 → |nc, nm + 1〉 is
the mechanical excitation (phonon) at frequency ωm, where nc and
nm denote the intracavity photon number and the phonon number
in the waveguide, respectively. The coupling field with frequency
ωc drives the transition |nc, nm + 1〉 ↔ |nc + 1, nm〉, the probe field
with frequency ωp and detuning x probes the transition |nc, nm〉 ↔
|nc + 1, nm〉, and the mechanical pump with frequency ωd and de-
tuning x drives the transition |nc, nm〉 ↔ |nc, nm + 1〉.

probe field by the system is almost zero. From the energy-level
diagram for the system as shown in Fig. 3, the zero absorption
of the probe field can be understood as a result of the destruc-
tive interference between the input probe field at frequency
ωp and the anti-Stokes field at frequency ωc + ωm generated
by the interaction of the coupling field with the mechanical
phonons driven by the reactive cavity optical force. Our calcu-
lations show that the coupling power℘c required to observe the

EIT must be less than the critical power ℘cr = κ (κ− γm
2 )2

2g2
κ

h̄ωc 

28.15 µW. The linewidth of the transparency peak can be

estimated by γm

2 + g2
κ ε2

c
2κ2 . Thus, the transparency peak becomes

wider with an increase in the coupling power ℘c [18,33]. If
the coupling power ℘c is larger than the critical power ℘cr ,
the system enters the strong coupling regime, and normal
mode splitting occurs [32,33]. With the mechanical drive
(u �= 0), for φ = 0, π/2, and 3π/2 [Figs. 2(a), 2(b), and 2(d)],
it is seen that the intensity |tp(0)|2 is larger than unity and
increases with increasing the value of u, thus the probe field
is amplified and becomes larger for a larger value of u. This
result is also seen in Fig. 4, which plots the intensity |tp(0)|2
of the output probe field against the amplitude parameter u of
the mechanical drive for different phases φ of the mechanical
drive when η = 0.5 and ℘c = 10 µW. It is noted that the
electromagnetically induced amplification can be obtained in
a dispersive optomechanical system driven by a blue-detuned
coupling field [4,6,11]. However, for φ = π [Fig. 2(c)], with
increasing the amplitude parameter u, the intensity |tp(0)|2
first decreases and then increases. This trend is also seen in
Fig. 4. A similar result is obtained in the dispersive case [35].
When u = 0.29, the intensity |tp(0)|2 takes its minimum value
about 0.01, thus the probe field is almost totally absorbed
by the system. This is due to the constructive interference
among the input probe field at frequency ωp, the anti-Stokes
field at frequency ωc + ωm produced by the interaction of the
coupling field with the mechanical phonons induced by the
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FIG. 4. The intensity |tp(0)|2 of the output probe field as a
function of the amplitude parameter u of the mechanical drive for
different phases φ of the mechanical drive when η = 0.5 and ℘c =
10 µW. The black solid, blue dotted, red dot-dashed, and green
dashed curves represent φ = 0, π/2, π , and 3π/2, respectively. The
flat dotted line represents |tp(0)|2 = 1.

reactive cavity optical force, and the anti-Stokes field at fre-
quency ωc + ωm produced by the interaction of the coupling
field with the mechanical phonons induced directly by the
mechanical drive, which can be seen from the energy-level
diagram for the system as shown in Fig. 3. Note that the
nearly perfect absorption of the probe field is also the result
of the almost complete destructive interference between the
two terms in Eq. (11). It is worth mentioning that a simi-
lar perfect absorption occurs in a dispersive optomechanical
system with two weak counterpropagating probe fields [39].
In Fig. 2(c), when u = 0.59, the intensity |tp(x)|2 exhibits
the EIT-like transparency peak with |tp(0)|2 
 1, thus one
observes the nearly full transmission of the probe field at
x = 0, and there is almost no absorption of the probe field,
which is the result of the destructive interference among the
input probe field at frequency ωp and the two anti-Stokes
fields at the same frequency ωc + ωm as mentioned before.
Furthermore, when u > 0.59, the intensity |tp(0)|2 is larger
than unity, which indicates the amplification of the probe
field. Therefore, in the critical coupling regime, the system
can switch from the EIT to the nearly full absorption, to the
EIT-like behavior, and then to the amplification of the probe
field by gradually increasing the amplitude parameter u of
the mechanical drive with the phase φ = π . Figure 5 shows
the intensity |tp(0)|2 of the output probe field against the cou-
pling power℘c for different values of the amplitude parameter
u of the mechanical drive when η = 0.5 and φ = 0, π . In
order to ensure the validity of the linearized equations (7), the
mechanical displacement fluctuation 〈δQ〉 defined by 〈δQ〉 =

1√
2
(〈δb̃〉 + 〈δb̃†〉) must be much less than the steady-state me-

chanical displacement Qs. Figure 6 shows the ratio |〈δQ〉/Qs|
at the two-photon resonance x = 0 as a function of the power
℘c of the coupling field for different values of the amplitude
parameter u of the mechanical drive when η = 0.5 and φ = 0,
π . In Fig. 6(a), for u = 0, 0.29, 0.59, and 1, and φ = 0, we
find that |〈δQ〉/Qs| is always less than 0.076 as the coupling
power ℘c increases from 0.5 µW to 28 µW. In Fig. 6(b), for
u = 0, 0.29, 0.59, and 1, and φ = π , we find that |〈δQ〉/Qs| is

FIG. 5. The intensity |tp(0)|2 of the output probe field as a func-
tion of the power ℘c of the coupling field for different values of
the amplitude parameter u of the mechanical drive when η = 0.5
and φ = 0, π . (a) φ = 0 and (b) φ = π . The blue short-dashed,
cyan dot-dashed, green long-dashed, and red solid curves represent
u = 0, 0.29, 0.59, and 1, respectively. The flat dotted line represents
|tp(0)|2 = 1.

FIG. 6. The ratio |〈δQ〉/Qs| at x = 0 as a function of the power
℘c of the coupling field for different values of the amplitude pa-
rameter u of the mechanical drive when η = 0.5 and φ = 0, π . (a)
φ = 0 and (b) φ = π . The blue short-dashed, cyan dot-dashed, green
long-dashed, and red solid curves represent u = 0, 0.29, 0.59, and 1,
respectively.
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always less than 0.066 as the coupling power℘c increases from
0.5 µW to 28 µW. Thus, for u = 0, 0.29, 0.59, and 1, and φ =
0, π , the condition |〈δQ〉/Qs| � 1 can be satisfied when the
coupling power℘c is not less than 0.5 µW. Now, we look at the
intensity |tp(0)|2 of the output probe field for φ = 0, as shown
in Fig. 5(a). In the absence of the mechanical drive (u = 0),
with increasing the coupling power ℘c from 0.5 µW to 28 µW,
the intensity |tp(0)|2 increases, and finally saturates at unity,
thus the system displays the EIT effect. Using Eq. (11), we
find that the output probe field tp(0) for u = 0 is tp(0) 
 1 −

κ
γm
2

( gκ√
2κ

εc )2+κ
γm
2

, thus the output probe intensity |tp(0)|2 increases

with an increase in the coupling power ℘c, which is consistent
with the numerical result in Fig. 5(a). It is found that we can
approach complete transmission [|tp(0)|2 = 1] in the limit of
the strong coupling field ( gκ√

2κ
εc)2 � κ

γm

2 , which is equivalent

to℘c � κ2γm

g2
κ

h̄ωc 
 113 nW. In the presence of the mechanical
drive (u �= 0), as the coupling power℘c increases from 0.5 µW
to 28 µW, the intensity |tp(0)|2 decreases, and is always larger
than unity, thus the probe field is amplified. For u = 0.29,
0.59, and 1, the intensity |tp(0)|2 takes its maximum value
about 19.2, 65.3, and 172.4 at ℘c = 0.5 µW, respectively.
Hence, for a larger value of u, the maximum intensity |tp(0)|2
is larger. Therefore, it is possible to dramatically amplify a
weak probe field by applying a mechanical drive with the
phase φ = 0 to the waveguide in the critical coupling regime.
Physically, the amplification of the probe field is due to the
contribution of the phonon-photon parametric process involv-
ing the mechanical drive described by the second term in
Eq. (11), which depends on the amplitude parameter u of the
mechanical drive and the power ℘c of the coupling field. On
one hand, a larger amplitude parameter u of the mechanical
drive can excite more phonons in the waveguide, which leads
to a stronger anti-Stokes field at frequency ωc + ωm. On the
other hand, a larger coupling power℘c can generate more pho-
tons in the cavity but reduce the phonon number in the waveg-
uide since the dissipative optomechanical coupling induces
the cooling of the waveguide in the resolved-sideband limit,
which leads to a weaker anti-Stokes field at frequency ωc +
ωm. Thus, a maximal amplification of the probe field exists as
a result of the competition between these two processes.

Next, we look at the case of φ = π , as shown in Fig. 5(b).
For comparison, we also plot the intensity |tp(0)|2 in the
absence of the mechanical drive (u = 0) in Fig. 5(b). In
the presence of the mechanical drive (u �= 0), according to
Eq. (11), complete transmission [|tp(0)|2 = 1] occurs at the

coupling power ℘̄c 
 κ3 h̄ωc
8g2

κ
(u +

√
u2 − 4 γm

κ
)2, which shows

that complete transmission appears at a larger coupling power
℘̄c for a larger value of u. For u = 0.29, 0.59, and 1, ℘̄c is
about 2.26, 10.00, and 28.09 µW, respectively. In addition,
from Fig. 5(b), for u = 0.29, 0.59, and 1, when the coupling
power ℘c is larger than 0.5 µW but less than ℘̄c, the intensity
|tp(0)|2 is larger than unity, thus the incident probe field is
amplified. Hence, for a larger value of u, the probe field can
be amplified over a wider range of the coupling power ℘c. For
u = 0.29, 0.59, and 1, the intensity |tp(0)|2 takes its maximum
value about 7.6, 41.7, and 132.4 at ℘c = 0.5 µW, respec-
tively. Hence, for a larger value of u, the maximum intensity
|tp(0)|2 is larger. For a given value of u, it is noted that the

FIG. 7. The intensity |tp(x)|2 of the output probe field as a func-
tion of the normalized probe detuning x/κ for different values of
the amplitude parameter u of the mechanical drive when η = 0.2,
℘c = 1 µW, and φ = 0, π/2, π , 3π/2. (a) φ = 0, (b) φ = π/2, (c)
φ = π , (d) φ = 3π/2. The black solid, blue dotted, red dot-dashed,
and green dashed curves represent u = 0, 0.38, 0.76, and 1, respec-
tively. The flat dotted line represents |tp(x)|2 = 1.

maximum intensity |tp(0)|2 for φ = π is less than that for
φ = 0. Furthermore, from Eq. (11), it is found that perfect
absorption |tp(0)|2 = 0 occurs at the coupling power ℘c 

2u2κ3

g2
κ

h̄ωc, which indicates that perfect absorption happens at
a larger coupling power ℘c for a larger value of u. For u =
0.29, 0.59, and 1, nearly perfect absorption [|tp(0)|2 
 0.01]
happens at℘c 
 10.0, 39.3, and 112.8 µW, respectively. Thus,
only when u = 0.29, nearly perfect absorption occurs within
the range of the coupling power ℘c from 0.5 µW to 28 µW,
as shown in Fig. 5(b). The above results demonstrate the
possibility to achieve the amplification, full transmission, and
nearly perfect absorption of the probe field by changing the
coupling power ℘c when the mechanical drive with the phase
φ = π is applied to the waveguide in the critical coupling
regime.

B. EIA-like effect, EIT-like effect, amplification
for the probe field in the undercoupling regime

When the system is in the undercoupling regime (η = 0.2),
and the power of the coupling field is ℘c = 1 µW, the steady-
state displacement qs of the waveguide is found to be about
−3.36 × 10−14 m, which is very small, thus the approxima-
tion of κe(q) in Eq. (2) holds.

Figure 7 plots the intensity |tp(x)|2 of the output probe
field against the normalized probe detuning x/κ for different
values of the amplitude parameter u of the mechanical drive
when η = 0.2, ℘c = 1 µW, and φ = 0, π/2, π , 3π/2. When
the mechanical drive is absent (u = 0) (Fig. 7), the intensity
|tp(x)|2 has a transparency peak at x = 0, and |tp(0)|2 
 1,
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FIG. 8. The intensity |tp(0)|2 of the output probe field as a
function of the amplitude parameter u of the mechanical drive for
different phases φ of the mechanical drive when η = 0.2 and ℘c =
1 µW. The black solid, blue dotted, red dot-dashed, and green dashed
curves represent φ = 0, π/2, π , and 3π/2, respectively. The flat
dotted line represents |tp(0)|2 = 1.

thus the EIT effect happens. To induce the EIT effect, the
coupling power ℘c must be less than the critical power ℘cr =
ηκ (κ− γm

2 )2 h̄ωc

g2
κ


 11.26 µW. The linewidth of the transparency

peak can be estimated by γm

2 + g2
κ ε2

c
4ηκ2 . Next, we see the case

with the mechanical drive (u �= 0). For φ = 0, π [Figs. 7(a)
and 7(c)], it is seen that the intensity |tp(x)|2 is almost
symmetric about x = 0, respectively. For φ = π/2, 3π/2
[Figs. 7(b) and 7(d)], it is seen that the intensity |tp(x)|2 is
asymmetric about x = 0, respectively, and they are almost
mirror images of each other. These results are similar to
those in the dispersive case [34]. For φ = 0, π/2, and 3π/2
[Figs. 7(a), 7(b), and 7(d)], the intensity |tp(0)|2 is larger
than unity and increases as the value of u increases, thus the
probe field is amplified and becomes larger as the value of
u increases. This result is also seen in Fig. 8, which plots
the intensity |tp(0)|2 of the output probe field against the
amplitude parameter u of the mechanical drive for different
phases φ of the mechanical drive when η = 0.2 and ℘c =
1 µW. However, for φ = π [Fig. 7(c)], with increasing the
amplitude parameter u, the intensity |tp(0)|2 first reduces and
then increases. This trend is also seen in Fig. 8. In Fig. 7(c),
when u = 0.38, the intensity |tp(x)|2 exhibits the EIA-like
feature with a very narrow dip at x = 0, and |tp(0)|2 
 0, thus
the probe field is almost totally absorbed by the system. It is
worth mentioning that the EIA can be obtained in a dispersive
optomechanical system [4,11] and a dissipative optomechan-
ical system [18] in the presence of a blue-detuned coupling
field. In addition, the EIA can be realized in a double-cavity
dispersive optomechanical system, in which the two cavity
fields are respectively driven by a red-detuned coupling field
and an absorption peak appears in a transparent window [12].
In Fig. 7(c), when u = 0.76, the intensity |tp(x)|2 exhibits the
EIT-like feature with |tp(0)|2 
 1, thus the probe field almost
totally passes through the system at x = 0. When u > 0.76,
the intensity |tp(0)|2 is larger than unity, thus the probe field
is amplified. Hence, in the undercoupling regime, the sys-
tem can switch from EIT to EIA-like behavior, to EIT-like

FIG. 9. The intensity |tp(0)|2 of the output probe field as a func-
tion of the power ℘c of the coupling field for different values of the
amplitude parameter u of the mechanical drive when η = 0.2 and
φ = π . The blue short-dashed, cyan dot-dashed, green long-dashed,
and red solid curves represent u = 0, 0.38, 0.76, and 1, respectively.
The flat dotted line represents |tp(0)|2 = 1.

behavior, and then to amplification of the probe field by grad-
ually increasing the amplitude parameter u of the mechanical
drive with the phase φ = π .

Figures 9 and 10 show the intensity |tp(0)|2 of the output
probe field and the ratio |〈δQ〉/Qs| at x = 0 against the power
℘c of the coupling field for different values of the amplitude
parameter u of the mechanical drive when η = 0.2 and φ = π .
In Fig. 10, for u = 0, 0.38, 0.76, and 1, we find that |〈δQ〉/Qs|
is always less than 0.049 as the coupling power ℘c increases
from 0.3 µW to 11 µW. Thus, for u = 0, 0.38, 0.76, and 1,
the condition |〈δQ〉/Qs| � 1 can be satisfied when the cou-
pling power ℘c is not less than 0.3 µW. In Fig. 9, without the
mechanical drive (u = 0), as the coupling power ℘c increases
from 0.3 µW to 11 µW, the intensity |tp(0)|2 increases, and
finally saturates at unity, thus the EIT effect occurs. Using
Eq. (11), we find tp(0) 
 1 − κγmη

( gκ
2
√

ηκ
εc )2+κ

γm
2

, thus the output

probe intensity |tp(0)|2 increases with increasing the coupling
power ℘c, which is in agreement with the numerical result in
Fig. 9. It is noted that complete transmission (|tp(0)|2 = 1)
can be approached in the limit of the strong coupling field

FIG. 10. The ratio |〈δQ〉/Qs| at x = 0 as a function of the power
℘c of the coupling field for different values of the amplitude pa-
rameter u of the mechanical drive when η = 0.2 and φ = π . The
blue short-dashed, cyan dot-dashed, green long-dashed, and red solid
curves represent u = 0, 0.38, 0.76, and 1, respectively.
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( gκ

2
√

ηκ
εc)2 � κ

γm

2 , which is equivalent to ℘c � 2ηκ2γm

g2
κ

h̄ωc 

45.2 nW. With the mechanical drive (u �= 0), as the cou-
pling power ℘c increases from 0.3 µW to 11 µW, the intensity
|tp(0)|2 first decreases and then increases. From Eq. (11),
it is found that perfect absorption [|tp(0)|2 = 0] occurs at

the coupling power ℘c 
 4η3κ3 h̄ωc

g2
κ

[u +
√

u2 − γm

2κη2 (1 − 2η)]
2
,

which increases with an increase in the amplitude parame-
ter u. For u = 0.38, 0.76, and 1, nearly perfect absorption
[|tp(0)|2 < 0.001] occurs at ℘c 
 1.0, 4.2, and 7.5 µW, re-
spectively. Moreover, from Eq. (11), it is found that complete
transmission [|tp(0)|2 = 1] appears at the coupling power

℘′
c 
 η3κ3 h̄ωc

g2
κ

[u +
√

u2 − 2 γm

κη2 (1 − η)]
2
, which becomes larger

with increasing the amplitude parameter u. For u = 0.76, 1,
complete transmission happens at ℘′

c 
 1.0 and 1.8 µW, re-
spectively. In addition, for u = 0.76, 1, when the coupling
power ℘c is larger than 0.3 µW but less than ℘′

c, the intensity
|tp(0)|2 is larger than unity, thus the incident probe field is am-
plified. For u = 0.38, 0.76, and 1, the intensity |tp(0)|2 takes
its maximum value about 0.5, 5.4, and 11.3 at ℘c = 0.3 µW,
respectively. Thus, increasing the value of u makes the max-
imum intensity |tp(0)|2 larger, which is the same as that for
φ = π in the critical coupling regime. For u = 1, it is seen that
the maximum intensity |tp(0)|2 is smaller than that for φ = π

in the critical coupling regime. Therefore, when a mechanical
drive with the phase φ = π is applied to the waveguide in the
undercoupling regime, it is possible to achieve nearly perfect
absorption, complete transmission, and amplification of the
probe field by adjusting the coupling power ℘c.

In Ref. [34], Jia et al. have discussed the propagation of a
weak probe field through a dispersive optomechanical system
with an additional mechanical drive in both the undercoupling
regime (κe = 0.05κ) and the overcoupling regime (κe = κ).
They have shown that EIA-like behavior can be turned into
EIT-like behavior in the undercoupling regime if the total
phase of the coupling, probe, and mechanical fields is changed
from 0 to π . And, they have found that the maximum intensi-
ties of the output probe field appear approximately at the same
coupling power for different amplitudes of the mechanical
drive in the overcoupling regime (κe = κ). In contrast, in this
present work, we have shown the propagation of a weak probe
field through a dissipative optomechanical system with an ad-
ditional mechanical drive in both the critical coupling regime
(κe = 0.5κ) and the undercoupling regime (κe = 0.2κ). We
find that the maximum intensities of the output probe field
occur at the same coupling powers for different amplitudes
of the mechanical drive in both the critical coupling regime
and the undercoupling regime. Under the action of the me-
chanical drive with the phase φ = π , we show that it is
possible to convert EIA-like behavior to EIT-like behavior in
the undercoupling regime by increasing the amplitude of the
mechanical drive.

IV. THE GROUP DELAY OF THE OUTPUT PROBE
FIELD IN THE PURELY DISSIPATIVE

OPTOMECHANICAL SYSTEM

In this section, we show the influence of the amplitude
parameter u and phase φ of the mechanical drive on the

FIG. 11. The group delay τg(0) of the output probe field as a
function of the amplitude parameter u of the mechanical drive when
η = 0.5, ℘c = 10 µW, and φ = 0, π . The black solid and red dot-
dashed curves represent φ = 0 and φ = π , respectively.

group delay τg(x) of the output probe field at resonance x =
0 in the purely dissipative optomechanical system in both
the critical coupling regime and the undercoupling regime.
It is noted that the phase θ (x) of the output probe field is
given by θ (x) = 1

2i ln
tp(x)
t∗
p (x) . Thus, from Eq. (13), it is found

that the group delay τg(x) of the output probe field can be
calculated by τg(x) = Im[ 1

tp(x)
∂tp(x)

∂x ]. The dissipative optome-
chanical coupling strength is still chosen to be gκ = −2π ×
26.6 MHz/nm × qzpf [15]. Figure 11 shows the dependence
of the group delay τg(0) of the output probe field on the ampli-
tude parameter u of the mechanical drive when η = 0.5, ℘c =
10 µW, and φ = 0, π . When φ = 0, with increasing the ampli-
tude parameter u from 0 to 1, the group delay τg(0) decreases
from 703 ns to 701 ns, thus the amplitude parameter u has little
effect on the group delay τg(0) of the output probe field. Next,
we look at the case of φ = π . As the amplitude parameter u
increases from 0 to 0.29, the group delay τg(0) increases, and
it reaches its maximum value about 764 ns (corresponding to
about 3.89π times the cavity photon lifetime κ−1) at u = 0.29,
at which the nearly perfect absorption occurs as shown in
Fig. 2(c). As the amplitude parameter u increases further from
0.29 to 0.45, the group delay τg(0) decreases, and it reaches its
minimum value about 698 ns (corresponding to about 3.55π

times the cavity photon lifetime κ−1) at u = 0.45. As the
amplitude parameter u increases further from 0.45 to 1, the
group delay τg(0) increases a little to about 699 ns. Therefore,
in the critical coupling regime, compared to the case of φ = 0,
we find that the positive group delay τg(0) of the output
probe field can be largely increased by changing the amplitude
parameter u of the mechanical drive with the phase φ = π ,
which implies that the output probe field can be slowed down
largely. Figure 12 shows the dependence of the group delay
τg(0) of the output probe field on the amplitude parameter u of
the mechanical drive when η = 0.2,℘c = 1 µW, and φ = 0, π .
When φ = 0, with increasing the amplitude parameter u from
0 to 1, the group delay τg(0) increases from 1.0 µs to 2.2 µs,
thus the amplitude parameter u slightly affects the group delay
τg(0) of the output probe field. Next, we consider the case of
φ = π . As the amplitude parameter u increases from 0 to 1,
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FIG. 12. The group delay τg(0) of the output probe field as a
function of the amplitude parameter u of the mechanical drive when
η = 0.2, ℘c = 1 µW, and φ = 0, π . The black solid and red dot-
dashed curves represent φ = 0 and φ = π , respectively.

the group delay τg(0) decreases from a positive value (1.0 µs)
to a large negative value (−41.1 µs, corresponding to about
−209.2π times the cavity photon lifetime κ−1), then increases
sharply to a large positive value (41.4 µs, corresponding to
about 210.7π times the cavity photon lifetime κ−1), and then
decreases again to a positive value (3.7 µs). The group delay
τg(0) takes its minimum value −41.1 µs at u = 0.37, and takes
its maximum value 41.4 µs at u = 0.385. Thus, the group
delay τg(0) changes dramatically around u = 0.38, at which
the EIA-like effect appears, as shown in Fig. 7(c). A similar
result is obtained in the dispersive case [35]. Therefore, in the
undercoupling regime, by adjusting the amplitude parameter
u of the mechanical drive with the phase φ = π , the group
delay of the output probe field can be switched from a large
negative value to a large positive value and vice versa, thus the
slowing and advancing of the output probe field is switchable,
which differs from the case of φ = 0.

V. THE OPTICAL RESPONSE OF THE
OPTOMECHANICAL SYSTEM WITH COMBINED

DISPERSIVE AND DISSIPATIVE COUPLING

In the previous sections, we have considered the optical
response of a purely dissipative optomechanical system with
an additional weak mechanical drive for simplicity. In this
section, we show the effect of the amplitude parameter u and
phase φ of the weak mechanical drive on the optical response
of an optomechanical system with combined dispersive and
dissipative coupling. The dissipative and dispersive optome-
chanical coupling strengths are chosen to be gκ = −2π ×
26.6 MHz/nm × qzpf and gω = 2π × 2 MHz/nm × qzpf [15],
respectively. It is noted that the dispersive optomechanical
coupling is much weaker than the dissipative optomechanical
coupling. In the critical coupling regime (η = 0.5), when the
power of the coupling field is ℘c = 10 µW, the steady-state
mechanical displacement qs is found to be about −3.38 ×
10−13 m, which is very small, thus the approximations of
ω0(q) and κe(q) in Eq. (2) hold. Figure 13 shows the inten-
sity |tp(0)|2 and group delay τg(0) of the output probe field
against the amplitude parameter u of the mechanical drive

FIG. 13. The (a) intensity |tp(0)|2 and (b) group delay τg(0) of
the output probe field as a function of the amplitude parameter u
of the mechanical drive when η = 0.5, ℘c = 10 µW, and φ = 0, π .
The green short-dashed and cyan long-dashed curves correspond to
the case of the combined dissipative and dispersive coupling, and
they represent φ = 0 and φ = π , respectively. The black solid and
red dot-dashed curves correspond to the case of purely dissipative
coupling, and they represent φ = 0 and φ = π , respectively. The flat
dotted line in (a) represents |tp(0)|2 = 1.

when η = 0.5, ℘c = 10 µW, and φ = 0, π . In Fig. 13(a), for
φ = 0, π , it is seen that the intensities |tp(0)|2 in the case of the
combined dispersive and dissipative coupling are almost equal
to those in the purely dissipative coupling case, respectively.
In Fig. 13(b), for φ = 0, it is seen that the group delay τg(0) in
the case of the combined dispersive and dissipative coupling
is always about 10 ns shorter than that in the purely dissipative
coupling case. For φ = π , it is noted that the group delay
τg(0) in the case of the combined dispersive and dissipative
coupling is at most about 10 ns shorter than that in the purely
dissipative coupling case. Therefore, in the critical coupling
regime, the dispersive coupling has almost no effect on the
intensity |tp(0)|2 of the output probe field, but it has a non-
negligible impact on the group delay τg(0) of the output probe
field. In the undercoupling regime (η = 0.2), when the power
of the coupling field is℘c = 1 µW, the steady-state mechanical
displacement qs is found to be about −3.37 × 10−14 m, which
is very small, thus the approximations of ω0(q) and κe(q)
in Eq. (2) are valid. Figure 14 shows the intensity |tp(0)|2
and group delay τg(0) of the output probe field against the
amplitude parameter u of the mechanical drive when η = 0.2,
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FIG. 14. The (a) intensity |tp(0)|2 and (b) group delay τg(0) of
the output probe field as a function of the amplitude parameter u of
the mechanical drive when η = 0.2, ℘c = 1 µW, and φ = 0, π . The
green short-dashed and cyan long-dashed curves correspond to the
case of the combined dissipative and dispersive coupling, and they
represent φ = 0 and φ = π , respectively. The black solid and red
dot-dashed curves correspond to the case of the purely dissipative
coupling, and they represent φ = 0 and φ = π , respectively. The flat
dotted line in (a) represents |tp(0)|2 = 1.

℘c = 1 µW, and φ = 0, π . In Fig. 14(a), for φ = 0, π , it is
seen that the numerical results for the intensity |tp(0)|2 in the
case of the combined dispersive and dissipative coupling are
almost identical to those in the purely dissipative coupling
case, respectively. In Fig. 14(b), for φ = 0, π , it is seen
that the curves for the group delay τg(0) in the case of the
combined dispersive and dissipative coupling almost overlap
those in the purely dissipative coupling case, respectively.

Therefore, the dispersive coupling barely affects the intensity
|tp(0)|2 and group delay τg(0) of the output probe field in the
undercoupling regime.

VI. CONCLUSIONS

In conclusion, we have investigated the propagation of a
weak probe field in a waveguide-microdisk dissipative op-
tomechanical system with a weak coherent mechanical drive.
When a strong coupling field is present, we find that the probe
field can be nearly totally absorbed, totally transmitted, and
amplified by varying the amplitude and phase of the mechani-
cal drive and the power of the coupling field in both the critical
coupling regime and the undercoupling regime. We show that
it is possible to achieve the EIT-like effect and the EIA-like
effect in such a system. Moreover, we show that the group
delay of the output probe field can be manipulated by control-
ling the amplitude and phase of the mechanical drive. Such
control can even cause a switch from the slowing of the output
probe field to the advancing of the output probe field and vice
versa. Additionally, we compare the effects of the mechanical
drive on the intensity and group delay of the output probe
field in the optomechanical system with combined dispersive
and dissipative coupling with those in the purely dissipative
optomechanical system. For a certain range of system pa-
rameters, we find that the small dispersive optomechanical
coupling in the experiment [15] has a negligible effect on
the intensity of the output probe field in both the critical
coupling regime and the undercoupling regime, and it also
has a negligible effect on the group delay of the output probe
field in the undercoupling regime, but it has a non-negligible
influence on the group delay of the output probe field in the
critical coupling regime. Therefore, this system can be used as
an optical switch to control the propagation of a weak probe
field in future quantum information networks [40].
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