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Optimal optomechanical cavity setups with highly reflecting membranes
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Highly reflecting mechanically compliant membranes based on photonic-crystal patterns have recently gained
increasing attention within cavity optomechanics due to their prospects of reaching high coupling rates in
membrane-in-the-middle experiments. Here, we present an analysis and comparison of four different setups in
which highly reflecting membranes can be employed for cavity optomechanics and discuss optimal choices with
respect to the figures of merit: cooperativity and efficiency-weighted cooperativity. The analysis encompasses
three different types of membrane-in-the-middle setups (membrane at the edge, membrane in the actual middle,
and membrane at the back), as well as the simple Fabry-Pérot cavity. Interestingly, we identify and propose the
membrane-at-the-back setup as an optimal choice in the limit of negligible membrane parasitic loss, which can
reach enormous enhancements of optomechanical cooperativity and, if implemented with a low-loss membrane,
would pave the way to nonlinear optomechanics in the quantum regime.
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I. INTRODUCTION

An optical cavity with a mechanically compliant mem-
brane placed inside it is a widely used optomechanical setup.
Its typical realization is the so-called membrane-in-the-middle
(MIM) cavity, which consists of a Fabry-Pérot optical cavity
in which the membrane is placed close to the middle [1–9].
In terms of Fig. 1, for such a configuration, the distance x
is set close to l/2. Recently, it was identified [10] that, if
the membrane is highly reflecting and properly positioned
close to the input mirror, the optomechanical coupling con-
stant of the system can be appreciably increased compared to
the MIM configuration. This configuration was called “mem-
brane at the edge”(MATE). Reference [10] showed that, for
MATE, a regime exists where the optomechanical coupling
constant increases inversely proportionally to the membrane
transmission. Since, currently, mechanical membranes with
an extremely low transmission are available [11–13], efficient
use of highly reflecting membranes in optomechanical cavity
setups is an issue of appreciable interest.

In this paper, we theoretically address the configuration
in which a highly reflecting membrane is positioned close
to the backstop mirror, which we call “membrane at the
back” (MAK). We compare the optimized optomechanical
performance of the three aforementioned configurations using
the optomechanical cooperativity and the efficiency-weighted
cooperativity as figures of merit. Only the dispersive optome-
chanical coupling, which typically dominates the systems, is
taken into account.

In contrast to previous theoretical considerations of an
optical cavity with a membrane inside [1,2,10], we take
into consideration the parasitic scattering from the membrane

*alexander.tagantsev@epfl.ch

while neglecting the parasitic scattering from the coupling
mirror, which we assume is much weaker than that from
the membrane. We demonstrate that, in the case of a highly
reflecting membrane, even a small amount of parasitic scat-
tering from the membrane may have an essential impact on
the cooperativity of the system.

In the case of a highly reflecting membrane, the spectrum
of the cavity is close to the superposition of those of the two
subcavities, being strongly affected near the crossing points
of these spectra by the effect of avoided crossing. At the
avoided-crossing points, the dispersive optomechanical cou-
pling vanishes. Evidently, halfway between these points, the
suppressing effect of the avoided crossing on the dispersive
coupling is minimal. As we are interested in the best perfor-
mance of the system, this paper will focus on these “halfway”
points.

We will show that, for highly reflecting membranes, in
terms of the cooperativity, MAK is always appreciably more
advantageous than MIM, while, depending on the parameters
of the system, MAK either is appreciably more advantageous
than MATE or the performance of MATE is very close to that
of MAK.

We will also compare the MAK scheme with a simple
Fabry-Pérot (FP) cavity, with the highly reflecting membrane
playing the role of the coupling mirror. We will show that,
depending on the parameters of the systems, MAK can be
more or less advantageous than a FP cavity whose length is
equal to the membrane-mirror separation in MAK.

II. SYSTEM MODEL

To be specific, we set the following scattering matrices:(
it −r
−r it

)
(1)
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for the input mirror, (
0 −1

−1 0

)
(2)

for the backstop mirror, and(
tmeiϕt rmeiϕr

rmeiϕr tmeiϕt

)
(3)

for the membrane. In matrices (1), (2), and (3), the ampli-
tude transmission coefficients are on the diagonals. Here, all
parameters, including phases ϕt and ϕr , are set as real and
positive, while

t2 + r2 = 1, e2i(ϕr−ϕt ) = −1. (4)

The finesse of the cavity is assumed to be high:

t � 1. (5)

Although the treatment of cavities with a membrane inside is
typically done by neglecting parasitic scatting of the mem-
brane, i.e., assuming t2

m + r2
m = 1, we incorporate it in our

consideration since, as will be seen below, such scattering
may strongly affect the behavior of the system addressed.
Specifically, we set

t2
m + r2

m = 1 − t2
s , (6)

where t2
s is the power-scattering coefficient associated with

the aforementioned scattering.
Throughout the paper we restrict ourselves to the case of a

highly reflecting membrane, i.e.,

t2
m � 1. (7)

As seen from Eqs. (2) and (4), we neglect the parasitic scat-
tering against the coupling mirror and the finite transmission
of the backstop mirror. This is justified under the reasonable
assumptions that the above scattering is much weaker than
the coupling mirror transmission and the power transmission
of the backstop is much smaller than t2

s .

III. BASIC FEATURES OF AN OPTICAL CAVITY WITH A
HIGHLY REFLECTING MEMBRANE INSIDE

In this section, we address some basic features of an optical
cavity with a highly reflecting membrane inside. We do this
while neglecting the dissipation effects in the system.

Let us start from the case of a perfectly reflecting mem-
brane (tm = 0). In this case, the resonance spectrum of the
system for any position of the membrane is just the sum of
the spectra of its right and left subcavities, as shown in Fig. 2.
The resonance frequencies of the modes of the left part ωL

decrease with increasing x, while those of the modes of the
right part ωR increase. Hereafter, we denote these modes as
ωL modes and ωR modes, respectively. For small, but finite,
tm, the spectrum shown in Fig. 2 provides a good approxi-
mation for the spectrum except in the vicinity of the crossing
points where an avoided crossing takes place, resulting in the
formation of a small gap. Away from avoided crossing points,
we can still retain unambiguous nomenclature, ωL modes and
ωR modes, to classify the modes. The modification of the
spectrum caused by the variation of tm is illustrated in Fig. 3.

FIG. 1. A one-sided cavity with a mechanical semitransparent
membrane set inside it. The dashed line represents the membrane,
the thin solid line represents the semitransparent input mirror, the
thick solid line represents the perfectly reflecting back-stop mirror,
the thick arrows represent the pump light, and the dashed arrow
represents the detected light. The waves inside the cavity are shown
with arrows which are marked with their complex amplitudes.

Here, the effect of avoided crossings at the crossing points
is seen. Three crossing points are marked with circles. An
important feature of the avoided crossing is that this effect
becomes stronger when the membrane approaches the mirrors
of the cavity. The strength of this effect can be quantified by
the frequency gap δω, which appears at the crossing point.
Using the well-known equation

cos(kl + ϕr ) = −rm cos(2kx − kl ) (8)

for the resonant wave vector k of an optical cavity with a
semitransparent mirror inside (see, e.g., [10]), which neglects
the energy decay in the cavity, in the limit tm � 1, one finds
(see Appendix A)

δω ∝ ctm√
x0(l − x0)

, (9)

FIG. 2. The spectrum of an optical cavity with a perfectly re-
flecting membrane inside (rm = 1) as a function of the membrane
position. The phase shift at reflection from the membrane is set as
ϕr = π . ωFSR = πc/l is the free spectral range of the empty cavity,
where l is the cavity length and c is the speed of light. For a selected
ωL mode, the places where it crosses a number of ωR modes are
marked with the circles. The r points, where the selected ωL mode is
on resonance while the ωR modes are on antiresonance, are marked
with the squares.
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FIG. 3. Part of the spectrum of an optical cavity with a semitrans-
parent membrane inside for high-order cavity resonances (N � 1 is
an integer) plotted for different values of the amplitude transmission
coefficients tm: (1) 0, (2) 0.1, (3) 0.48, (4) 0.8, (5) 0.95, and (6) 1.
ωFSR is the free spectral range of the empty cavity. The phase shift at
reflection from the membrane is set as ϕr = π . Three crossing points
are marked with circles. Four r points are marked with squares. This
figure is based on the results from Ref. [4].

where x0 is the distance from a crossing point to the left mirror
of the cavity and c is the speed of light. Equation (9) justifies
the above statement.

The solution to Eq. (8) also yields [see Eqs. (A2)]

ω0 = ωFSR

(
N − ϕr

π

)
(10)

for the frequency of the crossing points ω0, where ωFSR =
πc/l is the free spectral range of the empty cavity, l is the
cavity length, and N is an integer.

Another remarkable feature of the system, which is seen in
Fig. 3, is that the positions of the points where the dispersion
curves of the decoupled modes (the straight lines) cross the
dispersion curves of the system (at finite membrane transmis-
sion tm) are not sensitive to the value of tm (see Appendix B).
In Fig. 3, four such points are marked with squares. With the
variation of tm, the ω(x) curves “locally rotate” about such
points. We call these points “r points.”

The solution to Eq. (8) yields [see Eqs. (B1), (B2), and
(B3)]

ωr = ωFSR

(
1

2
+ N − ϕr

π

)
(11)

for the frequency of the r points.
Figure 2 illustrates the relative position of the points of

avoided crossing and r points on an ωL branch of the spectrum.
It is seen that, in frequency, these are separated by ωFSR/2,
which follows from Eqs. (10) and (11). In other words, each r
point lies in the middle of two neighboring points of avoided
crossing. The avoided crossing obviously results in a reduc-
tion in the slopes of the ω(x) curves and, as a result, in a
reduction of the optomechanical coupling. It is clear that the
middle position of the r points between neighboring points of
avoided crossing makes the r points favorable in terms of such
coupling.

For this reason, in the discussion below, we will focus on
these points. This discussion will be based on the following

properties of the system at the r points. The derivation of these
properties is given in Appendix B. Here, we just list them.

At the r points one of the subcavities is on resonance, while
the other is on antiresonance. Mathematically, in terms of the
resonance wave vectors k, this means that, for ωL modes,

e−2ik0(l−x)−iϕr = 1, e−2ik0x−iϕr = −1, (12)

while for ωL modes,

e−2ik0(l−x)−iϕr = −1, e−2ik0x−iϕr = 1. (13)

For the r points and the case of highly reflecting mem-
branes, the ratio of the field intensity in one part of the cavity
to that in the other part is fully controlled by the power (inten-
sity) transmission of the membrane Tm = t2

m. Specifically, for
the ωL mode,

|B|2
|A|2 = Tm

4
, (14)

where |A|2 and |B|2 are the intensities in the x-long and l − x-
long parts of the cavity, respectively. For ωR mode, we have

|B|2
|A|2 = 4

Tm
. (15)

As seen from Fig. 3, once the membrane is close to the
middle of the cavity, for small tm, the slope of the ω(x) curves
at the r points is hardly affected by the coupling between
the subcavities. However, as was shown above, the effect of
such coupling increases when the membrane approaches one
of the cavity mirrors. Thus, for small distances between the
membrane and the mirror, the impact of this coupling on
the aforementioned slope may become appreciable. Let us
introduce the critical membrane-mirror separation, which we
denote xint, at which this happens. We mean that at xint �
x � l the effect on the intercavity coupling of the spectrum
near the r points is negligible, while at x � xint � l , it is very
strong. These two regimes can also be viewed in terms of the
mode energy. At xint � x � l , the subcavities are virtually
decoupled such that the energy of the ωL mode, such as that
originating from the smaller left subcavity, should be mainly
stored in this subcavity. On the other hand, for x � xint � l ,
since now the intercavity coupling is very strong, the main
fraction of energy of the ωL mode should be stored in the
larger right subcavity. In view of the above we determine
xint from the condition that, at x = xint, the energy of the ωL

mode is equally distributed between the two subcavities. This
condition readily yields (see Appendix B)

xint = l
Tm

4
, (16)

where Tm = t2
m is the power (intensity) transmission of the

membrane.
Evidently, for the ωR mode, xint also represents the corre-

sponding critical separation between the membrane and the
backstop mirror.

IV. DISPERSIVE COUPLING FOR AN OPTICAL CAVITY
WITH A HIGHLY REFLECTING MEMBRANE INSIDE

In this section, we consider the dispersive optomechanical
coupling at the r points. Since we are interested in the case
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TABLE I. The absolute values of the dispersive optomechani-
cal coupling constants normalized to the MIM coupling constant
g0/(2ωcxzpf/l ) for the ωL and ωR modes at the r points for three
configurations: x � xint , |x − l/2| � l , and l − x � xint , which are
labeled MATE, MIM, and MAK, respectively. Tm is the power-
transmission coefficient of the membrane. The values for MATE for
the ωL mode and for MAK for the ωR mode given in this table are
valid to within a factor of 1/2 for the membrane-mirror separation
equal to xint .

MATE MIM MAK

ωL 2/Tm 1 1/2
ωR 1/2 1 2/Tm

of weak dissipation effects, in this section, we evaluate the
spectrum of the system while neglecting these effects.

We define the dispersive coupling constant of the system as
follows:

g0 = −dωc

dx
xzpf, (17)

where ωc is the resonance frequency of the system and xzpf is
the amplitude of zero-point fluctuations. Let us first address g0

of the ωL mode. According to Sec. III, at l − xint � x � xint,
the dispersive coupling for the decoupled ωL mode, i.e., at
tm = 0, provides a good approximation for that at finite tm,
implying

g0 = ωc

x
xzpf. (18)

Here, the 1/x increase in g0 at x → 0 results from the con-
finement of the mode energy in a decreasing volume. At x
approaching xint, this trend saturates such that one can reason-
ably suppose that at x � xint

g0 = ωc

xint
xzpf, xint = l

Tm

4
. (19)

The result given by (19) is consistent with the enhanced value
of g0, which was identified for the system in Ref. [10].

Such a heuristic result is readily supported by direct calcu-
lations. We rewrite the resonance equation (8) in the following
equivalent form (see Appendix D):

(rm + e−2ik(l−x)−iϕr )(rm + e−2ikx−iϕr ) + 1 − r2
m = 0, (20)

and we calculate dk
dx at k satisfying Eq. (12). Next, us-

ing (17) and taking into account that Tm � 1, we find (see
Appendix D)

g0 = ωc

x + xint
xzpf, (21)

justifying (19).
The above heuristic argument holds for the ωR mode,

while the direct calculation involving (20) and (13) yields (see
Appendix D)

g0 = − ωc

l − x + xint
xzpf. (22)

Next, based on Eqs. (21) and (22), in Table I, we sum-
marize the values of |g0| for three regimes, where x � xint,
|x − l/2| � l , and l − x � xint, which we label MATE, MIM,

and MAK, for the membrane-at-the-edge, membrane-in-the-
middle, and membrane-at-the-back systems, respectively. In
Table I, the values of |g0| given for MATE for the ωL mode
and for MAK for the ωR mode are the same, being the upper
limit for |g0| in this system. The values for MATE for the ωL

mode and for MAK for the ωR mode given in Table I are valid
to within a factor of 1/2 for the membrane-mirror separation
equal to xint. Table I suggests that, with respect to dispersive
coupling, MATE and MAK yield a performance which, for
highly reflecting membranes, is substantially superior to that
of MIM.

V. CAVITY LINEWIDTH AND COOPERATIVITY
OF AN OPTICAL CAVITY WITH A HIGHLY

REFLECTING MEMBRANE INSIDE

The dispersive coupling constant g0 evaluated above does
not represent, in general, a reliable optomechanical figure of
merit. An appropriate figure of merit for mechanical sens-
ing [14] and optomechanical squeezing [15] is the so-called
single-photon cooperativity, which reads

C = 4g2
0

κγm
, (23)

where κ is the optical decay rate and γm is the mechanical
decay rate. C is a fully appropriate parameter in the case where
the linewidth of the system is controlled only by the energy
leakage though the coupling mirror. However, once the para-
sitic scattering against the membrane is involved, after stating
that the linewidth can be decomposed into contributions from
external coupling and parasitic loss,

κ = κext + κs, (24)

we can define the efficiency-weighted cooperativity

Cη = ηC = 4g2
0κext

(κext + κs)2γm
, (25)

where we introduced the coupling efficiency η as

η = κext

κ
. (26)

We can readily check that, for optical sensing of the mechani-
cal subsystem, it is the efficiency-weighted cooperativity that
plays the role of the figure of merit.

A. Simple estimates and qualitative arguments

Prior to a more detailed analysis, we compare the coopera-
tivity performance of MATE, MIM, and MAK in the standard
framework [1,10] with the parasitic scattering of the mem-
brane neglected; i.e., we set ts = 0 [see Eq. (6)]. We do this for
the r points and for the regime where MATE and MIM yield
the maximum g0, i.e., for the membrane separations from the
adjacent mirror, which are much smaller than xint = l Tm

4 .
The optical decay rates of MATE, MIM, and MAK can

readily be found from the field distributions in these systems
shown in Fig. 4 and the standard definition (see, e.g., [10]) of
the decay rate:

κ = dissipated power

stored energy
= ct2W (0)

2lW̄
, (27)
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FIG. 4. The distribution of the field intensity in the MATE, MIM, and MAK configurations at r points for the ωL and ωR modes. W̄ denotes
the field intensity averaged over the cavity. For MATE and MAK, the regime where the membrane separation from the adjacent mirror is much
smaller than xint = l Tm

4 is considered. This figure is not to scale.

where W (0) and W̄ are the optical field intensity at the input
mirror and the optical field intensity averaged over the cav-
ity. Since the case of weak dissipative effects is addressed,
Eqs. (14) and (15), which were obtained while neglecting the
dissipation, can be used for the evaluation of W (0) and W̄ .
Figure 4 schematically illustrates the relations between the
field intensities given by Eqs. (14) and (15). For MIM, using
(14) and (15), we can write

W (0) ≈ 2W̄ for ωL,

W (0) ≈ Tm

2
W̄ for ωR. (28)

As for MATE and MAK, taking into account that, in
the addressed regime where the membrane separation from
the adjacent mirror is much smaller than xint, the energy of the
mode is mainly stored in the larger subcavities, we find that
for MATE

W (0) ≈ 4

Tm
W̄ for ωL,

W (0) ≈ Tm

4
W̄ for ωR, (29)

while, in MAK, for both modes

W (0) ≈ W̄ . (30)

Next, using the above results, those from Table I, and Eqs. (27)
and (23), we arrive at the results for the cavity linewidth
and cooperativity C, which are summarized in Tables II and
III. From Table III we conclude that for an ideal membrane,
i.e., a membrane exhibiting no parasitic scattering, with re-
spect to the cooperativity, despite higher g0 MATE is not
advantageous compared to MIM, while MAK is strongly
advantageous (by at least 2/Tm times) compared to other
systems.

Another conclusion can be drawn from scrutinizing Fig. 4.
It is seen that, for the ωR mode in MIM and MAK, which,

according to Table III, are the two most advantageous cases,
the reflecting membrane is in contact with a field which is
much larger than that at the coupling mirror. This suggests
that even very small parasitic scattering may be detrimental
for the linewidth and cooperativity for these systems. In the
next section, we will address this matter in detail.

B. Linewidth and cooperativity in the presence
of parasitic scattering

In order to calculate the linewidth of the system, one can
generalize Eq. (8), which is written for the real resonance
wave vector, to the following resonance equation for the com-
plex wave vector k (see Appendix D):

(rm + e−2ik(l−x)−iϕr )(rm + r−1e−2ikx−iϕr ) + 1 − r2
m = Ts,

(31)

where Ts = t2
s is the power-scattering coefficient associated

with the parasitic scattering [see Eq. (6)]. Next, one finds the
linewidth κ as follows:

κ = −2cIm[k]. (32)

TABLE II. The normalized cavity linewidth κ/κ0, where κ0 =
cT/l , for the ωL and ωR modes at three configurations: x � xint ,
|x − l/2| � l , and l − x � xint , which are labeled MATE, MIM, and
MAK, respectively. T and Tm are the power-transmission coefficients
of the coupling mirror and membrane, respectively. The values for
MATE for the ωL mode and for MAK for the ωR mode given in this
table are valid to within a factor of 1/2 for the membrane-mirror
separation equal to xint . The results are valid for the r points of the
spectrum.

MATE MIM MAK

ωL 2/Tm 1 1/2
ωR Tm/8 Tm/4 1/2
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TABLE III. The normalized cooperativity C/C0,
C0 = 16(ωcxzpf )2/(T clγm ), for the ωL and ωR modes at three
configurations: x � xint , |x − l/2| � l , and l − x � xint , which
are labeled MATE, MIM, and MAK, respectively. T and Tm are
the power-transmission coefficients of the coupling mirror and
membrane, respectively. The values for MATE for the ωL mode and
for MAK for the ωR mode given in this table are valid to within a
factor of 1/2 for the membrane-mirror separation equal to xint . The
results are valid for the r points of the spectrum.

MATE MIM MAK

ωL 2/Tm 1 1/2

ωR 2/Tm 4/Tm 8/T 2
m

Being interested in the r points of the spectrum in the
regime of small damping, we are looking for a solution to
(31) written in the form k = k0 + δk, where k0 is the real
solution to Eq. (8) at these points. Since the situation of a
weak dissipation is addressed, implying |δk| � |k0|, such that
δk can be calculated by linearizing Eq. (31). In this way, using
(32) (see Appendix D) for the ωR mode, one finds

κext = c

2

T Tm/4

l − x + xint
, (33)

κs = c

2

Ts

l − x + xint
, (34)

implying the efficiency

η = T Tm/4

Ts + T Tm/4
. (35)

For the ωL mode, one finds

κext = c

2

T

x + xint
, (36)

κs = c

2

Ts

x + xint
, (37)

implying the efficiency

η = T

Ts + T
. (38)

Here, T = t2 is the power-transmission coefficient of the cou-
pling mirror.

We can easily see that the cooperativity calculated while
neglecting the parasitic scattering against the membrane
should be multiplied by the efficiency to yield the cooper-
ativity calculated while taking it into account. Thus, using
Table III and Eqs. (35) and (38), we arrive at the results listed
in Table IV.

The results presented in Table IV can be summarized as
follows. We discuss the ωR regime of MAK, the ωR regime of
MIM, and the ωL regime of MATE. The “standing” of those
regimes depends on the position of Ts with respect to T Tm/4
and T . At Ts � T Tm/4, we are back to the dissipation-free
regime, and MAK is more advantageous than other regimes
by a factor of about 1/Tm. At T Tm/4 � Ts � T , MAK is
more advantageous than MIM by a factor of about 1/Tm and
is more advantageous than MATE by a factor of about T/Ts.
Finally, at Ts � T , MAK and MATE yield practically the

TABLE IV. Cooperativity calculated taking into account the par-
asitic scattering of the membrane. The normalized cooperativity
C/C0, where C0 = 16(ωcxzpf )2/(T clγm ), for the ωL and ωR modes
at three configurations: x � xint , |x − l/2| � l , and l − x � xint ,
which are labeled MATE, MIM, and MAK, respectively. Here,
Ts = t2

s , T = t2, and Tm = t2
m, are the power-scattering coefficients

associated with the parasitic scattering and the power-transmission
coefficients of the coupling mirror and membrane, respectively.
The values for MATE for the ωL mode and for MAK for the ωR

mode given in this table are valid to within a factor of 1/2 for the
membrane-mirror separation equal to xint . The results are valid for
the r points of the spectrum.

MATE MIM MAK

ωL
2T

Tm (Ts+T )
T

Ts+T
T/2

Ts+T

ωR
T/2

Ts+T Tm/4
T

Ts+T Tm/4
2T

Tm (Ts+T Tm/4)

same cooperativity and are more advantageous than MIM by
a factor of about 1/Tm. All in all, it is seen that, once the par-
asitic scattering against the membrane is taken into account,
in terms of the cooperativity, MAK is the best, although, at
Ts � T , the performance of MATE is very close to that of
MAK.

It is instructive to give general expressions for the cooper-
ativity of the ωR and ωL modes. Using Eqs. (21), (22), (23),
(24), (33), (34), (36), and (37), we find

C = 8

cγm

(ωcxzpf)2

x + xint

1

Ts + T
(39)

for the ωL mode and

C = 8

cγm

(ωcxzpf)2

l − x + xint

1

Ts + T Tm/4
(40)

for the ωR mode. It is clear from these expressions that,
moving from the optimal regime for MATE with the ωL mode
and for MAK with the ωR mode where the mirror-membrane
separation δ is much smaller than xint to the regime with
δ = xint, the cooperativity decreases by only a factor of 2.

C. Efficiency-weighted cooperativity

Multiplying Eqs. (39) and (40) by the efficiency given by
Eqs. (35) and (38), we find

Cη = 8

cγm

(ωcxzpf)2

x + xint

T

(Ts + T )2
(41)

for the efficiency-weighted cooperativity of the ωL mode and

Cη = 8

cγm

(ωcxzpf)2

l − x + xint

T Tm/4

(Ts + T Tm/4)2
(42)

for the efficiency-weighted cooperativity of the ωR mode. We
see that both expressions can be maximized by changing T ,
Tm, or Ts to match the internal and external losses.

For the ωL mode, the maximum is reached at T = Ts,
yielding

Cη, max = 4

cγm

(ωcxzpf)2

x + xint

1

Ts
, (43)
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while for the ωR mode, the maximum condition reads

T Tm/4 = Ts, (44)

such that

Cη, max = 4

cγm

(ωcxzpf)2

l − x + xint

1

Ts
. (45)

Applying the above expression to MIM, we find

CMIM
η, max = 8

cγm

(ωcxzpf)2

l

1

Ts
. (46)

As for MAK and MATE, if we denote the separation between
the membrane and the nearest mirror as δ, Eqs. (43) and (45)
yield the same result,

CMATE, MAK
η, max = 4

cγm

(ωcxzpf)2

δ + xint

1

Ts
. (47)

Here, the following reservation is needed. For highly reflect-
ing membranes, condition (44) may not be met such that
the efficiency-weighted cooperativity of MAK may not be
optimized up to the value given by Eq. (47).

Comparing Eq. (46) with (47), since for MAK and MATE,
as agreed, δ � l , we clearly see that, with respect to the op-
timized efficiency-weighted cooperativity, MATE and MAK
are better than MIM.

VI. MAK AND MATE VERSUS A SHORT
FABRY-PÉROT CAVITY

In the discussion above, we addressed the problem of the
optimal placement of a highly reflecting membrane in a one-
sided cavity. We did that for the points of the spectrum where
g0 is less affected by the effect of the avoided crossing of the
resonance modes of the two subcavities, which we called r
points. We found that MIM is always less effective than MAK
and MATE. A remarkable feature of MAK and MATE at the
r points is that the shorter subcavity is on resonance while
the longer one is on antiresonance. Actually, MATE can be
formally viewed as a short cavity with a synthetic backstop
mirror, while MAK can be viewed as one with a synthetic
coupling mirror with the reservation that, in the regime of
interest, the energy of the modes used is not mainly stored
in the shorter subcavity. In this context, it is of interest to
compare the performance of MAK and MATE, which have
membrane-mirror separation δ, with the performance of a
one-sided FP cavity, which have length δ, using the membrane
as the coupling mirror.

We readily find the following principle parameters of FP:

gFP
0 = ωc

δ
xzpf, (48)

κFP
ext, = cTm

2δ
, κFP

s = cTs

2δ
, (49)

CFP = 8

cγm

(ωcxzpf)2

δ

1

Ts + Tm
, (50)

CFP
η = 8

cγm

(ωcxzpf)2

δ

Tm

(Ts + Tm)2
, (51)

CFP
η, max = 4

cγm

(ωcxzpf)2

δ

1

Ts
. (52)

Comparing g0, i.e., (21), (22), and (48), we find that FP is
advantageous by a factor of xint+δ

δ
. The same factor controls

the superiority of FP in the case of the optimized efficiency-
weighted cooperativity [see (47) and (52)].

For the cooperativity, we compare FP with MAK, which,
with respect to this parameter, is the best configuration with
the membrane inside the cavity. Thus, we compare (50) with
(40) rewritten as follows:

CMAK = 8

cγm

(ωcxzpf)2

δ + lTm/4

1

Ts + T Tm/4
. (53)

First, we address the regime of extremely low parasitic
scattering where Ts is smaller than or about T Tm/4. In this
regime, MAK is strongly advantageous compared to other
configurations with a highly reflecting membrane inside the
cavity. We can readily check that, for not too long cavities,
that is, for

l � 4δ

Tm
, (54)

MAK is more advantageous than FP by a factor of 4(Tm+Ts )
TmT ,

which can lead to a few-order-of-magnitude gain.
Such a regime, however, is not realistic for currently avail-

able systems with highly reflecting membranes, where Ts �
T Tm/4. At Ts � T Tm/4, (50) and (53) can be simplified to

CFP = Cs

1 + Tm
Ts

, (55)

CMAK = Cs

1 + l
δ

Tm
4

, (56)

where

Cs = 8

cγm

(ωcxzpf)2

δTs
(57)

is the cooperativity of FP in the limit where the loss is fully
dominated by the parasitic scattering. Comparing (55) with
(56), we find that, in cavities shorter than l0 = 4δ/Ts, MAK
is better than FP. However that advantage is appreciable only
if Ts � Tm. A comparison between the systems is illustrated
in Fig. 5. It is worth recalling that throughout this paper we
consider MAK at the r points such that, for MAK, Fig. 5
applies only for δ and l corresponding to the r-point condition,
i.e., when the shorter subcavity is on resonance while the
longer one is on antiresonance.

VII. OPTIMIZATION OF AN OPTOMECHANICAL SETUP

Above, when discussing the advantages and disadvantages
of various configurations containing a highly reflecting mem-
brane, we felt free to manipulate all the parameters of each
system. However, in practice, the experimenter will seek to
obtain the highest figure of merit for their application with
a given highly reflecting membrane. Let us fix the parasitic
loss Ts and the minimum membrane transmission Tm,min while
allowing the membrane transmission be widely tunable above
this value by changing the operating wavelength. The other
quantities, which are in the hands of the experimenter, are as
follows: the separation δ between the membrane and the adja-
cent mirror, the overall length of the cavity l , and the coupling

053514-7



ENZIAN, POLZIK, AND TAGANTSEV PHYSICAL REVIEW A 109, 053514 (2024)

FIG. 5. The normalized cooperativity CFP/Cs of FP (dashed
lines) and CMAK/Cs of MAK (solid lines), plotted as a function of
the normalized length of the cavity l/l0, where l0 = 4δ/Ts and Cs =
8(ωcxzpf )2/(cγmδTs ) is the cooperativity of FP in the limit where the
loss is fully dominated by the parasitic scattering. Curves numbered
1, 2, and 3 are plotted for Tm/Ts = 2, 5, and 10, respectively. The
situation of practical interest where Ts � T Tm/4 is addressed.

mirror transmission T . All schemes favor a small δ. Thus, it
should be minimized. A membrane-mirror separation down to
1.6 ± 0.8 µm was reported in [10]. Once the achievable δ has
been chosen, we can discuss optimal choices for the remaining
free parameters.

It was shown above that with respect to the cooperativ-
ity, the best configurations are MAK and FP, although with
respect to the weighted cooperativity FP is always the best.
For this reason, we address the optimization of MAK or FP
with respect to the cooperativity and FP with respect to the
weighted cooperativity.

Starting from the weighted cooperativity of FP, via
Eqs. (51) and (52), we readily find that it is maximal when
the external loss matches the internal loss, i.e., at Tm = Ts. If,
however, Tm,min > Ts, to maximize the weighted cooperativity,
one should set Tm = Tm,min.

When discussing the optimization with respect to the coop-
erativity we restrict ourselves to the realistic situation where
Ts � T Tm/4 such that Eqs. (55) and (56) and Fig. 5 can
be used. First, we see that to maximize the gain from the
use of a highly reflecting membrane one should use MAK
with a cavity shorter than l0 = 4δ/Ts. Second, following from
(56), for a fixed cavity length, a further maximization of the
cooperativity is possible through a reduction of the membrane
transparency Tm. One can also readily check that the maximal
gain of MAK over FP is Tm/Ts. Since Ts can be as small as
10−3–10−4 [11–13], such a gain can still be appreciable.

VIII. CONCLUSIONS

We presented an analysis of the problem of the optimal
position of a highly reflecting membrane in a one-sided cav-
ity. In our analysis, we addressed the coupling constant and
the figures of merit of an optomechanical device such as
the cooperativity and efficiency-weighted cooperativity. These
figures of merit are relevant in different situations; e.g., for
optomechanical cooling the cooperativity matters, while it is

the efficiency-weighted cooperativity that matters for optical
sensing of the mechanical subsystem. We found that the opti-
mal settings for these figures of merit are very different.

In contrast to previous theoretical considerations of an
optical cavity with a membrane inside [1,2,10], here, we
incorporated the parasitic scattering of the membrane while
neglecting the parasitic scattering from the coupling mirror,
which we assume is much weaker than that from the mem-
brane. We demonstrated that, in the case of a highly reflecting
membrane, even a small amount of parasitic scattering from
the membrane may have an essential impact on the coopera-
tivity of the system.

The regimes with the membrane close to the coupling mir-
ror (MATE), close to the backstop mirror (MAK), and close
to the cavity center (MIM) were compared. The comparison
was done for the points of the spectrum where g0 is less
affected by the effect of the avoided crossing of the resonance
modes of the two subcavities, which we called r points. A
remarkable feature of MAK and MATE at the r points is
that the shorter subcavity is on resonance, while the longer
one is on antiresonance, such that MATE can be viewed as a
short cavity with a synthetic backstop mirror and MAK can be
viewed as one with a synthetic coupling mirror. In this context,
we compared the optomechanical parameters of MATE and
MAK with those of a one-sided FP cavity with a membrane
used as the coupling mirror, with its length δ being equal to
the separation between the membrane and the adjacent mirror
in MAK or MATE.

We found that, with respect to the coupling constant and
the efficiency-weighted cooperativity, FP is the best of all the
systems addressed. However, in terms of the cooperativity,
the situation is different. Among MIM, MATE, and MAK,
the latter is always the best, although, in some regimes, the
performance of MATE can be very close to that of MAK.
Comparing MAK with FP, we found that each of them can be
superior, depending on the parameters of the system. First, in
the limit of very weak parasitic scattering, the regime where
Ts � T Tm/4, MAK is superior over FP by a factor of about
4(Tm+Ts )

TmT . Thus, in this regime, MAK would provide an ex-
traordinary performance. However, even a very small amount
of parasitic scattering from the membrane can essentially
suppress the performance of MAK. This happens when Ts is
comparable to or larger than T Tm/4. The situation of practi-
cal interest is Ts � T Tm/4. In this regime, FP can compete
with MAK; specifically, if the cavity length l used in MAK
exceeds l0 = 4δ/Ts, the cooperativity of FP is larger than that
of MAK. For shorter cavities, the cooperativity of MAK is
larger than that of FP. For membranes with parasitic scattering
much weaker than the transmission, i.e., for Ts/Tm � 1 and
l � 4δ/Ts, this advantage is appreciable, being about Tm/Ts.

All in all, in terms of cooperativity, for the optomechani-
cal setups using a highly reflecting membrane placed inside
an optical cavity, the MAK configuration was shown to be
advantageous compared to other configurations. However, in
this respect, in a certain regime, the performance of MATE
can be very close to that of MAK. In addition, in terms
of cooperativity, MAK can also be advantageous compared
to FP with the membrane as the coupling mirror with the
same membrane-mirror separation as MAK. In the regime of
extremely weak parasitic scattering of the membrane, MAK
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can provide very high cooperativity. Outside of this regime,
which currently is a realistic experimental situation, MAK can
be tuned to yield a cooperativity larger than that of FP. This
advantage can be essential only for a membrane exhibiting
parasitic scattering appreciably weaker than its transmission.
If one cares about the efficiency-weighted cooperativity, the
use of a highly reflecting membrane is optimal when it serves
as the coupling mirror of a FP cavity.

Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the
authors upon reasonable request.
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APPENDIX A: FREQUENCY GAP
AT THE CROSSING POINTS

In this Appendix, we evaluate the frequency gap which
appears at a crossing point of the spectrum of the subcavities
of the systems (see Fig. 1) once weak coupling between these
is allowed. A form of Eq. (8) that is proper for further analysis
reads

cos[k(l − x) + ϕr/2] cos(kx + ϕr/2) = t2
m

4
cos(2kx − kl ).

(A1)

Let x0 and k0 be the membrane position and the resonant wave
number corresponding to a crossing point, respectively. At
these points, both subcavities are on resonance, such that both
cosines in (A1) should be equal to zero:

cos[k0(l − x0) + ϕr/2] = 0, cos(k0x0 + ϕr/2) = 0. (A2)

Next, looking for the solution to Eq. (A1) in the form x = x0

and k = k0 + δk, we find, in the limit of small tm, that

δk2 ∝ t2
m

x0(l − x0)
, (A3)

implying (9).

APPENDIX B: PROPERTIES OF THE SYSTEM
AT THE R POINTS

This Appendix addresses some properties of the system at
the r points. Let us show that, with the variation of tm, the ω(x)
curves “locally rotate” about the r points. To be specific let us
consider the r points formed by the intersection of the ω(x)
curves for the ωL mode calculated at tm = 0 and tm �= 0. Since
we are on the resonance curve for the x-long part of the cavity,
the phase shift on reflection from the membrane equals ϕr .
Thus, taking into account that the round-trip phase variation
along any loop should be equal to 2π times an integer, we can

write

ei(2kx+π+ϕr ) = 1. (B1)

For the (l − x)-long part, we can write the following round-
trip phase condition:

ei[2k(l−x)+π+μ] = 1, (B2)

where μ is the phase shift at the reflection from the x-long
part. Since the (l − x)-long part is not on resonance, μ �= ϕr .
These two equations specify the positions of the correspond-
ing r points. On the other hand, we can readily check that the
phase shift on reflection from a one-sided cavity on resonance
is independent of the transmission of the input mirror (see
Appendix C). In our case,

μ = ϕr − π. (B3)

Thus, μ is independent of the membrane transmission, imply-
ing the independence of the positions of the r points.

For the ωL modes, Eqs. (B1), (B2), and (B3) can be rewrit-
ten as follows:

e−2ik(l−x)−iϕr = 1, e−2ikx−iϕr = −1. (B4)

Similar expressions can be readily shown for the ωR modes:

e−2ik(l−x)−iϕr = −1, e−2ikx−iϕr = 1. (B5)

Equations (B4) and (B5) imply that, at the r points, one
of the subcavities is on resonance, while the other is on
antiresonance.

For the r points, we also evaluate the ratio of the field
intensity in one part of the cavity to that in the other part. We
will first consider this for an ωL mode. Based on Eq. (C2), we
consider the following complex amplitude balance equation at
the membrane (see Fig. 1 for the definition of the amplitudes):

B = tmeiϕs A + rmeiϕr G . (B6)

Since, at the r points considered, the x-long part is on reso-
nance, using (B3), we can write

B = ei(ϕr−π )G. (B7)

Combining equations (B6) and (B7), in the limit tm � 1, we
find

|B|2
|A|2 = Tm

4
, (B8)

where Tm = t2
m is the power (intensity) transmission of the

membrane and |A|2 and |B|2 are the intensities in the x-long
and l − x-long parts of the cavity, respectively.

For the r points of the ωR mode, similar calculations yield

|B|2
|A|2 = 4

Tm
. (B9)

Next, we find the mirror-membrane separation, labeled xint,
at which, for the r points, the energy of a mode stored in one
subcavity is equal to that stored in the other. Evidently, xint is
given by the solution to the equation

x|A|2 = (l − x)|B|2, (B10)
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such that, for a highly reflecting membrane, using (B8) and
(B9), we find

xint = l
Tm

4
. (B11)

For the ωL modes, (B11) gives the membrane separation from
the coupling mirror, while for the ωR modes, it is the separa-
tion from the backstop mirror.

APPENDIX C: REFLECTION FROM RESONANCE CAVITY

Consider only the membrane and the backstop mirror as in
Fig. 1 when the l − x long part of the cavity is on resonance,
i.e., according to (13),

e−2ik0 (l−x)−iϕr = −1. (C1)

According to (2), (3), and (4) the complex amplitudes are
linked by the following relations:

B = −Fe−2ik(l−x),

B = tmeiϕt A + rmeiϕr G,

F = rmeiϕr A + tmeiϕt G. (C2)

Eliminating B and C between set (C2) and taking into account
(C1), we find

F

A
= −eiϕr , (C3)

implying that the phase of the signal reflected from a cavity
on resonance is independent of the modulus of the reflection
coefficient of the coupling mirror.

APPENDIX D: COUPLING CONSTANT AND DECAY RATE

Equations (1), (2), (3), and (4) lead to the following rela-
tions between the complex amplitudes (see Fig. 1):

A = −rFe2ikx,

B = −Ge−2ik(l−x),

B = tmeiϕt A + rmeiϕr G,

F = rmeiϕr A + tmeiϕt G, (D1)

which imply the following equation for the resonance wave
vector (in general, complex):

(rm + e−2ik(l−x)−iϕr )(rm + r−1e−2ikx−iϕr ) + t2
m = 0. (D2)

Since the dissipation is assumed to be weak, to find g0, we
neglect it by setting r = 1 and t2

m = 1 − r2
m to find

(rm + e−2ik(l−x)−iϕr )(rm + e−2ikx−iϕr ) + 1 − r2
m = 0, (D3)

which is equivalent to (8). The derivative dk/dx calculated on
the resonance using (D3) reads

dk

dx
= ωc

c

e−2ik(l−x)−iϕr (rm + e−2ikx−iϕr ) − e−2ikx−iϕr (rm + e−2ik(l−x)−iϕr )

(l − x)e−2ik(l−x)−iϕr (rm + e−2ikx−iϕr ) + xe−2ikx−iϕr (rm + e−2ik(l−x)−iϕr )
. (D4)

For the r points of the ωR mode where the l − x long subcavity is on resonance while the other subcavity is on antiresonance,
i.e., e−2ik0(l−x)−iϕr = −1 and e−2ik0x−iϕr = 1, we find

dk

dx
= ωc

c

rm

(l − x)rm + lt2
m/4

, (D5)

which, in the approximation t2
m � 1, readily yields (22).

For the r points of the ωL modes where e−2ik0(l−x)−iϕr = 1 and e−2ik0x−iϕr = −1, along the same lines, we obtain (21) as well.
To evaluate the cavity decay rate, we rewrite (D2) as follows:

(rm + e−2ik(l−x)−iϕr )(rm + r−1e−2ikx−iϕr ) + 1 − r2
m = Ts. (D6)

We expand (D6) about k0, which is the solution to (D3); keeping the lowest term in t2 � 1 and δk = k − k0, we find

δk = − i

2

Ts + (1 − r−1)e−2ikx−iϕr (rm + e−2ik(l−x)−iϕr )

(l − x)e−2ik(l−x)−iϕr (rm + e−2ikx−iϕr ) + xe−2ikx−iϕr (rm + e−2ik(l−x)−iϕr )
. (D7)

Now, using the above resonance-antiresonance conditions for the subcavities, for the ωR mode, we arrive at the following cavity
decay rate:

κ = −2cIm[δk] = c

2

TS + (r−1 − 1)(1 − rm)

(l − x)rm + lt2
m/4

, (D8)

which, under the conditions 1 − rm ≈ Tm/2 � 1 and 1 − r ≈ T/2 � 1, readily brings us to (33) and (34). Along the same lines,
we obtain (36) and (37).
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