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Enhanced broadband Cherenkov second-harmonic generation in nonlinear photonic
crystals with a spatial chirped pulse
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In this work, we theoretically study the role of the spatial chirped pulse in the Cherenkov second-harmonic
generation in one-dimensional nonlinear photonic crystals. We show that the spatial chirped input with narrower
spectral peaks but wider angular distribution can be used to cancel the natural dispersion of crystals, fitting the
phase-matching condition at wider emission angles. Contrary to popular belief, the phase-matching bandwidth
can remain almost unchanged with the growth of interaction length, leading to a substantial increase in the signal
strength and bandwidth under long interaction. The improvement ratio of the signal can be as high as needed, if
the beam waist and the interaction length are large enough.
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I. INTRODUCTION

As an important branch of nonlinear optics, second-
harmonic generation in nonlinear photonic crystals [1] has
attracted a lot of research interest [2–10], where phase match-
ing is a vital issue to be conquered [11]. In order to satisfy
the longitudinal phase-matching conditions, the signal wave
shall emit into an oblique direction [12], whose behavior
bears a certain similarity to the Cherenkov radiation. The
transverse phase matching can be achieved with the help of
a one-dimensional (1D) photonic crystal design [13], whose
nonlinear susceptibility index is periodically modulated. In
order to build up a strong nonlinear signal, long interaction
lengths are usually needed, as the signal power grows quadrat-
ically with the interaction distance when phase matching is
satisfied. However, a phase-matching bandwidth usually de-
creases with the growth of interaction length. The decreasing
angular distribution limits the efficient growth of the sig-
nal under long interaction length, which cannot be easily
overcome with structural design or by manipulating material
properties. To solve the problem, as the nonlinear effect is
directly related to the field distribution of incident pulse, it
is wise to control the nonlinear signal with the structured inci-
dent pulse combining with the structured media [14]. Though
spatial-temporal distortions in structured light are common
and often considered harmful, as they usually increase the
pulse duration and reduce the peak laser intensity, with ad-
vanced control degrees [15–18], the spatial-temporal coupling
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can also be extremely advantageous. Thanks to the rapid
growth of light modulation technology, it is possible to control
all the beam’s degrees of freedom and dimensions [19].

Here, through theoretical analysis and numerical simula-
tions, we show that with the input pulse of suitable angular
dispersion, second-harmonic generation in nonlinear photonic
crystals can be greatly enhanced. The physics underneath
is found that the chirped beam with different frequency
components propagating in different directions can fit the
phase-matching condition at wider incident angles, broad-
ening the phase-matching bandwidth under large interaction
length.

II. THEORETICAL ANALYSIS

We start from the nonlinear wave equation in frequency do-
main. As the nonlinear signal is normally very weak, we can
ignore its source term in the wave equation of the fundamental
pulse Ê1, thus the coupling wave equation [20] under paraxial
condition becomes

∂Ê1

∂z
+ in1(ω1)k1Ê1 + i

2n1(ω1)k1
∇2Ê1 = 0,

∂Ê2

∂z
+ in2(ω2)k2Ê2 + i

2n2(ω2)k2
∇2Ê2 = iω2

2d

n2(ω2)k2c
Ê2

1 ,

(1)

where ω is the working frequency, c is the speed of light in
free space, k = ω/c is the wave vector in free space, d is the
nonlinear susceptibility, and n(ω) is the frequency-dependent
refractive index, which can be calculated using the Sellmeier
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FIG. 1. The scenario considered. A spatial chirped pulse enters
the nonlinear photonic crystals, generating the second-harmonic sig-
nal in the Cherenkov angle. The sign of nonlinear susceptibility
varies periodically along the x direction, and the spatial chirped pulse
propagates along the z direction.

equation [21,22]. The subscripts 1 and 2 correspond to the
fundamental wave and the second harmonic, respectively.

We consider the scenario of a spatial chirped pulse passing
through the 1D photonic crystals as shown in Fig. 1. The light
beam is propagating along the z direction and the nonlinear
susceptibility d = deffg(x) is spatially modulated along the x
direction with the period �. The modulation function is

g(x) =
{

1, m� < x < m� + 0.5�,

−1, m� + 0.5� < x < m� + �,
(2)

which can be expanded with Fourier series

g(x) =
∑

m

cm exp

(
−im

2π

�
x

)
. (3)

The spatial chirped input takes the following form [23]:

Ê1(ω, x, y, z) = f (ω)
1

w0(1 − iz/z0)
exp(−ikz)

× exp

[
ikz

2(1 − iz/z0)

(
x

z
− β�ω

)2

− ik
x2

2z

]

× exp

[
− y2

w2
0 (1 − iz/z0)

]
, (4)

where �ω = ω − ω0 is the deviation from the central fre-
quency ω0, f (ω) = √

τ0 exp[−�ω2τ 2
0 c2/4] is the Gaussian

spectral profile, w0 is the beam waist and z0 = 0.5kw2
0 is the

Rayleigh length. From the standpoint of the construction of a
structured pulse, the spatial chirped pulse is the superposition
of different frequency components ω traveling in different
directions θ1 in the XZ plane, with an extra angular dispersion
β = ∂θ1/∂ω compared with a normal Gaussian pulse. Such
a spatial chirped pulse can be generated from a prism pair,
tilted substrate, or f − f Fourier-synthesis pulse shaper [24].
Considering the input pulse entering the photonic crystal at
z = 0, the fundamental field in the crystal takes the identical
form as Eq. (4) by replacing k → n1k.

In this Cherenkov second-harmonic generation process, the
signal shall emit in the oblique direction to satisfy the longitu-

dinal phase-matching condition. For the initial wave vector
n1k(sin θ1 cos ϕ1, sin θ1 sin ϕ1, cos θ1) and second-harmonic
wave vector 2n2k(sin θ2 cos ϕ2, sin θ2 sin ϕ2, cos θ2), the cor-
responding transverse (�kx,�ky) and longitudinal (�kz)
phase mismatch can be described as

�kx = 2kn2 sin θ2 cos ϕ2 − 2m
π

�
− 2kn1 sin θ1 cos ϕ1,

�ky = 2kn2 sin θ2 sin ϕ2 − 2kn1 sin θ1 sin ϕ1,

�kz = 2kn2 cos θ2 − 2kn1 cos θ1, (5)

which can be expanded in terms of a Taylor series around ω0,

�k(ω) = �k(ω0) + ∂ (�k)

∂ω

∣∣∣∣
ω0

�ω + .... (6)

For the finite interaction length L, a mismatch �kL ∼
π is allowed. In order to get a broad phase-matching
bandwidth,∂ (�k)/∂ω = 0 is required. In this way the phase-
matching bandwidth ∼�ω will be irrelevant with the inter-
action length L, so that the signal can grow efficiently even
under long interaction length. From Eq. (5), it requires that

∂ (kn2)

∂ω
− ∂ (kn1)

∂ω
[sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2]

− kn1
∂ (θ1)

∂ω
[cos θ1 sin θ2 cos(ϕ1 − ϕ2)− sin θ1 cos θ2] = 0.

(7)

It can be seen that, if using nonchirped input ∂θ1/∂ω = 0,
it is not always possible to satisfy this condition. As the range
of sine and cosine functions is [−1, 1], Eq. (7) has no solution
when ∂ (kn2)/∂ω > ∂ (kn1)/∂ω. On the contrary, when using
the chirped input, with the new freedom β = ∂θ1/∂ω �= 0 we
can always find the solution of Eq. (7).

Here, we consider phase matching is perfectly satisfied
for the first diffraction m = ±1 emitting at ±θ0 by the cen-
tral frequency ω0 with wave vector k0 propagating along
θ1 = 0, i.e.,

�kx = 2k0n2(2ω0) sin θ0 cos ϕ2 − 2π

�
= 0,

�ky = 2k0 sin θ0 sin ϕ2 = 0,

�kz = 2k0n2(2ω0) cos θ0 − 2k0n1(ω0) = 0. (8)

It can be seen that the transverse phase-matching direction
is accomplished through the reciprocal lattice vector. Since
there is no reciprocal lattice vector along the y direction, it
yields ϕ2 = 0 and the generated pattern exhibits as a pair of
spots as shown in Fig. 1. It is noted that by replacing m = 1 →
m = −1 and θ0 → −θ0, the form of Eq. (7) is not identical, so
that the spots are not symmetrical.

By factoring out the propagation coordinate from the
electric field Ê (ω) = Â(ω) exp(−inkz), Eq. (1) can be
solved with the help of Fourier transform F[Ê ](z, kx, ky) =∫ ∫

Ê (z, x, y) exp(−ikxx−ikyy)dx dy.
Under paraxial limitation the second derivative term

can be neglected, thus the second-harmonic signal Ê2

emitting at θ2 =
√

k2
x + k2

y /(n2k2), ϕ = arctan(ky/kx ) can be
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written as

Ê2(2ω, θ2, ϕ, z)

=
∑

m

(
cm

2ikd

n2
f2(ω) exp

[
−i2kn2

(
1+θ2

2

2

)
z

]
exp

{
−w2

0

[(
kn2 sin θ2 cos ϕ − kn1β�ω − m

π

�

)2
+ (kn2 sin θ2 sin ϕ)2

]/
2

}

×
∫ z

0

π

2[1 + i(z′/z0n1)]
exp{−i[2kn2 cos θ2 − 2kn1]z′}

× exp

{
−i

[(
kn2 sin θ2 cos ϕ − m

π

�

)2
+ (kn2 sin θ2 sin ϕ)2

]
z′
/

(kn1)

}
dz′

)
, (9)

Here, the spectral function f2(ω) = exp[−�ω2τ 2
0 /2] and transverse envelope take the Gaussian form. In the following, we

only consider the first diffraction m = ±1 corresponding to the signal emitting around ±θ0, as the signal in other directions
suffers destructive interference. As the spectral-dependent term kn1(ω)β�ω is involved in the spatial envelopes, we can rewrite
the two exponential functions in Eq. (9) with frequency gradient. For simplicity we set ϕ = 0, which yields

exp
{ − w2

0[kn2(2ω) sin θ2 − kn1(ω)β�ω − k0n2(2ω0) sin θ0]2/2
}

f2(ω)

= exp
{ − w2

2[kn2(2ω) sin θ2 − k0n2(2ω0) sin θ0]2/2
}

× exp
( − τ 2

2 {α[kn2(2ω) sin θ2 − k0n2(2ω0) sin θ0] − n1(ω)�ω}2/2
)
, (10)

where α = kw2
0β/τ 2

2 is the frequency gradient, w2 =√
w2

0−τ 2
2 α2 is the modified beam waist, and 1/τ2 =

1/

√
k2w2

0β
2 + τ 2

0 /n2
1 is the modified frequency bandwidth.

When using the input with large waist and small temporal
length w0 � τ0c, it leads to w2 ≈ τ0α/n1, τ2 ≈ w0/α, where
the status of waist w and temporal length τ exchanges. This
means that compared with the nonchirped case, the signal
consists of many narrow spectra 1/τ2 < 1/τ0 so that the peak
intensity is decreased, but the signal’s angular distribution
1/(kw2) > 1/(kw0) is greatly broadened. The central fre-
quency at different position θ satisfies

α[kn2(2ω) sin θ − k0n2(2ω0) sin θ0] − n1(ω)�ω = 0. (11)

III. RESULTS

We take photonic crystals made of lithium niobate [25] as
an example, which is one of the most popular materials for
nanoengineering. Its wavelength-dependent refractive indices
can be calculated using the Sellmeier equation [21,22]. We
consider the type-I phase-matching (oo-e) and set the central
wavelength of the incident beam in free space being 0.8 µm.
From Eq. (7) we get the required chirp factor β1 = 0.41 fs.
It is noticed that with these parameters, it is derived that
∂ (kn2)/∂ω > ∂ (kn1)/∂ω, so that the phase matching cannot
be obtained by only adjusting the incident angle if using the
nonchirped input.

In Fig. 2, we provide the spectrum of the signal at different
emitting angles θ , where we set ϕ = 0 for simplicity. We use
the chirped pulse in Figs. 2(c)–2(f), and the nonchirped pulse
in Figs. 2(a) and 2(b) for comparison. In the nonchirped case
the spectrum around ±θ0 is identical, while in the chirped
case the spectrum is different between θ0 [Figs. 2(c) and
2(d)] and −θ0 [Figs. 2(e) and 2(f)]. As an example, we set
w0 = 60 µm, τ0 = 25 fs, and the corresponding parameters
are w2 ≈ τ0α/n1 = 3.3 µm, τ2 ≈ w0/α = 200 fs. For an in-

finite short interaction length [Figs. 2(a), 2(c), and 2(e)], the
acceptance bandwidth is infinite and only the transverse phase
matching needs to be considered. It can be seen that the
signal’s spectra are greatly changed by the chirp parameter,
exhibiting wider angular distribution around θ0 and narrower
spectral peaks at different emitting angles (red line). In the
meantime, the total spectrum around θ0 (blue dashed line) in
both cases remains the same. However, for long interaction
length 0.02z0 [Figs. 2(b), 2(d), and 2(f)], longitudinal phase
matching is vital. In the nonchirped case the signal can only
be efficiently generated in a small range around ±θ0, and the
corresponding total spectrum bandwidth ∼1/w0 (blue dashed
line) is very narrow. On the contrary, in our proposed chirped
signal incidence scenario, phase matching can be satisfied in a
wider range around θ0, so that the pulse’s energy at the larger
divergence angle can still be made use of, leading to a large
numerical aperture and broad bandwidth. The total spectrum
∼1/w2 is almost irrelevant with z, so that around θ0 we can es-
timate the incremental rate being w0/w2 from the integrations∫ ∞

−∞
exp(−ax2)dx =

√
π/a. (12)

The signal around −θ0, however, decays even faster
than the nonchirped case owing to the wrong sign of the
chirp factor, with the spectrum bandwidth ∼1/(2w0), so
that we can estimate the total incremental rate of the two
cases being (w0 + w2)/(2w2), as the results can be found
in Fig. 3.

In Fig. 3, we depict the ratio of generated photons with a
chirped pulse to that with a nonchirped pulse, as the function
of interaction length. For an interaction length of 1mm, an
improvement ratio of 7 can be obtained. The result can be
well explained by the above analysis: Under small interaction
length, the improvement ratio grows quickly, because in the
chirped case phase matching is perfectly satisfied, while in
the nonchirped case the acceptance bandwidth quickly drops
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FIG. 2. The normalized signal spectrum for nonchirped in-
put (a),(b) and chirped input (c),(d) with β = 0.41 fs, w0 =
60 µm, and τ0 = 25 fs. The red line refers to the spectrum at
different angles (from left to right): (a) θ0 + 0.2/(k0w2), θ0; (b)
θ0, θ0 + 0.02/(k0w2); (c) θ0, θ0 + 0.2/(k0w2), θ0 + 0.4/(k0w2); (d)
θ0, θ0 + 0.2/(k0w2), θ0 + 0.4/(k0w2); (e) −θ0 − 0.8/(k0w2), −θ0 −
0.4/(k0w2), −θ0; (f) −θ0, −θ0 − 0.02/(k0w2); and the blue dashed
line refers to the total spectrum at all angles. The interaction length
is 10−7z0 in (a), (c), and (e) and is 0.02z0 in (b), (d), and (f).

to ∼1/w0. Under long interaction length, the ratio stops grow-
ing, because the allowed longitudinal phase mismatch ∼π/z
in both cases is the same, both decreasing with the growth
of the interaction length and phase matching is quasisatisfied.
Therefore, if the spectrum bandwidth at a certain angle in
Fig. 2(c) is initially narrow enough, i.e., the beam waist is

FIG. 3. The improvement ratio of the generated photon by
chirped pulse to that of the nonchirped case as the func-
tion of interaction length, with (a) β = 0.41 fsand τ0 = 25 fs and
different focus waists w0 = 60, 120, 180, and 500 µm and (b)
β = 0.41 fs, w0 = 60 µm and different temporal lengths τ0 =
25, 50, and 75 fs. For the case w0 = 500 µm the second chirped
parameter β2 = 0.28 fs2 is used.

FIG. 4. The normalized intensity of the signal generated by
chirped pulse β10 = 0.41 fs and β20 = 0.28 fs2 with different waists
w0 = 60, 120, and 180 µm, under (a) different first-order chirp pa-
rameters β1, and (b) different second-order chirp parameters β2.

large enough, even for a long interaction length the phase
matching can still be perfectly satisfied, so that the improve-
ment ratio can be as high as needed.

It is noticed that for the small waist w0 = 60 µm, the
incremental ratio is close to the predicted number (w0 +
w2)/(2w2) = 9.5, while for large w0 the ratio is deviated
from that. This is because the first-order chirp parameter β1

does not perfectly fit the crystals’ dispersion, while the larger
waist with narrower spectrum peaks strongly depends on the
precise location of the phase matching. As shown in Fig. 4(a),
for w0 = 180 µm, the signal does not reach its maximum
when β1 = β10 = 0.41 fs, which means higher-order param-
eters have to be considered. It can be seen in Fig. 4(b) that
the second-order chirped parameters strongly influence the re-
sults for large waist. When the second-order chirp β2 = β20 =
0.5∂2θ1/∂ω2 = 0.28 fs2 is considered [by replacing β�ω →
β1�ω + β2(�ω)2 in Eq. (4)], the signal can grow efficiently
in a wide range. As manifested in Fig. 3(a), at a large beam
waist w0 = 500 μm, the improvement ratio can be up to 30
for z = 1.5 mm.

Large w0 and small τ0 is beneficial to not only the
improvement ratio but also the signal strength. As the second-
harmonic signal has a quadratic relationship with the incident
beam’s intensity, it is superior to choose a smaller pulse dura-
tion. For different beam waist, though smaller w0 corresponds
to a larger intensity within the beam’s Rayleigh length z0, the
pulse’s intensity drops quickly at the position exceeding z0,
and the larger waist with larger Rayleigh length takes more

FIG. 5. The normalized intensity of the signal generated by
the chirped pulse as the function of interaction length, with β =
0.41 fs,β20 = 0.28 fs2, andτ0 = 25 fs and different focus waists
w0 = 60, 120, and 180 µm. The inset depicts the details of the sig-
nal under small interaction length.
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FIG. 6. The ratio of the generated photon by chirped pulse to
that of the nonchirped case as the function of interaction length with
λ = 0.8 µm, w0 = 180 µm, and τ0 = 25 fs and different chirped pa-
rameters for LiTaO3, BaTiO3, and KTP. The Sellmeier equations are
from [26–28].

advantage. As shown in Fig. 5, when interaction length z is
small, phase match is perfectly satisfied, and the signal has a
quadratic relationship with the interaction length. When the
single spectral peak’s bandwidth 1/w0 exceeds the allowed
longitudinal phase mismatch π/z, the phase is quasimatched,
and the signal has a linear relationship with the interaction
length. When the interaction length exceeds the Rayleigh
length, the signal grows slower and the larger w0 is superior.
Thus, the signal grows steadily for a wide range of z from 0 to
several times the Rayleigh length, which makes using longer
crystals worthwhile.

IV. DISCUSSION

In practice, our proposal is effective to other materials
considered and other structures with spatially modulated
nonlinearity as well, such as other periodically poled
ferroelectric materials. Starting from the wavelength-
dependent refractive indices, we can adjust the signal’s
angle-dependent spectrum [Eq. (11)] by fitting the
phase-matching requirement in Eqs. (5) and (7) with different
β. As an example, in Fig. 6, we give the improvement
ratio of generated photons with a chirped pulse to that
with a nonchirped pulse as the function of the interaction
length for periodically modulated LiTaO3, BaTiO3, and
KTiOPO4 (KTP). We set the parameters of the incident pulse
as λ = 0.8 µm, w0 = 180 µm, and τ0 = 25 fs with different
chirp factors for different crystals. The detailed parameters
can be seen in Table I. For LiTaO3 and BaTiO3, we consider
the type-I phase-matching (oo-e). For KTP we consider
the similar situation in [13], where the fundamental beam
propagating along the crystals’ polar axis (z) is y polarized
and the second-harmonic generation is x polarized. The
spatial chirped pulse greatly increases the signal, and the
varying trends of the ratio are similar with LiNbO3.

TABLE I. Beam and crystals parameters.

Material � (μm) θ0 (deg) β1 (fs) β2 (fs2) w0/w2

BaTiO3 0.65 24.35 0.62 0.54 82.88
LiTaO3 0.52 19.14 0.35 0.17 42.89
KTP 0.78 15.97 0.31 0.16 30.35

In experiments, the higher-order chirped parameters re-
quired by the larger waist can be realized with the help of
metasurfaces [29]. The output signal inherits the chirp char-
acteristic βn1/n2 of the input pulse and can be converted back
into the nonchirped pulse with a similar optical system.

Furthermore, our proposal has the potential to enhance
other nonlinear processes that require both long interaction
and broad bandwidth. For example, in the head-on collision of
a chirped probe laser kp and a background laser kb, the latter
should have a much larger temporal length and can be viewed
as monochromatic light in order to get a larger interaction
length. The differential of phase-matching equations leads to
(ϕ = 0 for simplicity)

∂ (ksns)

∂ω
− ∂ (kpnp)

∂ω
cos θs − kpnpβ sin θs = 0. (13)

Following similar steps, we can adjust β to fit this condition so
that the wave-mixing signal ks can be efficiently generated. In
summary, the angle-dependent spectrum breaks the limitation
of the narrow phase-matching bandwidth of the long inter-
action length, so that the signal’s strong intensity and broad
bandwidth can be obtained at the same time.

V. CONCLUSION

We investigate the Cherenkov second-harmonic generation
in the 1D photonic crystals LiNbO3, LiTaO3, BaTiO3, and
KTP, estimating an enhancement as high as needed if the
beam waist and interaction length are large enough. We pro-
vide a general recipe to enhance the nonlinear signal with
a spatial chirped pulse input. The spectrum bandwidth and
divergence angle of the signal can remain almost unchanged
with the growth of the interaction length, and the intensity of
the signal can be greatly enhanced when using the input pulse
with a large waist and small temporal length.
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