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Isolated-attosecond-pulse high-order harmonic generation of keV x rays
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Using rare-gas ions as the interacting medium, phase-matched high-order harmonic generation up to 1-keV
hard x ray can be achieved by balancing the negative plasma dispersion and Gouy phase shift with the
positive, intensity-dependent, intrinsic dipole phase variation. The time-dependent phase-matching condition
automatically gates the harmonic output to an isolated attosecond pulse. The estimated pulse duration is as short
as 120 as.
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I. INTRODUCTION

Over the past two decades, high-order harmonic generation
(HHG) driven by intense laser pulses has proven to be a
reliable coherent light source, producing ultrashort extreme-
ultraviolet (EUV) and soft x-ray radiation [1–3]. Theories
and experiments have established that the maximum photon
energy is limited by Ecutoff = Ip + 3.17Up, where Ip is the
ionization potential of the interacting medium and Up is the
ponderomotive potential of the driving pulse [4–6]. To push
the HHG output to shorter wavelengths, it is necessary to
increase either Ip or Up. Previous studies have demonstrated
the generation of keV harmonic output by utilizing helium
atoms as the interacting medium and employing midinfrared
(MIR) as the driving source [7], since Up scales with the
driving wavelength as λ2

d . However, the overall conversion
efficiency is traded off severely due to the small single-atom
response, which scales as λ−6

d [8,9]. To resolve this dilemma,
ion-based HHG has been demonstrated to generate shorter
wavelengths than that from neutral media [10–12]. Since the
bound electrons in ions have higher Ip, which can only be ion-
ized at a higher laser intensity, Up is also raised. Both factors
lead to a higher cutoff photon energy. However, in a highly
ionized medium, the severe phase-mismatch problem caused
by the plasma dispersion limits the conversion efficiency [13].
These tradeoffs make generating high harmonics efficiently
at short wavelengths an immense challenge. To surmount the
problem of phase mismatch, quasi-phase-matching (QPM) is
a possible solution [14–18]. Recently, we have proposed a
QPM scheme of near-infrared (NIR)-driven keV HHG from
He1+ ions [19], in which a transverse pulse is used to suppress
the generation process from out-of-phase locations [20]. It can
selectively enhance narrow-band harmonic generation within
a wide spectral range, making it a promising x-ray source with
high spectral brightness.

*hhchu@ncu.edu.tw

In this paper, we show that phase-matched HHG up to
1-keV photon energy can be achieved in ionic media by using
an ultrashort NIR (810 nm) pulse focused onto a uniform
He gas cell with optimized gas density and proper beam di-
vergence. By setting the appropriate driving pulse focal spot
size and the gas cell location relative to the focal point, phase
matching is accomplished through the balance of plasma dis-
persion, Gouy phase shift, and the HHG intrinsic dipole phase
variation, where the latter is intensity dependent and thus de-
termined by the driving pulse divergence. Our analysis shows
that under the optimized condition, the NIR driving pulse
will ionize the He atoms into 1+ ions at its front edge, and
then generate high-energy HHG from these ions at its peak.
Since the HHG dipole phase is determined by the driving laser
intensity, it varies across the driving pulse envelope. Only the
harmonic wavefront initiated within a small interval around
the driving pulse peak fulfills the phase-matching criteria that
the accumulated total phase mismatch falls within ±π . With
an 8-fs-duration driving pulse, such a temporal gate is shorter
than half of the driving laser period, enabling this scheme to
generate an isolated attosecond pulse. The phase-matching
bandwidth covers about five harmonic orders, supporting a
pulse duration as short as 120 as. Reference [21] provides
a comprehensive review of extreme-UV isolated-attosecond-
pulse generation. Our scheme can push the output to keV
hard x rays. It is different from the nonadiabatic self-phase
matching, which relies on the rapid change of plasma den-
sity produced by a few-cycle driving pulse [22,23]. It is also
different from the dynamic phase matching introduced by
Thomann et al. [24], where isolated attosecond extreme-UV
pulses were produced from multicycle NIR driving pulses.
In their analysis, the HHG dipole phase was not considered,
which is the key element of our scheme.

To illuminate the physics behind this scheme, we first
calculate the propagation of the driving pulse in a uniform
gas cell, with all the ionization, attenuation, diffraction, and
dispersion effects taken into account. The driving pulse is
modeled as a three-dimensional (3D) Gaussian pulse focused
at position z = 0, and the He gas cell is put behind the focal
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point. The exhaustive calculation is presented in Sec. II. The
calculation provides the complete information of the driving
pulse waveform, He atom and ion densities, and electron
density as functions of position (z, r) and time t . After that,
we can evaluate the phase-matching condition, and calculate
the generation process of the specific harmonic wave. The
details are presented in Secs. III and IV, respectively. Then
the temporal gating effect is analyzed in Sec. V, and the
robustness of this scheme is discussed in Sec. VI. Finally, the
conclusion is given in Sec. VII.

II. DRIVING PULSE PROPAGATION THROUGH
THE HELIUM GAS CELL

The driving pulse is modeled as a 3D Gaussian pulse fo-
cused at z = 0 mm. The complete waveform is

Ed (z, r, t ) = E0

2

[(−ib0

q(z)

)
exp

(
ikd r2

2q(z)

)

× exp

(−(t−(z − zini )/c)2

2τ 2
0

)
ei(kd z−ωd t ) + c.c.

]
,

(1)

where

E0 =
√

4μ0cUpulse

π3/2τ0w
2
0

(2)

is the peak electric field at the focal spot, Upulse is the driving
pulse energy, τ0 is the initial pulse duration, w0 is the focal
spot waist radius, q(z) = z − ib0 is the q parameter of the
Gaussian beam, b0 = πw2

0/λd = ωdw
2
0/(2c) is the confocal

parameter, λd is the driving pulse central wavelength, kd =
2π/λd is its wave number in vacuum, ωd = ckd is the central
angular frequency, and c.c. represents complex conjugate. The
He gas is put between zini and zfinal with a uniform density
distribution Ngas. To resolve the propagation of the driving
pulse in detail, we divide the gas cell into small sections with
a thickness of �z. Each section is labeled by its position
z j = zini + ( j − 1)�z, where j = 1, 2, 3, . . . is the label in-
dex. Then the propagation of the driving pulse passing through
each section is calculated one by one.

The driving pulse arrives the first section ( j = 1) of the
helium gas cell with a beam radius of

w(z1) = w(zini ) = w0

√
1 + z2

ini

b2
0

. (3)

We calculate the ionization process at radius r = 0, w(zini )/2,
and w(zini ), by using the Ammosov-Delone-Krainov (ADK)
theory for optical-field ionization [25]. The calculation is
performed within a temporal window of [−100 fs, +100 fs].
After that, the He atom density NHe(zini, r, t ), He1+ ion den-
sity NHe1+(zini, r, t ), He2+ ion density NHe2+(zini, r, t ), and the
electron density Ne(zini, r, t ) can be obtained.

Consider the first example of keV harmonic generation
driven by a 30-fs pulse. Here we focus on He1+ ions as the
interacting medium. The ionization potential is 54.4 eV. Under
the appearance intensity of 8.7×1015 W/cm2 where the He1+

ions can be ionized into He2+ ions [26], the cutoff photon
energy reaches 1.7 keV driven by an 810-nm NIR pulse.

Here the 655th-order harmonic (1.0-keV photon energy) is
chosen for detailed analysis. The driving pulse wavelength
and duration are fixed at λd = 810 nm and τ0 = 30 fs, re-
spectively, which are typical values for a standard Ti:sapphire
laser system. The pulse energy Upulse is chosen to be
42 mJ. It is focused at z = 0 mm with a waist radius of w0 =
40 µm. The helium gas cell is put between zini = 9.5 mm
and zfinal = 11.5 mm, with a uniform density distribution of
Ngas = 1.35×1017 cm−3. These parameters are optimized for
maximizing the 655th harmonic output. The width of the
200-fs temporal window for calculation is 6.67 times the
driving pulse duration, simulating the complete ionization
process. With these parameters, the calculation results of the
ionization in the first gas section are shown in Fig. 1. It can
be seen that all He atoms are ionized to He1+ ions, and about
86% He1+ ions are ionized to He2+ ions at r = 0, revealing
that keV HHG can be generated near the central portion of
the driving pulse. The final electron density reaches Ne[zini,

r = 0, tfinal(zini )] = 2.50×1017 cm−3 at the center of the driv-
ing pulse (r = 0), where

tfinal(z) = z − zini

c
+ 100 fs (4)

is the ending time of our calculation when the driving pulse
has completely passed through z.

The propagation of the driving pulse is affected by the
produced plasma. However, due to the time-dependent ion-
ization process, the front part of the driving pulse encounters
lower electron density and the rear part encounters higher
electron density. Therefore, we use the time-averaged electron
density to simulate the propagation and dispersion effects on
the driving pulse:

N̄e(z, r) =
∫

Ne(z, r, t )Id (z, r, t ) dt∫
Id (z, r, t ) dt

, (5)

which is weighted by the driving pulse intensity Id (z, r, t ).
Furthermore, the time-averaged electron density and the final
He2+ ion density are also varied in the transverse direction.
They are fitted with Gaussian curves. The results are shown in
Fig. 2.

Since the transverse electron density distribution is not
uniform, it leads to a wavefront distortion of the driving pulse:

��d (zini, r) = kd [nplasma(ωd , zini, r) − 1]�z, (6)

where

nplasma(ω, z, r) =
√

1 − q2
e N̄e(z, r)

ε0meω2
(7)

is the refractive index of the produced plasma for the EM
wave with angular frequency ω. Due to the higher electron
density at the center, the ionizing medium acts like a concave
lens. This is the well-known ionization defocusing effect. The
wavefront distortion ��d (zini, r) is fitted by a parabola

y(r) = kd

2 feff (zini )
r2 (8)

to get the effective focal length feff (zini ). Then the q parameter
of the driving pulse on the next gas section, q(z j+1), can
be evaluated by incorporating the contributions of the free
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FIG. 1. Ionization of the helium gas at the first section of the gas cell (z = zini): (a)–(c) Driving laser field Ed (zini, r, t ) at r = 0, w(zini )/2,
and w(zini ), respectively. (d)–(f) Relative populations of He (NHe/Ngas, orange), He1+ (NHe1+/Ngas, green), and He2+ (NHe2+/Ngas, blue) at r = 0,
w(zini )/2, and w(zini ), respectively. (g)–(i) Electron density Ne(zini, r, t ) at r = 0, w(zini )/2, and w(zini ), respectively.

propagation �z and the effective thin lens feff (z j ):

q(z j+1) = Ajq(z j ) + Bj

Cjq(z j ) + Dj
= z′(z j+1) − ib(z j+1), (9)

where[
Aj Bj

Cj Dj

]
=

[
1 0

−1/ feff (z j ) 1

]

×
[

1 �z/nplasma(ωd , z j, r = 0)
0 1

]
(10)

FIG. 2. (a) Time-averaged transverse electron density distribu-
tion N̄e(zini, r) as a function of radius r. (b) Final transverse He2+

density distribution NHe2+(zini, r, t = 100 fs) as a function of radius
r. Black square: calculated results at r = 0, w(zini )/2, and w(zini ).
Green line: Gaussian fitting curves.

is the ABCD matrix for the Gaussian beam propagation of the
jth section of the gas cell. It should be noticed that z′(z j+1)
represents the real part of the q parameter in position z j+1 and
not the position.

After the calculation of medium ionization, the attenuation
of the driving pulse energy in a gas section �z is evaluated.
The following attenuation effects are taken into account:

(1) Optical-field ionization for overcoming the ionization
potential: The energy loss due to overcoming the ionization
potential is

�Uionization(z) = π

(
w(z)

2

)2

�z{NgasIp1

+ NHe2+[z, r = 0, tfinal(z)]Ip2}, (11)

where Ip1 is the ionization potential of helium’s first electron,
and Ip2 is the ionization potential of the second electron.

(2) Above-threshold-ionization (ATI) heating of free elec-
tron: Once an electron is ionized, it will get a kinetic energy
due to the ATI-heating mechanism [25,27]:

KATI(z, r, ti ) = q2
e Id (z, r, ti )

cε0meω
2
d

sin2(ωdti ), (12)

where Id (z, r, ti ) is the driving laser intensity at the ionization
time ti. Therefore, the ATI heating for all free electrons leads
to a driving pulse energy loss:

�UATI(z) =
∑

all electrons

KATI(z, r, ti ). (13)
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Furthermore, for the following calculation of inverse-
Bremsstrahlung heating, the electron temperature is required.
It is inferred from

Te(z) = 2

3

K̄ATI(z)

kB
, (14)

where K̄ATI(z) is the average kinetic energy of electron.
(3) Inverse-Bremsstrahlung heating of free electron:

The absorption coefficient due to inverse-Bremsstrahlung
heating is

aIB(z) = 1

3cω2
d nplasma(ωd , z, r = 0)

× q6
eZ (z)N̄e(z, r = 0)2 ln[	(z)]

2πε2
0 mekBTe(z)3/2

, (15)

where ln[	(z)] is the Coulomb logarithm determined by Te(z)
and N̄e(z, r = 0) [28].

(4) Thomson scattering by free electron: The attenuation
coefficient of Thomson scattering is

aTS(z) = 8π

3

q4
e

(4πε0mec2)2
N̄e(z, r = 0). (16)

After that, the following dispersion effects are calculated:
(1) Plasma dispersion: The wave number due to plasma is

kplasma(ω, z) = ω

c
nplamsa(ω, z, r = 0)

= ω

c

√
1 − ωp(z)2

ω2
, (17)

where

ωp(z) =
√

q2
e N̄e(z, r = 0)

ε0me
(18)

is the plasma frequency. The resulted group delay from z j to
z j+1 is

�Cplasma(ω, z j ) = ∂kplasma(ω, z j )

∂ω
�z

= �z

c nplasma(ω, z j )
, (19)

and the resulted group-delay dispersion from z j to z j+1 is

�Dplasma(ω, z j ) = ∂2kplasma(ω, z j )

∂ω2
�z

= −ωp(z j )2

c[ω2 − ωp(z j )2]3/2
�z. (20)

(2) Dispersion due to Gouy phase shift: It is well known
that the Gouy phase shift of a free propagating Gaussian

beam is

φGouy(ω, z) = − tan−1

(
z

b(ω)

)

= − tan−1

(
2cz

w2
0ω

)
, (21)

where w0 is the 1/e2-intensity radius at the beam waist. In our
analysis, the Gaussian mode of the driving beam in each gas
section is modified by the extra effect of ionization defocus-
ing, as shown in Eq. (9). Therefore, the Gouy phase shift of
the driving beam in the jth section of the gas cell is

��Gouy(ωd , z j ) = kGouy(ωd , z j )�z, (22)

where

kGouy(ωd , z j ) = ∂φGouy(ωd , z)

∂z

∣∣∣∣
z=z j

= −b(z j )

z′(z j )2 + b(z j )2

= −2cw′
0(z j )2ωd

4c2z′(z j )2 + w′
0(z j )4ω2

d

(23)

is the additional wave number due to Gouy phase shift at z j ,
and

w′
0(z j ) ≡

√
2cb(z j )

ωd
. (24)

The group delay in the jth section of the gas cell is

�CGouy(z j ) = ∂kGouy(ω, z)

∂ω

∣∣∣∣
ω=ωd ,z=z j

�z

= −2c
[
4c2w′

0(z j )2z′(z j )2 − w′
0(z j )6ω2

d

]
[
4c2z′(z j )2 + w′

0(z j )4ω2
d

]2 �z,

(25)

and the group-delay dispersion in the jth section of the gas
cell is

�DGouy(z j ) = ∂2kGouy(ω, z)

∂ω2

∣∣∣∣
ω=ωd ,z=z j

�z

= 4cωd
[
12c2w′

0(z j )6z′(z j )2 − w′
0(z j )10ω2

d

]
[
4c2z′(z j )2 + w′

0(z j )4ω2
d

]3 �z.

(26)

With all the information we calculated, the driving laser
field at the next section (z = z j+1) is obtained:

E (z j+1, r, t ) = Epeak (z j+1) exp

(
ikr2

2q(z j+1)

)
exp

⎛
⎝i

j∑
k=1

[kplasma(ωd , zk ) + kGouy(ωd , zk )]�z

⎞
⎠

× exp

(−(t − C(z j ))2

2τ (z j+1)2

)
exp

(
i

(
1

2
tan−1

(
D(z j )

τ 2
0

)
− D(z j )

2
[
τ 4

0 + D(z j )2
] [t − C(z j )]

2 − ωdt

))
, (27)
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FIG. 3. (a) Driving pulse energy Upulse(z) as a function of position z. (b) Energy loss per unit length due to ionization loss (blue), ATI
heating (green), inverse Bremsstrahlung heating (red), and Thomson scattering (orange). (c) Driving laser peak intensity Ipeak (z) = I[z, r =
0, t = C(z)]. (d) Driving laser beam radius w(z). (e) Gouy phase of the driving pulse. (f) Time-averaged electron density N̄e at the center of
the driving pulse (r = 0). (g) Accumulated group delay C(z). (h) Accumulated group-delay dispersion (GDD) D(z). (i) Driving pulse duration
τ (z).

where

Epeak (z j+1) =
√

4μ0cUpulse(z j+1)

π3/2τ (z j+1)w(z j+1)2
(28)

is the peak electric field at z j+1, Upulse(z j+1) is the attenu-
ated pulse energy due to all the attenuation effects described
above,

τ (z j+1) =
√

τ 2
0 + D(z j )2

τ 2
0

(29)

is the pulse duration at z j+1,

D(z j ) =
j∑

k=1

[�Dplasma(ωd , zk ) + �DGouy(zk )] (30)

is the accumulated group-delay dispersion from zini to z j+1,
and

C(z j ) =
j∑

k=1

[�Cplasma(ωd , zk ) + �CGouy(zk )] (31)

is the accumulated group delay from zini to z j+1.
By iterating the processes described above, the propagation

of the driving pulse passing through the helium gas cell is cal-
culated in detail. The results are shown in Fig. 3. The energy

of the driving pulse drops from 42 mJ to 41.87 mJ. The major
attenuation effects are ionization loss and ATI heating loss, as
shown in Fig. 3(b). The overall energy loss is insignificantly
small, only about 0.3%. The peak intensity of the driving pulse
drops from 9.40×1015 W/cm2 to 6.84×1015 W/cm2, which
is mainly due to the beam divergence, as shown in Fig. 3(d).
The resulted electron density is as low as about 2×1017 cm−3,
which leads to an insignificant GDD of about −0.28 fs2.
Therefore, the driving pulse duration is almost unchanged, as
shown in Fig. 3(i).

The time-averaged electron density distribution N̄e(z, r)
and final He2+ density distribution NHe2+[z, r, tfinal(z)] are
shown in Figs. 4(a) and 4(b), respectively. It can be seen that
there are about 86%–28% He1+ ions are ionized to He2+ at
the center of the driving pulse (r = 0) along the entire gas cell.
Therefore, the driving pulse can continuously generate high-
energy HHG photon through the He1+ to He2+ ionization and
the subsequent recombination process.

To verify the correctness of our analysis, we per-
form a calculation for the condition of zero gas density.
The beam radius variation is in perfect agreement with
the analytical calculation of Gaussian beam free propa-
gation. For the condition with 1.35×1017-cm−3 He gas
density used for 655th harmonic generation, the more di-
vergent beam reveals the effect of plasma-induced ionization
defocusing.
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FIG. 4. (a) Time-averaged electron density N̄e(z, r). (b) Final
He2+ density NHe2+[z, r, tfinal(z)].

III. PHASE-MATCHING CONDITION OF THE 655TH
HARMONIC FIELD

In this section, we analyze the phase-matching condition of
the harmonic wave at the center of the driving beam (r = 0).
Based on the quantum strong-field theory of HHG [6,29,30], it
is well known that the harmonic emission exhibits an intrinsic
dipole phase of

�dipole = −1

h̄

∫ t f

ti

(
[p − A(t ′)]2

2me
+ Ip

)
dt ′ (32)

for a quantum path specified by the ionization time ti, recom-
bination time t f , and canonical momentum p of the electron,
where A(t ′) is the vector potential of the driving laser field.
The overall dipole moment is the superposition of all possible
quantum paths. For a given harmonic order m, two partic-
ular quantum paths dominate the overall dipole moment. It
converges to the long-trajectory and the short-trajectory paths
introduced in the semiclassical three-step model, where HHG
is described by the process of electron ionization, acceler-
ation, and then recombination driven by the laser field [5].
For the long-trajectory path, the electron is ionized earlier but
recombined later. Therefore, it goes through a longer trajec-
tory. For the short-trajectory path, the situation is exactly the
opposite. These two paths give the electrons the same kinetic
energy at their recombination, resulting in the same order
harmonic emission. Based on the three-step model, these two
dipole phases of the 655th-harmonic generation as functions
of the driving laser intensity are calculated. The results are
shown in Fig. 5.

Secondly, the wave number of a Gaussian beam with an-
gular frequency ω propagating in the ionized medium is the
summation of the wave number due to the produced plasma
[Eq. (17)] and the additional wave number due to the Gouy
phase shift [Eq. (23)]:

k(ω, z) = kplasma(ω, z) + kGouy(ω, z). (33)

Since the phase of the harmonic field is equal to m times the
phase of the driving laser field plus the intrinsic dipole phase

FIG. 5. The intrinsic dipole phases of the 655th harmonic as
functions of the driving laser intensity Id . Solid blue line: long-
trajectory dipole phase �dipole,long. Dashed green line: short-trajectory
dipole phase �dipole,short .

[30], the phase-matching condition of HHG can be expressed
by the wave-number mismatch

�k(z) = mk(ωd , z) − k(ωm, z) + �kdipole(z)

= �kplasma(z) + �kGouy(z) + �kdipole(z), (34)

where ωm = mωd is the harmonic angular frequency,

�kdipole(z) = d�dipole(z)

dz
(35)

is the wave-number mismatch due to HHG intrinsic dipole
phase variation,

�kplasma(z) = mkplasma(ωd , z) − kplasma(ωm, z) (36)

is the wave-number mismatch due to plasma dispersion, and

�kGouy(z) = mkGouy(ωd , z) − kGouy(ωm, z) (37)

is the wave-number mismatch due to Gouy phase shift. The
neutral gas dispersion is neglected here since all atoms are ion-
ized in our case. The magnitude of �k(z) determines whether
the harmonic wave can be accumulated constructively to get
efficient HHG. As mentioned in Eq. (9), the Gaussian mode
of the driving pulse is modified by the effect of ionization
defocusing. The driving pulse wave number due to Gouy
phase shift kGouy(ωd , z) is determined by Eq. (23). For the
Gouy phase shift of the harmonic wave, the situation is the
same. Its propagation is also affected by the plasma. Its q
parameter is

qm(z j ) = z′
m(z j ) − ibm(z j ). (38)

The starting confocal parameter is

bm(zini ) = ωmw2
m0

2c
, (39)

where wm0 is the starting beam waist radius, which is de-
termined by the source distribution introduced in Sec. IV.
Then qm(z j ) is calculated through the similar iteration process
described in the last section, and kGouy(ωm, z j ) is

kGouy(ωm, z j ) = −bm(z j )

z′
m(z j )2 + bm(z j )2

. (40)
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FIG. 6. (a) Accumulated phase mismatches due to plasma dis-
persion (solid brown line) and Gouy phase shift (dashed red line).
(b) Accumulated phase mismatches due to long-trajectory dipole
phase (solid blue line) and short-trajectory dipole phase (dashed
green line). (c) Total phase mismatch of the 655th long-trajectory
harmonic wave. (d) Total phase mismatch of the 655th short-
trajectory harmonic wave.

Finally, the total accumulated phase mismatch at position z
can be obtained

��total(z) =
∫ z

zini

�k(z′) dz′

= ��plasma(z) + ��Gouy(z) + ��dipole(z),

(41)

where

��plasma(z) =
∫ z

zini

�kplasma(z′) dz′ (42)

is the accumulated phase mismatch due to plasma dispersion,

��Gouy(z) =
∫ z

zini

�kGouy(z′) dz′ (43)

is the accumulated phase mismatch due to Gouy phase shift,

��dipole(z) = �dipole(z) − �dipole(zini ) (44)

is the accumulated phase mismatch due to HHG dipole
phase variation, �dipole(z) = �dipole{Id [z, tHWF(z)]} is the
HHG dipole phase determined by the harmonic order m and
the driving pulse intensity met by the fixed harmonic wave-
front at position z, and tHWF(z) is the arriving time of the fixed
harmonic wavefront at position z, as explained in Eq. (45)
in the next section. It is important to note that the harmonic
wave number due to the produced plasma kplasma(ωm, z) is
evaluated by applying the transient electron density Ne[z, r =
0, tHWF(z)] encountered by the harmonic wavefront. The cal-
culation results of these phase mismatches are shown in Fig. 6.

It is evident that the phase mismatch caused by the plasma
dispersion is negative. It reaches about −516 rad at the end
of the gas cell. The phase mismatch caused by the Gouy
phase shift is also negative, but the magnitude is only about
1/10 of the plasma dispersion. The phase mismatches caused

by the dipole phase variations are both positive. In partic-
ular, the phase mismatch due to the long-trajectory dipole
phase is large enough to compensate for the negative plasma
dispersion and Gouy phase shift. Therefore, the total phase
mismatch fulfills the phase-matching criteria (|��total < π |)
along the entire gas cell, as shown in Fig. 6(c). At the same
time, the total phase mismatch of the short-trajectory emission
is still dominated by the plasma dispersion. It reaches about
−474 rad at the end of the gas cell, as shown in Fig. 6(d). In
short, phase matching is achieved for the long-trajectory har-
monic emission by balancing the negative plasma dispersion,
Gouy phase shift, and the positive dipole phase variation.

IV. GENERATION, PROPAGATION, AND ACCUMULATION
OF THE 655TH HARMONIC FIELD

To calculate the harmonic generation process, we trace a
fixed wavefront of the 655th harmonic, which is initiated at
the entrance of the gas cell (z = zini) and on the peak of the
driving pulse (t = 0). The wavefront propagates with a phase
velocity of vp(ωm, z) = ωm/k(ωm, z). It arrives position z at
time

tHWF(z) =
∫ z

zini

1

vp(ωm, z′)
dz′. (45)

Since the phase velocity of the harmonic field is greater than
the group velocity of the driving laser pulse, the relative loca-
tion of the harmonic wavefront to the driving pulse envelope
changes during the propagation. The harmonic wavefront will
encounter the driving laser field

EHWF(z) ≡ Ed [z, r = 0, tHWF(z)] (46)

when it propagates to position z. The latter will generate a new
harmonic wavelet, which is coherently added to the existing
harmonic field, and the HHG dipole phase at z is evaluated
from the intensity of the driving pulse at z, as mentioned in
the last paragraph.

According to the empirical semiclassical model proposed
in Ref. [31] and verified in Refs. [16,20], the locally generated
infinitesimal harmonic wavelet ELH(z) at position z can be
simulated as

ELH(z) ∝ Nsource(z) |EHWF(z)|p ei�LH(z), (47)

where its amplitude is proportional to the source density
Nsource(z) times the pth power of the driving field amplitude
|EHWF(z)|. The number p is an empirical constant between
5–7 [31]. The result of our analysis is not sensitive to the
choice of p(= 5) in this range. Because the harmonic is gen-
erated from the He1+ → He2+ ionization and the following
recombination process, where the recombination probability
is fixed for a specified harmonic order, the source density is

Nsource(z) ∝ NHe1+[z, r = 0, tHWF(z)] wHe1+[EHWF(z)], (48)

where NHe1+[z, r = 0, tHWF(z)] is the remaining He1+ den-
sity met by the fixed harmonic wavefront at position z, and
wHe1+[EHWF(z)] is the ionization rate of He1+ ions at z [25].
The phase of the locally generated infinitesimal harmonic
wavelet �LH(z) is

�LH(z) = m�HWF(z) + �dipole(z), (49)
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FIG. 7. The amplitude of the accumulated 655th-order harmonic
field. Dotted black line: perfect phase-matching condition, solid
blue line: long-trajectory harmonic wave, dashed green line: short-
trajectory harmonic wave.

where �HWF(z) = arg[EHWF(z)] is the phase of the driving
laser field, and �dipole(z) = �dipole{Id [z, r = 0, tHWF(z)]} is
the intrinsic dipole phase.

Since the driving beam diverges during its propagation,
the intensity decreases. Therefore, the ionization rate wHe1+
decreases, and the remaining He1+ density increases. Then the
source density reaches its maximum around the middle part of
the gas cell. Such condition benefits the HHG output.

As a result of a fixed harmonic wavefront being traced,
the accumulated harmonic field EHHG(z) as a function of po-
sition z can be obtained by integrating the locally generated
infinitesimal harmonic wavelet:

EHHG(z) ∝
∫ z

zini

ELH(z′) dz′. (50)

The results are shown in Fig. 7. For the 655th long-trajectory
harmonic generation, the final field strength reaches 92% of
the ideal magnitude under perfect phase matching. The rel-
ative energy conversion efficiency is 85%. In contrast, the
severe phase mismatch of the short-trajectory emission in-
hibits its growth. Its accumulated field remains low.

V. TEMPORAL-GATING EFFECT OF THE 655TH
HARMONIC FIELD

Continue the case of the 655th long-trajectory harmonic
driven by an 810-nm, 30-fs laser pulse. Since the phase veloc-
ity of the harmonic field is greater than the group velocity of
the driving pulse, harmonic wavefronts initiated at different
starting times t0 slip over different portions of the driving
pulse envelope. The locations of the harmonic wavefronts
initiated at starting time t0 = −4, 0, and +4 fs relative to the
driving pulse peak are shown in Fig. 8(a). The driving laser in-
tensities met by these three harmonic wavefronts are different
during the driving pulse propagation. Therefore, the resulting
dipole phases are also different. Furthermore, since the elec-
tron densities encountered by these harmonic wavefronts are
also varied, the phase mismatches due to plasma dispersion
are different, too. These two effects lead to different total
phase mismatches, as shown in Fig. 8(b). It is clear that the
harmonic wavefronts initiated at t0 = ±4 fs accumulate phase
mismatches far beyond ±π , revealing that there only exists a

FIG. 8. (a) The schematic diagram of the locations of the har-
monic wavefronts initiated at t0 = −4 fs (dotted orange line), 0 fs
(solid blue line), and +4 fs (dashed brown line) relative to the driving
laser field (red line). The arrows indicate the change of harmonic
wavefront locations due to propagation. (b) The total accumulated
phase mismatches ��total (z) for these three harmonic wavefronts.

small temporal window around the peak of the driving pulse,
which fulfills the phase-matching criteria.

To evaluate the effect of such temporal gating, we calcu-
late the accumulated harmonic field EHHG(z, t0) initiated at
different t0. The final intensity IHHG(t0) ∝ |EHHG(zfinal, t0)|2 is
shown in Fig. 9(a). As expected, a narrow temporal window
is obtained. The full-width at half-maximum (FWHM) of the
window is about 4.0 fs. The phase matching bandwidth is
evaluated by calculating the accumulated harmonic field with
t0 = 0 for different harmonic orders under the same condition.
The results are shown in Fig. 9(b). It covers about three har-
monic orders of �ω = 8.4×1015 sec−1 (FWHM).

The gating width can be shortened with a shorter driv-
ing pulse duration. For example, after optimization, we find
that by using an 8-fs driving pulse of 23-mJ energy and
55-µm focal spot waist radius, and putting the He gas cell
between zini = 19 mm and zfinal = 21 mm with a density of
9.1×1016 cm−3, the resulting temporal gating width is 1.2
fs, as shown in Fig. 10(a). Such width is shorter than half
of the 2.7-fs driving laser period, ensuring that the gener-
ated harmonic pulse will be an isolated attosecond pulse.
The phase-matching bandwidth is about 1.4×1016 sec−1

(FWHM), as shown in Fig. 10(b). With proper dispersion
compensation, such bandwidth can support a transform-
limited pulse with 120-as duration (FWHM).

FIG. 9. Temporal gating effect of the 30-fs driving pulse. (a) The
intensity of the 655th long-trajectory harmonic field IHHG (solid blue
line) and the accumulated total phase mismatch ��total (dashed
brown line) at the end of the gas cell as functions of the starting
time t0. (b) The intensity for different harmonic orders at the end of
the gas cell.
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FIG. 10. Temporal gating effect of the 8-fs driving pulse. (a) The
intensity of the 655th long-trajectory harmonic field IHHG (solid blue
line) and the accumulated total phase mismatch ��total (dashed
brown line) at the end of the gas cell as functions of the starting
time t0. (b) The intensity for different harmonic orders at the end of
the gas cell.

VI. DISCUSSION

Since the phase-matching condition depends on the driving
laser intensity, the energy fluctuation of the driving pulse may
affect the output HHG. To evaluate this effect, we repeat the
calculation of the 655th long-trajectory harmonic generation
driven by the 8-fs pulse with ±1% energy fluctuation, which
is a typical specification of a common Ti:sapphire laser. The
results are shown in Fig. 11(a). It reveals that the central
timing of the temporal window is unchanged, but the height of
its peak fluctuates with +4/−14%, and its width varies with
+0.4/−0.1 fs. Since the width variation is much smaller than
half of the driving laser period, the output HHG pulse remains
an isolated attosecond pulse with negligible timing jitter and
±9% energy fluctuation.

Furthermore, the output fluctuation caused by the gas den-
sity fluctuation is also evaluated by repeating the calculation
of the harmonic generation process with ±0.5% He gas den-
sity. The results are shown in Fig. 11(b). The peak fluctuates
about ±5%, and the width varies −0.2/+ 0.3 fs. These analy-
ses show that precise control of the experimental condition is
necessary for a stable HHG output.

On the other hand, the self-phase modulation caused by
the rapid change of the electron density due to optical-field
ionization may affect the phase-matching condition. The vari-
ation of the electron density leads to the change of the plasma

FIG. 11. (a) The intensities of the 655th long-trajectory harmonic
field IHHG at the end of the gas cell as functions of the starting time t0.
Solid blue line: original driving energy, dotted red line: +1% driving
energy, dashed green line: −1% driving energy. (b) The intensities
of the 655th long-trajectory harmonic field IHHG at the end of the
gas cell as functions of the starting time t0. Solid blue line: original
gas dnesity, dotted red line: +0.5% gas density, dashed green line:
−0.5% gas density.

refractive index and thus the phase modulation of the driving
pulse. Such modulation results in the shift of the driving laser
angular frequency:

�ωd = −kd
dnplasma

dt
L = kd

2nplasmaNcr

dNe

dt
L, (51)

where Ncr is the critical density of the driving laser field and
L is the interaction length. In our analysis, dNe/dt is about
3.3×1015 cm−3 fs−1 and L = 2 mm. The resulted angular
frequency shift is about 1.5×1013 sec−1, which is only 0.6%
of the driving pulse central angular frequency. It not only
falls within the original bandwidth of the driving pulse, but
also its HHG frequency falls within the HHG phase-matching
bandwidth. The self-phase modulation may only induce an
additional 0.6% phase shift of the driving pulse. It will only
change the optimal plasma density slightly and will not affect
the model of our calculation. Therefore, the effect of self-
phase modulation is neglected in our analysis.

VII. CONCLUSION

Compared with previous demonstrations of keV HHG
driven by MIR [7], our scheme uses NIR as the driving source.
A 104-fold enhancement of the conversion efficiency is ex-
pected, due to the λ−6

d dependence of the HHG single-atom
response [8,9,32]. Furthermore, only a moderate gas density
is required in our scheme since a large fraction of the medium
participates in the interaction. In contrast, in keV HHG with
MIR pulse as the pumping source, the strict phase-matching
condition limits its ionization ratio of the interacting gas
to only 0.03% [7]. Therefore, even though the applied gas
density is as high as several tens of bars, the density of the
interacting medium that actually contributes to the generation
process was only similar to that of our scheme.

In short, a scheme of ion-based keV HHG is analyzed.
By precisely controlling the divergence of the driving laser
pulse, phase matching of the 655th-order long-trajectory har-
monic generation can be achieved by balancing the plasma
dispersion, Gouy phase shift, and dipole phase variation. The
amplitude of the accumulated harmonic field reaches 85%
relative to the ideal condition of perfect phase matching.
The intensity-dependent phase-matching condition acts as a
temporal gate shorter than half of the driving pulse period,
ensuring that the output pulse is automatically an isolated-
attosecond pulse. The phase-matching bandwidth supports
a transform-limited pulse duration of about 120 as. This
method can be applied over a wide HHG spectral range and
for different driving wavelengths. We believe this ion-based
phase-matched HHG scheme is a promising keV x-ray source
for research of ultrafast phenomena.
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