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Eigenmodes in a PT -symmetric waveguide: Complex dispersion curves
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Many novel wave phenomena have been observed in parity-time (PT )-symmetric optical waveguides with a
balanced gain and loss. These phenomena are highly related to the eigenmodes which are solutions of Maxwell’s
equation without sources. An eigenmode is associated with a propagation constant and an angular frequency.
Most existing studies are concerned with guided modes at a real frequency. In this paper, we analyze various
eigenmodes in a PT -symmetric slab waveguide, including guided modes with a complex frequency or a complex
propagation constant, leaky modes, resonant modes, lasing-threshold modes, and perfect-absorption modes.
We study the dispersion curves of eigenmodes and focus on the connection between the real and complex
eigenmodes. It is observed that as the amplitude of balanced gain and loss is varied, there exist a few transition
points where the connections between real and complex eigenmodes exhibit abrupt changes. In particular, there
exists a transition point corresponding to the emergence of lasing-threshold and perfect-absorption modes. It is
expected that the wave phenomena revealed in this paper are generic and can be found in other PT -symmetric
waveguides. Our work improves theoretical understanding on PT -symmetric waveguides, and may have poten-
tial applications in non-Hermitian photonics.
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I. INTRODUCTION

In recent years, optical structures with parity-time (PT )
symmetry have attracted extensive research in the photon-
ics community [1–15]. Many interesting wave phenomena,
including unidirectional reflectionless propagation [16–19],
Bloch oscillations [20], single-mode lasing [21,22], and si-
multaneous lasing and coherent perfect absorption [23–25],
have been observed in PT -symmetric systems. A widely
studied PT -symmetric structure is an optical waveguide with
a balanced gain and loss [4–6,8,10,26–38]. The dielectric
function of such a waveguide has a symmetric real part and an
antisymmetric imaginary part with respect to a spatial variable
perpendicular to the waveguide axis. Many studies on PT -
symmetric waveguides are concerned with guided modes at a
fixed real angular frequency ω for a varying amplitude σ of the
balanced gain and loss [4,26–32]. There are also some works
focusing on the dispersion curves of guided modes [33–38].
In our recent work [38], we analyzed the dependence on σ for
the dispersion curves of guided modes with a real ω and a real
propagation constant β.

In many existing works on PT -symmetric optical waveg-
uides, it has been shown that for a given ω, two or more real
guided modes merge to a single mode as σ is increased to a
critical value [the exceptional point (EP)], and guided modes
with a complex β emerge for σ larger than the critical value
[4,26–32]. In fact, EPs can also be formed for a fixed σ , when
ω or β are considered as the parameter, and guided modes
with a complex β or ω emerge when the parameter passes
through the critical value [35–38].
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Guided modes are proper modes that decay to zero in the
lateral direction. It is also useful to study improper modes
that do not decay as the lateral variable tends to infinity
[39–46]. A leaky mode is an improper mode satisfying an
outgoing radiation condition [39–42]. It has a real ω and a
complex β, decays in the forward propagation direction, and
diverges in the lateral direction. In connection with scattering
problems where incident waves are specified in the cladding
or the substrate of the waveguide, it is useful to consider
resonant modes. A resonant mode is also an improper mode
satisfying an outgoing radiation condition [43–46]. It has a
real β and a complex ω, decays with time t , and diverges in the
lateral direction. In slab waveguides, there exist real improper
modes which have a real β, a real ω, and a divergent field.
It is known that the complex dispersion curves of leaky and
resonant modes are connected with the dispersion curves of
real improper modes [45,46].

In addition to the guided modes and the improper modes
mentioned above, a PT -symmetric waveguide may have
lasing-threshold modes and perfect-absorption modes with
the same frequency ω and the same propagation constant β

[23–25,44]. A lasing-threshold mode radiates power laterally
and a perfect-absorption mode absorbs power coming from in-
finity. They are also improper eigenmodes since their fields do
not decay in the lateral direction (remain bounded at infinity).

For PT -symmetric waveguides, it is important to investi-
gate the eigenmodes since they are essential to many novel
wave phenomena. In this paper, we study guided modes with
a complex β or ω and various improper modes. We focus
on the connection between the dispersion curves of different
eigenmodes, analyze the dependence of dispersion curves on
σ , and show that there exist interesting transition points as σ

is varied. A particular interesting transition point corresponds

2469-9926/2024/109(5)/053515(8) 053515-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0411-3902
https://orcid.org/0000-0002-2448-114X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.053515&domain=pdf&date_stamp=2024-05-10
https://doi.org/10.1103/PhysRevA.109.053515


NAN ZHANG AND YA YAN LU PHYSICAL REVIEW A 109, 053515 (2024)

y

z

O

d

L R i

G R i

d

h

FIG. 1. A PT -symmetric slab waveguide with thickness h = 2d
and surrounded by air.

to the emergence of lasing-threshold and perfect-absorption
modes. For simplicity, we follow Ref. [4] and consider a PT -
symmetric slab waveguide. However, we believe the wave
phenomena revealed in this paper also exist in other PT -
symmetric waveguides.

The rest of this paper is organized as follows. In Sec. II, we
recall the definition of various eigenmodes in PT -symmetric
waveguides. In Sec. III, we analyze the dependence on σ for
the dispersion curves of real improper modes. In Sec. IV, we
study the connection between the complex dispersion curves
and the dispersion curves of real guided and real improper
modes. The paper is concluded by a summary in Sec. V.

II. EIGENMODES IN A PT -SYMMETRIC
SLAB WAVEGUIDE

We consider a PT -symmetric slab waveguide surrounded
by air as shown in Fig. 1. A Cartesian coordinate system
is chosen so that the dielectric function ε depends only on
z. The thickness of the slab is h = 2d , and for |z| > d , we
have ε = 1. The dielectric constants of the upper (0 < z < d)
and lower (−d < z < 0) parts of the slab are εG = εR − iσ
and εL = εR + iσ , respectively, where εR and σ are constants,
εR > 1, and σ � 0 is the amplitude of the balanced gain and
loss. Thus the dielectric function ε is PT symmetric, i.e., it
satisfies ε(z) = ε(−z), where ε is the complex conjugate of ε.
Notice that if σ = 0, the waveguide is a lossless symmetric
slab waveguide.

Assuming the field is invariant in x, the electric field of
a transverse electric (TE) eigenmode only has a nonzero x
component Ex given by

Ex = Re[u(z)ei(βy−ωt )], (1)

where u(z) is the mode profile, β is the propagation constant,
and ω is the angular frequency. The mode profile u satisfies
the following one-dimensional (1D) Helmholtz equation,

d2u

dz2
+ k2

0ε(z)u = β2u, −∞ < z < ∞, (2)

where k0 = ω/c is the free-space wave number and c is the
speed of the light in vacuum. Since εR and σ are constants, it

can be shown that k0 and β satisfy the dispersion equation

H(k0, β ) = 0, (3)

where H = H1(k0, β ) + H2(k0, β ),

H1 = κ (γ cos κ − iκ sin κ )(γ sin κ + iκ cos κ ),

H2 = κ (γ sin κ + iκ cos κ )(γ cos κ − iκ sin κ ),

γ = d
√

k2
0 − β2, and κ = d

√
k2

0εG − β2. In this paper, we
consider eigenmodes with real or complex β and k0.

Guided modes satisfy u → 0 as z → ±∞. A real guided
mode (RGM) has a real k0 and a real β. If u(z) is the profile
of an RGM, then u(−z) is also a mode profile for the same
RGM. Therefore, we can build a new profile û(z) := u(z) +
u(−z) which is PT symmetric, i.e., û(z) = û(−z). If the mode
is nondegenerate, there exists a constant C such that û = Cu.
RGMs can form curves in the β-k0 plane, and these dispersion
curves are connected to the lightlines, k0 = ±β, at the cutoff
points with a cutoff wave number kc.

In PT -symmetric waveguides, a guided mode can also
have a complex β and a real k0. Its amplitude decreases or
increases along the forward propagation direction. We call
such a mode a complex-propagation-constant guided mode
(CPGM). In this case, the PT symmetry of the system is
broken. The mode profile u of a CPGM also cannot be scaled
to satisfy PT symmetry. It can be shown that u(−z) is the
mode profile of a CPGM with the propagation constant β

and the same k0. As shown in Ref. [38], there also exist
guided modes with a complex k0 and a real β. We call such a
mode a complex-frequency guided mode (CFGM). A CFGM
with Im(k0) < 0 decays exponentially with time t . The mode
profile u cannot be scaled to satisfy PT symmetry and u(−z)
is the mode profile of a CFGM with the wave number k0 and
the same β.

Guided modes are proper modes which decay to zero in
the lateral direction. In PT -symmetric slab waveguides, there
also exist improper modes which do not decay to zero later-
ally. A real improper mode (RIM) has a real k0 and a real
β, and diverges in the lateral direction. RIMs exist below
the lightline and form curves connected to the lightlines at
the cutoff points. A leaky mode has a real k0 and a complex
β, decays in the forward propagation direction, and diverges
in the lateral direction. It is an improper mode satisfying an
outgoing radiation condition, i.e., it radiates out power in the
lateral direction to infinity (z → ±∞). For a leaky mode with
a profile u(z), we can obtain another eigenmode with the same
k0, the propagation constant β, and the profile u(−z). Such
a mode also diverges in the lateral direction but satisfies an
incoming-wave condition, i.e., it absorbs power laterally from
infinity. Its amplitude increases along the forward propagation
direction since the power coming from infinity concentrates
on the slab. This mode can be interpreted as the time reversal
of a leaky mode.

A resonant mode has a real β and a complex k0 with
Im(k0) < 0. It decays exponentially with time t , diverges in
the lateral direction, and satisfies an outgoing radiation condi-
tion. For a resonant mode with a profile u(z), we can obtain
its time reversal which has the same β, the free-space wave
number k0 and the profile u(−z). The time-reversed resonant
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FIG. 2. The dispersion curves of RGMs (blue) and RIMs (magenta) of a PT -symmetric slab waveguide for an increasing sequence of σ .
The dashed black lines represent the lightline. The dots and triangles represent second-order and third-order EPs, respectively. The red asterisk
represents the cutoff point with kch ≈ 2.3392, where the second dispersion curve of RGMs is not tangential to the lightline. At σ = σ2, the
dispersion curve of RGMs degenerates to a single point marked by a blue hexagram on the lightline.

mode satisfies an incoming-wave condition and also diverges
in the lateral direction.

Leaky and resonant modes have been widely studied in
open dielectric waveguides. In PT -symmetric waveguides,
there exist some special improper modes that do not exist in
lossless waveguides. A lasing-threshold mode has a real β and
a real k0 satisfying k0 > |β|. It satisfies an outgoing radiation
condition [44] and remains bounded in the infinity. The mode
profile u cannot be scaled to satisfy PT symmetry and u(−z)
is the mode profile of another eigenmode with the same k0 and
the same β. Such a mode is called a perfect-absorption mode
and satisfies an incoming-wave condition [44].

III. DEPENDENCE ON σ FOR THE DISPERSION CURVES
OF REAL IMPROPER MODES

In a recent work [38], we analyzed the dependence of
dispersion curves of RGMs on σ . It was shown that there
exist a finite number of dispersion curves for any positive
σ . Each dispersion curve is connected to the lightline at two
cutoff points. The lth dispersion curve of RGMs can only exist
for σ < σl , and when σ = σl , it degenerates to a single point

on the lightline. Moreover, the dispersion curve exhibits two
interesting transition points σl,1 and σl,2 satisfying 0 < σl,1 <

σl,2 < σl .
It is also useful to study the dispersion curves of RIMs

since they are connected with leaky and resonant modes
[45,46]. Without loss of generality, we consider a PT -
symmetric slab waveguide with εR = 12.25 and study the sec-
ond dispersion curves for RGMs and RIMs. The case for l �= 2
is similar. In Fig. 2, we show the dispersion curves for σ = 0,
4, σ2,0, 5.5, σ2,1, 6.2, σ2,2, 6.3, σ2, where σ2,1 ≈ 6.0803,
σ2,2 ≈ 6.2517, σ2 ≈ 6.3952, and σ2,0 ≈ 5.0803 is a transition
point for the dispersion curve of RIMs. As σ → 0, the second
dispersion curves approach the second even and odd disper-
sion curves of RGMs and RIMs of a lossless symmetric slab
waveguide, as shown in Fig. 2(a). It is observed that for a
positive σ < σ2, the dispersion curves of RIMs and RGMs are
connected at two cutoff points on the lightline. The dispersion
curves contain local extremum points which are marked by
dots and associated integers. When σ passes through a transi-
tion point, the extremum points may disappear or emerge.

In fact, these local extremum points on the dispersion
curves are EPs. For a non-Hermitian eigenvalue problem with
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FIG. 3. The free-space wave number k0 and the propagation
constant β of EPs vs σ . The magenta upward and blue downward
triangles correspond to σ2,0 and σ2,2, respectively. The red asterisk
corresponds to σ2,1. As σ is increased to σ2,1, EPs 3 and 7 coalesce
at the cutoff point with kch ≈ 2.3392.

some parameters, an EP of order N is the critical values of the
parameters, such that when the parameters tend to the critical
values, N eigenvalues and their corresponding eigenfunctions
merge to a single eigenvalue and a single eigenfunction,
respectively. For a fixed σ , Eq. (2) can be regarded as an eigen-
value problem with a parameter β or k0. The eigenfunction
is the mode profile u(z). If β is regarded as the parameter,
then k2

0 or k0 is the eigenvalue. As β approaches a local
extremum (dβ/dk0 = 0), two or more different eigenvalues
k0 and their corresponding eigenfunctions merge to a single
eigenvalue and a single eigenfunction, respectively. We call a
local extremum point in β a β-EP. It can be solved from

H(k0, β ) = 0,
∂H
∂k0

= 0. (4)

Similarly, if k0 is regarded as the parameter, then β2 or β

is the eigenvalue. We call a local extremum point in
k0 (dk0/dβ = 0) a k0-EP, and it can be solved from

H(k0, β ) = 0,
∂H
∂β

= 0. (5)

Figure 2 illustrates the evolution of the second disper-
sion curves as σ is increased from zero to σ2. Following
the three transition points, we divide the interval (0, σ2) into
four subintervals, i.e., (0, σ2,0), (σ2,0, σ2,1), (σ2,1, σ2,2), and
(σ2,2, σ2). The behavior of the dispersion curves is similar
in each subinterval and changes when σ passes through a
transition point. As shown in Fig. 2(b), for σ = 4 < σ2,0, there
are two and six EPs located on the dispersion curves of RGMs
and RIMs, respectively. For convenience, we show the values
of k0 and β of these EPs for varying σ in Fig. 3. It can be
seen that EPs 5–8 tend to infinity as σ → 0. This is because
the dispersion curves of RGMs and RIMs extend to infinity

as σ → 0. As σ is increased to σ2,0, EPs 4 and 5 merge to a
point marked by a magenta upward triangle in Figs. 2(c) and
3. The magenta triangle corresponds to a third-order EP where
d2k0/dβ2 = dk0/dβ = 0. For σ = 5.5 > σ2,0, as shown in
Fig. 2(d), these two EPs disappear.

As σ is increased to σ2,1, from Figs. 2(e) and 3, it is
observed that EPs 3 and 7 approach to a point (marked by
a red asterisk) on the lightline. The transition point σ2,1 has
been studied in Ref. [38]. It corresponds to the case where
the second dispersion curve of RGMs is not tangential to the
lightline at one cutoff point. The point where EPs 3 and 7
coalesce is exactly the cutoff point with kch ≈ 2.3392. From
Fig. 2(e), we observe that the dispersion curve of RIMs is
also not tangential to the lightline at this cutoff point. For
σ = 6.2 > σ2,1, as shown in Figs. 2(f) and 3, EPs 3 and 7
disappear but two new EPs, 9 and 10, emerge.

As σ is further increased to σ2,2, from Figs. 2(g) and 3, we
can see that EPs 8 and 9 merge at a point marked by a blue
downward triangle. The blue triangle corresponds to a third-
order EP where d2β/dk2

0 = dβ/dk0 = 0. This phenomenon
has been observed and discussed in our previous work [38].
For σ > σ2,2, it can be seen that EPs 8 and 9 disappear and
there are only four EPs remaining in Figs. 2(h) and 3. These
four EPs can survive until σ = σ2. We show the dispersion
curves for σ = σ2 in Fig. 2(i). The dispersion curve of RGMs
degenerates to a point (marked by a blue hexagram) on the
lightline. For σ > σ2, the dispersion curve of RIMs detach
from the lightline.

As shown in Fig. 3, exceptional lines formed by EPs can
show different asymptotic behavior near third-order EPs, i.e.,
a cusp singularity or a smooth parabola [47,48]. The asymp-
totic behavior should depend on the properties of the EPs. For
example, EPs 4 and 5 are k0-EPs and they merge at a cusp
singularity in the σ -k0 plane but a smooth parabola in the
σ -β plane. The case for the coalescence of EPs 8 and 9 is
the opposite.

IV. THE CONNECTION BETWEEN THE DISPERSION
CURVES OF DIFFERENT EIGENMODES

For a lossless slab waveguide, it is known that the disper-
sion curves of leaky and resonant modes are connected to
the dispersion curves of RIMs at k0-EPs and β-EPs, respec-
tively [46]. In this section, we study the connection between
dispersion curves of different eigenmodes in PT -symmetric
slab waveguides. We consider complex dispersion curves con-
nected to the second dispersion curves of RGMs and RIMs.
The case for l �= 2 is similar. The dispersion curves of various
eigenmodes for σ = 4 are shown in Fig. 4. It can be seen
that there are eight EPs (numbered 1 to 8) on the dispersion
curves of RGMs and RIMs. The leaky and resonant modes
are connected with the RIMs at EPs 2, 4, 5 (k0-EP) and EPs
1, 3, 6 (β-EP), respectively. The CPGMs and CFGMs are
connected with the RGMs at EP 7 (k0-EP) and EP 8 (β-EP),
respectively. In particular, in Fig. 5, we show Im(β ) vs k0 for
eigenmodes near EPs 5 and 7, and Im(k0) vs β for eigenmodes
near EPs 6 and 8. The cases for eigenmodes near EPs 1–4
are similar. In addition, for the resonant modes near EP 6,
as shown in Figs. 4 and 5(b), there also exists a complex
dispersion curve corresponding to the time-reversed resonant
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FIG. 4. The dispersion curves for σ = 4. The dashed black line
is the lightline. Orange, gray, cyan, and black solid lines represent
CFGMs, CPGMs, leaky modes (LM), and resonant modes (RM),
respectively.

modes with Im(k0) > 0. The case for the leaky modes near EP
5 is similar.

Figures 4 and 5 are results for a single σ (σ = 4). It is
generally true that for all σ < σl , the complex dispersion
curves of improper modes are connected to the dispersion
curves of RIMs, and the dispersion curves of CPGMs and
CFGMs are connected with the dispersion curves of RGMs
at k0-EPs and β-EPs, respectively. As we have discussed in

FIG. 5. The dispersion curves near EPs for σ = 4. (a) EP 5,
(b) EP 6, (c) EP 7, and (d) EP 8.

FIG. 6. The dispersion curves for various values of σ . (a) and
(b) σ = 5; (c) and (d) σ = σ2,0; (e) and (f) σ = 5.09.

Sec. III, an EP may disappear or emerge when σ passes
through a transition point. In the following, we analyze the
connection between the dispersion curves for σ around the
transition points. First, we consider the transition point σ2,0

where EP 4 and EP 5 coalesce to a third-order EP on the
dispersion curve of RIMs. We show the dispersion curves of
RIMs, leaky modes, and their time reversal for σ = 5, σ2,0,
and 5.09 in Fig. 6. For σ = 5 < σ2,0, it can be seen that the
complex dispersion curves emerging from EP 4 and EP 5
are separated from each other. For σ = σ2,0, these dispersion
curves pass through the third-order EP. For σ = 5.09 > σ2,0,
as shown in Fig. 6(f), the complex dispersion curves detach
from the RIMs since the two EPs have disappeared.

Next, we consider the transition point σ2,1 where the
dispersion curve of RGMs and RIMs are not tangential to
the lightline at a cutoff point (originated from EP 3 and
EP 7). In Fig. 7, we show the dispersion curves of RGMs,
RIMs, and various complex eigenmodes connected to EPs
9 and 10, and the cutoff point (marked by a red asterisk),
for σ = σ2,1 and 6.2. From Fig. 7(a), we can see that two
dispersion curves (for resonant modes and CPGMs, respec-
tively) emerge from the cutoff point on the lightline. For
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FIG. 7. The dispersion curves for σ = σ2,1 [(a)] and σ = 6.2
[(b)]. The green square and gray blue cross represent a pair of lasing-
threshold and perfect-absorption modes.

σ = 6.2 > σ2,1, as shown in Fig. 7(b), the behavior of the
dispersion curves is quite different. Two new EPs, (9 and
10), emerged on the dispersion curves of RGMs and RIMs,
respectively. Connected to EPs 9 and 10, there are two dis-
persion curves for CFGMs and leaky modes, respectively. As
shown in Figs. 7(b) and 8(a), when β is further decreased,
CFGMs are transformed to resonant modes and their time
reversal. The transition occurs at β = β∗ ≈ 2.1516/h and
k0 = k0,∗ ≈ 2.3254/h (both β∗ and k0,∗ are real), and the
corresponding eigenmodes are a lasing-threshold mode and
a perfect-absorption mode. As shown in Figs. 7(b) and 8(b),
when k0 is further increased, leaky modes and their time re-
versal are transformed to CPGMs at the same transition point
(β∗ and k0,∗).

In fact, the lasing-threshold and perfect-absorption modes
emerge from the cutoff point on the lightline for σ > σ2,1.
In Fig. 9, we show the dependence of EPs (3, 7, 9, and
10), the lasing-threshold mode, and the perfect-absorption
mode on σ . We emphasize that the lasing-threshold and
perfect-absorption modes are obtained at the connection point
between the proper and improper modes, and their fields are
bounded at infinity.

Finally, we consider the transition point σ2,2 where EPs 8
and 9 coalesce to a third-order EP on the dispersion curve
of RGMs. We show the dispersion curves of RGMs, RIMs,
and CFGMs for σ = σ2,2 and 6.3 in Fig. 10. For σ = σ2,2,
as shown in Figs. 10(a) and 10(c), the dispersion curves of
CFGMs pass through the third-order EP. For σ = 6.3 > σ2,2,

FIG. 8. The dispersion curves emerging from EP 9 and EP 10 for
σ = 6.2.

FIG. 9. The free-space wave number k0 and the propagation
constant β of EPs for varying σ . A pair of lasing-threshold (gray
blue cross) and perfect-absorption modes (green square) emerge for
σ > σ2,1.

as shown in Figs. 10(b) and 10(d), the dispersion curves
of CFGMs detach from the RGMs since the two EPs have
disappeared.

FIG. 10. The dispersion curves for σ = σ2,2 [(a) and (c)], and
σ = 6.3 [(b) and (d)].
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V. SUMMARY

In this paper, we analyzed various eigenmodes in a
PT -symmetric slab waveguide. Most existing works on
PT -symmetric waveguides are concerned with various
guided modes. We studied the dispersion curves of various
eigenmodes and focus on the connection between the real
and complex dispersion curves. It is shown that the complex
dispersion curves of improper modes are connected with the
dispersion curves of RIMs at EPs. The dispersion curves of
CPGMs and CFGMs are connected with the dispersion curves
of RGMs at the k0-EPs and the β-EPs, respectively. As σ is
varied, there exist transition points on the dispersion curves
of RGMs and RIMs. One transition point corresponds to the
case where the dispersion curves of RGMs and RIMs are not
tangential to the lightline at one cutoff point. Moreover, it

was shown that this cutoff point is also the limiting point of
lasing-threshold and perfect-absorption modes. Our study re-
veals the complexity of various eigenmodes with complex
ω or β, and the existence of lasing-threshold and perfect-
absorption modes. Although the structure considered in this
paper is a simple PT -symmetric slab waveguide, we believe
that the wave phenomena revealed in this paper can be found
in other PT -symmetric waveguides.
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