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Accurate temperature measurement is critical in many scientific and engineering fields, so that researchers
continuously strive to improve the accuracy, sensitivity, and robustness of the current measurement methods.
In this paper, we propose a theoretical approach for temperature measurement using an optomechanical system
in which the position of a mechanical oscillator is coupled to the cavity field. Our approach enables precise
control and manipulation of both, resulting in highly accurate temperature measurements. We evaluate the
accuracy of temperature estimation by using classical and quantum Fisher information, considering both open
and closed systems, and investigate entanglement effects of the primary field mode. Our findings indicate that
increasing entanglement at the input made reduces measurement time and increases sensitivity in estimating
the temperature. However, we observe that quantum coherence is destroyed by decoherence, leading to reduced
performance of quantum systems. Furthermore, we show that the Fisher information of the system is robust
against mechanical decoherence, but significantly damped due to optical decoherence. We discuss the limitations
and challenges of our method and suggest possible applications and future directions for our research. Finally,
we determine the accuracy of temperature estimation for a typical optomechanical system based on phase values
measured in the closed system. Our results demonstrate the potential of optomechanical systems for highly
accurate temperature measurement and their robustness against decoherence. This study can provide insights
into the field of temperature measurement, offering a theoretical approach that can be applied in many scientific
and engineering applications.
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I. INTRODUCTION

In recent decades quantum technology has made significant
advancements in cryptography, metrology, and computing
[1–5]. However, accurate temperature measurement is criti-
cal for the successful application of these quantum devices.
To achieve precise temperature estimation at the quantum
scale, researchers are exploring a unique approach [6–13].
The concept of temperature primarily refers to macroscopic
phenomena and does not have a direct connection to the
quantum realm. This presents a significant obstacle when
attempting to estimate temperature estimation in quantum
content. Moreover, the exponential nature of temperature
within the functions that characterize the system’s density
operator adds further complicated complexity to the situation.
Instead, researchers are using estimation theory to measure
other physical quantities, such as average kinetic energy, to
determine temperature indirectly [14]. Accurate temperature
assessment holds immense potential for unlocking the full
potential of quantum technologies and paving the way for
further advancements in the field.

The field of quantum metrology explores the fundamen-
tal limits of estimation error using the quantum Cramér-Rao
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bound (QCRB) [15–20]. Through the utilization of quantum
resources such as entanglement and quantum correlations, re-
searchers can achieve measurement precision beyond classical
limits. By increasing the number of probes or measurements,
one can approach the coveted “Heisenberg limit” of 1/N ,
where N represents the number of inquiries [21–29].

To improve the accuracy of the measurements, it is possible
to employ quantum resources, such as entanglement. To this
end, the entangled NOON states can be employed to deal
with an entangled probe. The NOON states which are of great
importance in theoretical studies, have successfully generated
(up to N = 9 phonons) in a single trapped ion using a de-
terministic method [30]. This method is applicable to various
photonic or phononic systems, and enables generation and
verification of high NOON states. Another efficient technique
was proposed to generate photonic NOON states using the
rapid population passage technique via the shortcut to adia-
baticity. The feasibility of this proposal is demonstrated with
experimental circuit QED systems [31].

The potential for accurate and simultaneous measurement
of various parameters in a nonlinear medium without quan-
tum limitations was investigated by maximizing the quantum
Fisher information function for the coherent and squeezed
input state parameters [32]. However, the study of natural
quantum systems involves understanding their interactions
with the environment, as this interaction can significantly
impact the accuracy and reliability of quantum measurements.
Therefore, thorough research and analysis are necessary to
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gain a comprehensive understanding of quantum systems’
behavior in different environmental conditions. A recent study
focused on jointly estimating loss and nonlinearity in driven-
dissipative Kerr resonators [33]. They found that, for the pure
state, the resonators are asymptotically classical and is pos-
sible to estimate two parameters without additional quantum
noise. Additionally, the study identified optimal interaction
time and driving amplitude to improve the ultimate precision
of the estimates.

The present article primarily focuses on the optomechani-
cal system’s precision in measuring temperature. Nonetheless,
it also addresses critical inquiries about temperature mea-
surement methodologies and intricacies in the references,
for instance, using an optomechanical system as a pri-
mary thermometer involves an indirect measurement of the
phonon number of the mechanical oscillator, which is directly
proportional to the system’s energy [34]. In a secondary ther-
mometry method, the temperature is estimated by measuring
the relative phase obtained from a known reference temper-
ature sample and an unknown temperature sample [7,35].
This article describes a different approach that surpasses the
Cramér-Rao limit and enhances precision using quantum re-
sources. This approach has been extensively researched in
parameter estimation. Recent studies focused on defining
and quantifying quantum correlations in composite states.
These studies explored the operational relevance of quan-
tum technology and probe the classical-quantum correlation
boundary. The investigation provides valuable insights into
the underlying mechanisms of optomechanical systems and
their practical applications [36–39].

This paper is organized as follows. In Sec. II A, we provide
an overview of quantum parameter estimation and introduce
the Cramér-Rao bound (CRB), which sets a fundamental limit
on the accuracy of any unbiased estimator. We also define the
Fisher information (FI) based on the conditional probability
of measuring desirable observables. Then, in Sec. II B we
describe the optomechanical system in the Michelson inter-
ferometer. In Sec. III A, we measure the phase parameter in
the measurement output to obtain the FI of the closed system.
Next, we examine the system as an open system to explore
the effects of loss in the field and mechanical subsystem.
This section aims to provide a comprehensive understanding
of how to monitor these systems and obtain accurate infor-
mation. To delve into the quantum Fisher information (QFI),
we utilize the symmetric logarithmic operator in Sec. III B
to optimize the FI across all possible measurements with
positive operator-valued measurement (POVM). Moving on
to the third and final Sec. III C, we assess the accuracy of
temperature measurement in a closed system based on phase
outputs. Finally, in Sec. IV, we provide our conclusions.

II. PARAMETER ESTIMATION AND SYSTEM
SPECIFICATION

In quantum physics, four fundamental steps must be
followed when performing measurements. The initial and
foremost step entails closely monitoring the quantum sensor
and ensuring that its initial state is appropriately prepared.
Subsequently, it is imperative to interact with the desired
signal robustly while simultaneously mitigating any potential

interference. Once this has been accomplished, it is crucial to
read the final state and determine the density of the sensor. The
ultimate step involves using phase and parameter estimation
techniques to ascertain the precise magnitude of the signal.

A. Parameter estimation and the Cramér-Rao limit

The problem of parameter estimation lies in identifying
a continuous or discrete parameter, denoted by θ , which is
a result of the interaction between two or more subsystems
and encoded in the system’s state ρθ . The process of param-
eter estimation is typically broken down into three distinct
steps, namely, (i) the interaction between a state with known
parameters, referred to as the quantum probe, and a state
whose parameters are unknown, i.e., the quantum object; (ii)
the configuration setup involving a detector that measures the
state of the quantum probe; and (iii) the utilization of data
analysis techniques to determine the desired parameter value.
The accuracy of the estimated parameter can be evaluated by
using the renowned Cramér-Rao bound (CRB). It is pertinent
to note that the effectiveness of this protocol can be enhanced
by carefully selecting appropriate features and quantum re-
sources to increase the sensitivity of the estimation process.

Following the interaction and measurement, the state of the
quantum probe undergoes analysis via the POVM, denoted
as M{POVM} = {Ê (N )

x } [40]. This process is repeated on N
identical independent copies of the quantum probe, resulting
in measurements that pertain to the set x. The probability
of each element of this set occurring is given by P (x|θ ) =
Tr{Ê (N )

x ρ⊗N
θ } [40]. We utilize standard data processing meth-

ods and identify its correlation with the estimated parameters
to determine the value of the unknown parameter.

The CRB stands as a vital constraint on the level of preci-
sion that can be achieved in parameter estimation and serves
as a standard against which the performance of any estimator
can be evaluated. It is worth noting that the CRB relies on
the underlying statistical model of the data and the specific
estimator utilized and may only be attainable under certain cir-
cumstances. Under the assumption of asymptotically unbiased
parameter estimation, the CRB offers a means of expressing
the variance of the estimated parameter (�θ ) as a function of
the FI matrix [18,40,41]

�θ � 1/N
√
F (ρθ ). (1)

FI is the amount of information that a given random variable
contains regarding the parameter of interest. The concept of
FI can be precisely defined in terms of of CRB as

F (ρθ ) ≡
∑

x

P−1(x|θ ) [∂θP (x|θ )]2. (2)

The achievement of a particular sensitivity level through
a measurement protocol can be evaluated using the classical
Fisher function and CRB. These customary functions do not
require the maximization of the Fisher function for all sets
of M{POVM}, which are known as the classical boundary. The
matrix capacity of the protocol to achieve the optimal sensi-
tivity as predicted by theory can be investigated while taking
into account the experiment’s limitations [20,24,42].

We can identify where FI reaches its most significant po-
tential by studying the CR inequality. To achieve optimal
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FIG. 1. Schematic representation of the proposed experimental
setup utilizing a Michelson interferometer for a single photon. The A
and B arms are equipped with high-precision slots and a cavity with
a tiny end mirror mounted on a micromechanical oscillator in the A
arm. Two single-photon detectors, D1 and D2, monitor the photons
that leak out of each of the slits [44,45].

sensitivity, examining all feasible combinations of POVM
operators is necessary to determine when Eq. (1) yields an
equality, rather than an inequality relation. This approach pro-
duces outcomes referred to as ‘quantum Fisher information”
(QFI) and “quantum Cramér-Rao bound” (QCRB), which can
be utilized to establish the maximum level of measurement
accuracy, even in the absence of quantum resources [18,19].

In statistical mechanics, the optimal estimation of the
temperature parameter for a given system can be attained
through an analysis of the measurement statistics of the en-
ergy operator. However, when energy measurement becomes
increasingly intricate, the temperature value can be estimated
by investigating temperature-dependent quantities. It can be
demonstrated that, in the evaluation of the temperature param-
eter, the measurement of the energy-dependent function of the
system satisfies the inequality saturation condition and yields
the QCRB (B) [43].

The present study employs the symmetric logarithmic
derivative (SLD) operator, as proposed in the Fisher function
optimization approach, to achieve its research objective. For
temperature, the operator is defined as [7]

�̂T = 1

kB T 2
(Ĥ − 〈Ĥ〉). (3)

Therefore, the uncertainty obtained from the QCRB will be as
follows:

√
N�T � 1√

F (T )
= kB T 2

�Ĥ
. (4)

B. Characterization of the optomechanical system

Here, we elaborate on the application of the optomechani-
cal system, which consists of a cavity and a movable mirror,
within the framework of the Michelson interferometer. As
shown in Fig. 1, one arm of the interferometer incorporates

a high-finesse optomechanical cavity, while the other arm
features an optical cavity, showcasing the versatility of this
configuration in various practical scenarios. This particular
configuration has proven invaluable in observing the impact
of a single photon on a macroscopic mechanical component
[44], as well as the exploration of the nonlinear effects of the
system [46].

Furthermore, it enables the analysis of the interaction be-
tween the field and mechanical modes, thus providing insight
into the intricate dynamics of the system [45]. The setup
involves a polarizing beam splitter situated at the input of the
structure that ensures an equal likelihood of photon entrance
into each interferometer’s arms. The mechanical component
achieves equilibrium with a thermal reservoir maintained at a
particular temperature, denoted as T . The radiation pressure
of light influences the oscillatory motion of this mechanical
component, resulting in a nonlinear interaction that yields a
correlation between the mechanical and optical subsystems.
In addition, a pair of single-photon detectors are situated at
the two outputs of the interferometer to detect the single
photons produced. The interferometry process is conducted
by measuring the phase difference between the outputs.

We employ the nonlinear variant of the optomechanical
system as follows [34,47,48]:

ĤOM = h̄ ωC â†â + h̄ ωM b̂†b̂ − g0 â†â(b̂† + b̂). (5)

This system operates using two distinct types of operators:
â(â†) and b̂(b̂†). These operators serve the purpose of an-
nihilation and creation of optical and mechanical modes,
respectively. We denote the frequency of the cavity and the
mechanical oscillator by ωC and ωM. Meanwhile, g0 is repre-
sentative of the optomechanical coupling.

The initial density operator of the optomechanical system
can be expressed as the tensor product of the density operators
of the mechanical and field modes

ρ̂OM(0) = ρ̂M(0) ⊗ ρ̂O(0). (6)

The initial assumption is that the mechanical oscillator is
in equilibrium with its surrounding environment at a given
temperature, denoted as T . Consequently, we can effectively
describe the probability distribution of the mechanical mode
through the utilization of the Gibbs state, which represents the
density operator as follows:

ρ̂M(0) =
∑

j

ρ j j | j〉〈 j|. (7)

Here ρ j j = n j
th/(1 + nth ) j+1, nth = (eβ h̄ ωM − 1)−1, and β =

1/kB T .
Utilizing entangled photon modes is a promising approach

to enhance accuracy and sensitivity in the field of quantum
measurement and parameter estimation. Here, we use the
NOON quantum state

|NOON〉 = (|nA, 0B〉 + |0A, nB〉)/
√

2, (8)

for the interferometric system with N injected photons. Here,
the state |nA, mB〉 describes the mode that contains n(m)
photons in arm A(B). We multiply the field mode state with
the Gibbs state of the mechanical mode using tensor multipli-
cation to establish the optomechanical system’s initial state.
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By initializing the optomechanical system with an entangled
NOON state in the interferometer input, we can achieve the
initial state of the optomechanical system as follows:

ρ̂OM(0) = ρ̂M(0) ⊗ ρ̂O(0)

= 1

2

∞∑
j=0

ρ j j | j〉〈 j|

⊗ (|0A nB〉〈nB 0A| + |0A nB〉〈0B nA|
+ |nA 0B〉〈nB 0A| + |nA 0B〉〈0B nA|). (9)

III. ACCURACY OF TEMPERATURE ESTIMATION WITH
OPTOMECHANICAL SYSTEM

We first measure the classical FI from the phase output
of the system to estimate the temperature parameter. Based
on this, we derive the classical CRB and analyze the sys-
tem in three distinct cases: closed system, open system with
mechanical loss, and open system with optical loss. Next,
we evaluate the system based on energy measurement and
determine the QFI to estimate the temperature evaluation. We
then specify the QCRB and analyze the system in the same
three distinct situation. Lastly, we determine the sensitivity of
temperature parameter estimation, as a dependent variable for
phase by measuring the phase in the system output. Overall,
this analysis provides a comprehensive understanding of the
system under examination and the various factors that impact
its performance in different states.

A. FI behavior based on phase operator measurement

To determine FI upon the phase measurement, the initial
approach involves utilizing the conditional probability func-
tion, derived from the projection measurement of the phase
operator and subsequently extracting the classical FI. How-
ever, it is noteworthy that measuring the precise magnitude
of the partial phase difference, which serves as the central
objective of interferometry and can be utilized to determine
various physical properties of systems, presents a significant
challenge. This task necessitates a well-defined phase oper-
ator, and for this purpose, we opted for the non-Hermitian
Suskind-Galgower phase operator

sin φ̂ =
∞∑

n=0

(|n〉〈n + 1| + |n + 1〉〈n|). (10)

This particular operator possesses eigenstates with distinct
phases, and by exploitation of its self-adjointness property, we
can derive a well-defined Hermitian operator [50].

In the context of the NOON mode, wherein the photon
number is restricted to only two values, namely, zero and n,
the most suitable projection measurement operator which can
be utilized to extract the overall phase shift in the interferom-
eter is [40,51–53]

φ̂{n} = |nA, 0B〉〈nB, 0A| + |0A, nB〉〈0B, nA|. (11)

The evaluation of the system’s state is accomplished by
the output of the interferometer utilizing the phase projection
operator following the time transformation. Subsequently,
through an analysis of the impact of the phase operator on the

FIG. 2. Changes in Fischer information related to an optome-
chanical cavity of a closed system versus dimensionless time for
different numbers of photons. This diagram is drawn based on exper-
imental data for optomechanical cavities that satisfy the condition
g0 � ωM, The related parameters are gM = g0/ωM = 14.29, γM =
γ /ωM = 0.024, T = 4.8 μK, and κM = κ/ωM = 15.7 [49].

system state, it becomes feasible to compute the probability
function P (φ|T ) = Tr{φ̂ ρOM(τ )}, which, in turn, facilitates
the determination of the FI function [40,51,52,54]. This pro-
cedure yields the following outcome for a closed system:

F̄ φ̂

NOON = 1
16 n4 |η(τ )|4 cos[n2 θs(τ )]

× x4 csch4( 1
2 x

)
e− 1

2 n2 |η(τ )|2 coth( x
2 ), (12)

where in F̄ = (h̄ ωM/kB)2 F , θs(τ ) = τ − sin(τ ), |η(τ )|2 =
4 g2

M sin2(τ/2), gM = g0/ωM, x = β h̄ ωM, τ = ωM t , and β =
kB T . When analyzing the variations in Fisher information
using the ratio of the coupling coefficient to the mechan-
ical frequency multiplied by the number of photons [α =
n2 g2

M (τ/2)2 coth(x/2)], we find that the result is a con-
sistently increasing function like α2 e−2 α . However, for this
function to give a suitable value for small values of τ , either
the number of entangled photons (n) must be very high or
the gM coefficient must surpass a value of significantly larger
than 1.

Figure 2 displays the changes in FI of the system as
the number of distinct photons varies. Increasing the num-
ber of entangled photons results in achieving maximum FI
in a shorter time, allowing for higher rates of simultaneous
measurements. It is important to note that to obtain this phe-
nomenon, the optomechanical coupling coefficient should be
significantly larger than the frequency of the mechanical mode
(g0 � ωM).

The oscillating part cos[n2 θs(τ )] is the primary factor
responsible for the oscillating nature of the FI, resulting in
alternating periods of fall and rise in the absence of any losses
within the system when the dimensionless time scale τ is
in the significant range, as shown in Eq. (12) and Fig. 2.
However, it is crucial to note that the practical application
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of the timescale requires the fulfillment of the condition
τ 	 1. The maximum FI in this limit is achieved at τ =
2
√

tanh(x/2)/n gM, equivalent to F̄ = 4 e−2 x4 csch2(x). By
substituting the maximum FI value into the CRB, we can
determine the standard deviation for temperature estimation
as

�T

T
� 1

N

e sinh(x)

2 x
, (13)

where the constant e is the Euler’s number. The determination
of the number of measurements, denoted by N , is contin-
gent upon the available total measurement time τ and the
additional time required for initialization, manipulation, and
reading the results [40]. Consequently, the precision of the
temperature measurement at a specific temperature can be
enhanced by decreasing the ratio of classical energy kB T
to quantum energy h̄ ωM, which aligns with the fundamental
principles of quantum mechanics.

The data depicted in the Fig. 2 presented herein reveal
that, under the condition τ 	 1, the NOON mode outper-
forms the single-photon mode in terms of FI, yielding an
increase in FI proportional to n4. Notably, entangling n pho-
tons leads to a reduction in the time frame required to achieve
maximum FI by a factor of 1/n. These observations have
considerable implications, as increasing the number of en-
tangled photons enhances the number of repetitions within
a given time frame, thus improving measurement precision.
Notably, the application of the NOON state is instrumental in
achieving the Heisenberg limit for successive measurements
with a predetermined time interval. These findings underscore
the potential of entanglement-based techniques in realizing
highly accurate measurements and highlight the importance
of considering the NOON state when selecting the appropriate
measurement approach.

To understand how the environment impacts the optome-
chanical system, we use the Lindblad master equation to
model the evolution of the system’s state over time. The
Lindblad formulation enables us to rigorously explore all the
loss mechanisms and noise sources present in the system’s
surroundings. This allows for a comprehensive investigation
into how these environmental factors shape the behavior and
capabilities of the optomechanical system. Specifically, we
consider the system under two scenarios: first, we only con-
sider mechanical loss, and then we investigate optical loss (see
Appendixes B and C for more details). The FI for the open
system with mechanical loss is given by

F̄γ , φ̂

NOON = 1
16 [n2 |βn(τ )|2 + 2 θγ (τ )]2 cos[n2 θt (τ )]

× x4 csch4( 1
2 x

)
e− 1

2 [n2 |βn(τ )|2+2 θγ (τ )]2 coth( x
2 ), (14)

where γ is mechanical loss coefficient, γM = γ /ωM, and

θt (τ ) = e−γM τ/2

(γ 2
M+4)

[
eγM τ/2

(
γ 2

M τ − 4 γM + 4 τ
)

+ 4 γM cos(τ ) + (
γ 2

M − 4
)

sin(τ )
]
,

θγM (τ ) = 2 γM τ

(γ 2
M+4)

{(
γ 2

M + 4
)
τ − 4 γM

+ 4[γM cos(τ ) − 2 sin(τ )]e−γM τ/2
}
,

βn(τ ) = 2 i gM n
γM+2 i [1 − e−(γM+2 i)τ/2].

FIG. 3. FI in closed and open optomechanical systems with vary-
ing loss mechanisms, versus dimensionless time τ . The data are
based on experimental measurements of optomechanical cavities
with g0 � ωM, where gM = 14.29, γM = 0.024, and κM = 15.7 [49].

Equation (14) highlights that mechanical loss results in ampli-
tude modulation FI. Also, in the scenario where optical loss is
present, FI is obtained as

F̄κ, φ̂

NOON = 1
16

(
1 − 1

2 n κM τ
) |η(τ )|4 cos[n2 θs(τ )]

× n4 x4 csch4
(

1
2 x

)
e− 1

2 n2 |η(τ )|2 coth(
x
2 )

, (15)

where κM = κ/ωM, κ is optical loss coefficient and θs(τ ) =
τ − sin(τ ). The presence of optical loss leads to strong damp-
ing of the FI function, as is clear by the term (1 − 1

2 n κM τ ).
To gain better insight into the effect of loss, we plot

these FI’s versus dimensionless time τ = ωM t in Fig. 3. The
figure clearly shows a significant decrease in the FI with
increasing optical loss in the open system, while the effect
of mechanical loss is minimal. Equation (15) indicates that
optical loss is proportional to 1 − κM τ/2, resulting in a linear
decrease in FI. This representation primarily focuses on the
interaction of a single photon with different coupling coeffi-
cients within the optomechanical cavity.

B. FI behavior based on energy operator measurement

Within thermal systems, metrology serves two distinct pur-
poses: the estimation of temperature, or thermometry, and the
estimation of the coupling coefficient of field and mechan-
ical modes in the Hamiltonian. Thermometry is a relatively
straightforward process, yielding outcomes that are universal
and not dependent on a specific model. If we consider a quan-
tum system that is in thermal equilibrium with a heat source
at a given temperature T , then the Gibbs model can be used to
describe the density matrix of the system. Specifically, if the
system’s Hamiltonian is represented by Ĥ , its thermal state
can be defined as follows:

ρT = Z−1 e−Ĥ/kB T , (16)
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where Z = Tr{e−Ĥ/kB T } is the partition function. The present
discourse acknowledges the adiabatic nature of all the relevant
parameters, ensuring that the Gibbs state consistently charac-
terizes the system.

To measure temperature, one typically employs a ther-
mometer that is considerably smaller than the medium being
measured. This allows the thermometer to reach thermal equi-
librium with the medium, effectively becoming isothermal;
By doing so, the temperature of the sample can be deduced
by reading the thermometer. We use this standard thermom-
etry process to apply in the quantum state by obtaining the
temperature of the sample through suitable measurement on
the “steady state” of a thermometer that is isothermal with
the environment. Through performing a large number of in-
dependent experiments, a reasonably accurate estimate of the
temperature T of the sample can be determined. However, to
determine the minimum error associated with the estimation,
QFI (FT ) can be used in the QCRB inequality. Thus, one
can consider QFI as determining the temperature sensitivity,
which should have the most considerable possible value to
maximize the accuracy in the estimation process.

To determine the QFI of a system, we use Eq. (4), which
can provide the maximum FI per SLD operator. To do this, we
need to calculate the expected values of the first order (〈Ĥ〉)
and second order (〈Ĥ2〉) moments of the energy based on the
Hamiltonian (5) (calculations are outlined in Appendix D).

Assuming the optomechanical system to be an isolated
system that involves an ensemble consisting of particles as-
sociated with the field and mechanical modes, the quantum
equivalent of this ensemble, i.e., the Gibbs density matrix of
the system comprising the field and mechanical modes under
the influence of the optomechanical interaction described by
the ĤOM Hamiltonian, is derived as follows [55]:

ρ̂ =
∞∑
j=0

|N ; j, Ng0/ωM〉〈Ng0/ωM, j; N | e−β ĤOM

Z . (17)

The QFI for a stationary system which necessitates the deter-
mination of the energy variance, is calculated as follows:

Q̄G = 1
4 x4csch2( 1

2 x). (18)

At x = 3.83, the QFI attains its maximum, with the value
Q̄G = 4.88. This result suggests that obtaining a sensitive
measurement is achievable, regardless of the temperature, if
the quantum to classical energy ratio is in proximity to the
desired value.

Furthermore, as the variance is a limited quantity, it is
feasible to compute the maximum energy variance and utilize
it to analyze optomechanical energy behavior, determine opti-
mal measurement conditions related to energy, and understand
how the energy levels are arranged in the system [43]. We put
∂EN �Ĥ2

O = 0, consequently, it can be deduced that either j
and k are equal, or the following relationship holds:

h̄ ωM( j + k) = 2(〈Ĥ〉 + kB T − h̄ ωMN εN ), (19)

in which we have εN = (ωR/ωM) − (g2
0/ω

2
M)N (see Ap-

pendix D for more information). This result implies that the
optomechanical system in the bounded ensemble has induced
the mechanical oscillator to exhibit characteristics of a two-
level system.

The QFI of a Michelson interferometric setup, illustrated
in Fig. 1, in a closed system and after a duration of time t , is
computed as follows:

Q̄NOON = 1
4 x4 csch2( 1

2 x)
[
1 + n2 g2

M sinh(x)
]
. (20)

As evidenced by Eq. (20), the term within bracket is always
larger than unity, and its value depends on factors such as the
number of photons, physical characteristic of the mechanical
state, and the hyperbolic pattern of the thermodynamic-to-
quantum energy ratio. The optomechanical coupling between
the field and mechanical states brings about this phenomenon.
As a result, it can be concluded that the optomechanical cou-
pling leads to an increase in the quantum Fischer information.
The magnitude of this increase is directly proportional to
three factors: the number of entangled photons in the field
state (n), the ratio of the optomechanical coupling to the
frequency of the mechanical oscillator (gM), and the argument
of the hyperbolic function, which is the ratio of quantum to
classical energy [sinh(x)]. Equation (20) indicates that as the
proportion of quantum energy to classical energy increases,
the Fischer information attains its maximum value within a
particular temperature interval.

In presence of mechanical loss, one can derive the QFI by
calculating the variance in energy. To obtain this information,
for a small loss coefficient, we have

Q̄γ

NOON ≈ 1
4 x4 csch2

(
1
2 x

)
[1 + |gM − βn(t )|2 sinh(x)]. (21)

As shown by Eq. (21), the presence of mechanical loss
leads to oscillation in QFI over time. Taking into considera-
tion the first approximation of optical mode loss, the energy
variance calculation for the system yields an expression for
the QFI as follows:

Q̄κ, SLD
NOON ≈ 1

4 x4 csch2
(

1
2 x

) [
1 + N (t ) g2

M sinh
(

1
2 x

)]
, (22)

where N (t ) = (n − 2)2 + 4(n − 1) cos(ωMt ). When cos(ωMt )
is maximum, QFI increases correspondingly. However, over
time, this value decreases and becomes negative, resulting
in significant in the QFI. Consequently, the presence of loss
in the optical mode can dramatically reduce the maximum
achievable FI. Figure 4 displays the QFI versus temperature
(T ) and the dimensionless time (τ = ωMt), considering the
initial input field to contain either n = 2 (top panels) or n = 8
(bottom panels) entangled photons. Also, Fig. 4 shows the im-
pact of dissipation on an input signal consisting of n = 2 (top
panels) or n = 8 (bottom panels) entangled photons. Com-
paring the size of Fisher’s information in the Figure reveals
that using a quantum resource, e.g., entanglement, increases
quantum information, as expected.

C. Improved temperature estimation through measured
phase analysis

By using optical interferometer devices, it is possible to
detect changes in the phase of light as a response to a me-
chanical movement. They provide a direct measurement of
mechanical position by using either a homodyne or hetero-
dyne detector. In a homodyne detector, the signal is interfered
with by a local oscillator, while in a heterodyne detector, a
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FIG. 4. Contour plots of the ratio of FI changes to Gibbs FI (Q̄/Q̄G) in three different scenarios: closed system, open system with
mechanical loss, and open system with optical loss. Two input states were used, one with two entangled photons and the other with eight
entangled photons. The distinction between the effects of mechanical and optical loss is noticeable in Fisher’s function. The size of Fisher’s
information changes dramatically as the number of photons increases. Within the temperature range, the loss effect leads to the contraction
and displacement of the maximum amount of FI. During this period, the changes occur alongside a revival and decline process. This diagram
was created using experimental data from the optomechanical cavity that meets the condition g0 � ωM. The relevant parameter values are
gM = 14.29, γM = 0.024, and κM = 16 [49].

local oscillator of a different frequency is mixed with the
signal [58–61]. Therefore, the phase measurement is a fun-
damental tools to determine physical properties of systems.
Furthermore, to measure small phase differences, the use of
entangled states can lead to major improvements in measure-
ment outcomes of an interferometer. However, the quantum
mechanics places a fundamental limit on our ability to make
measurements, and the phase measurement is a convenient
area to investigate this limit. Although there is no Hermitian
phase operator with all the desired properties, the Suskind-
Glogower operator can play the role of ˆei φ and can be used
to extract the phase. Thus, interferometers with N photons,
instead of a single photon, can improve the resolution and
sensitivity of the measurement. The parameter of interest φ̂{n}
is directly proportional to the phase and visibility that can
be obtained through careful measurement. Consequently, the
measurement of phase-dependent observables can be utilized
to establish the temperature of systems.

The parameter of interest φ̂{n} serves as a quantitative indi-
cator of the photon transition within the device. Its magnitude
is directly proportional to the phase and visibility that can be
obtained through careful measurement. To determine the val-
ues in the ρ̂

{n}
O (t ) state, the Suskind-Galgower phase operator,

described by Eq. (11) must be applied. The estimated value
φ̂{n} representing the photon transition within the device is
directly related to the measured phase and its visibility. Conse-
quently, the measurement of phase-dependent observables can
be utilized in temperature estimation. We can now compute
the values of 〈φ̂{n}〉 and 〈(φ̂{n})2〉 as follows:

〈φ̂{n}〉
ρ̂

{n}
O (t ) = e− 1

2 (2nth+1)n2 |η(t )|2 cos[n2 θs(t )],

〈(φ̂{n})2〉
ρ̂

{n}
O (t ) = 1.

By conducting several experiments, we can obtain distinct
values for the phases that are independent of each other. Then,
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we can perform statistical analysis to calculate the standard
deviation or uncertainty related to the phase measurement,
�φ̂{n}. Such a methodology enables the attainment of reliable
and accurate results. When analyzing a set of measurements, it
is crucial to determine the error associated with the data accu-
rately. This can be expressed as �φ̂

{n}
mean = �φ̂{n}/

√
N , where

N represents the total number of measurements used. This
equation underlines the significance of properly assessment
the error to ensure scientific findings are reliable and valid.
According to the above result and the “average standard error
theorem” [62], performing N number of tests that are inde-
pendent of each other and acted on the same input states leads
to the reduction of the uncertainty of the average value of the
phase measurement, (φ̄), with the coefficient

√
N . Based on

the relationship between temperature and phase, the precision
or reliability in estimating temperature can be expressed as

�T = |d〈φ̂{n}〉/dφ|−1 �φ̂{n}
mean. (23)

This formula highlights the importance of accurately esti-
mating phase to achieve precise temperature measurements.
The signal-to-noise (SNR) ratio in temperature estimation, de-
noted as T/�T , can be captured by rearranging the previous
formula as

SNR{n} =
√

N n2

(
g0

ωM

)2

sin2

(
1

2
ωM t

)
csch2

(
1

2
x

)
Fn

x
,

(24)

where Fn = {en2 |η(t )|2 coth( x
2 ) sec2[n2 θs(t )] − 1}−1/2.

Upon initial examination, the scaling coefficient
√

N n2

presented in Eq. (24) suggests the possibility of surpassing the
Heisenberg limit (

√
N n). In light of the preceding discussion,

it is worth noting that upon performing an experiment N num-
ber of times on an entangled state comprised of N photons,
the CRB serves to establish the upper limit of sensitivity that
we can attain. Specifically, we can quickly get that this limit is
equivalent to N5/2. It is worth noting that the parameter denot-
ing the number of photons, represented by the variable N , is
also a factor in other terms. Due to this consideration, even in
instances where n takes on small values, the resulting outcome
is found to be of the same magnitude as the Heisenberg limit.
The precision value for temperature measurement for three
modes with varying numbers of entangled photons and two
different values of the gM are presented in Table I. We set
the consecutive time intervals of the measurement to obtain
the maximum value of the temperature-dependent exponential
function. We should note that the results presented are only
for one repetition of the experiment. As indicated in Table I,
the degree of precision required falls below 5.7 × 10−7, rep-
resenting the most favorable level of accuracy in temperature
assessment [57]. Upon comparison with the data presented in
the table, it is evident that the scenario in which g0/ωM =
14.329 yields an exact measurement outcome, exhibiting min-
imal statistical error aside from systematic errors.

IV. CONCLUSION

The present study proposes a different method for precisely
measuring temperature through the use of an optomechanical
system placed at one of the arms of the Michelson interferom-
eter. By considering the condition g0 � ωM, which implies

TABLE I. Temperature measurement accuracy: The accuracy
of temperature measurement for different temperature values is
calculated in two optomechanical systems with different coupling
coefficients. The right columns of the table show the temperature
accuracy, �T/T , of two different systems. The first system is linked
to its quantum coupling when gM = 2.2 × 10−3 [56] and the second
system for gM = 14.29 [49]. If the value of gM � 1, then the ther-
mometer system will not be suitable for thermometric. The parameter
n represents the number of entangled photons that enter the system. It
is worth noting that the minimum acceptable accuracy size according
to standards and metrology organization is 5.7 × 10−7. Zero values
for measurement accuracy indicate a precise measurement.

gM 2.2 × 10−3 14.29

n T �T/T (< 5.7 × 10−7) [57]

1 1 µK 6.15 4.4 × 10−181

1 mK 5.8 × 10−2 0.0
1 K 7.41 × 10−14 0.0

3 1 µK 2.26 × 108 0.0
1 mK 2.11 × 10−3 0.0
1 K 1.06 × 10−29 0.0

5 1 µK 4.89 × 107 0.0
1 mK 4.4 × 10−4 0.0
1 K 6.38 × 10−60 0.0

that optomechanical coupling is more significant than me-
chanical frequency, we demonstrate that this system can serve
as a highly sensitive thermometer. Notably, prior experimental
work has already established this condition for the optome-
chanical system, as evidenced in Ref. [49]. In this paper, we
theoretically investigate this problem in three distinct models:
a closed system, an open system with the presence of loss
in the mechanical mode, and an open system with loss in
its optical mode. Our findings have significant implications
for the development of accurate and sensitive temperature
measurement technologies, particularly in the fields of physics
and engineering.

The experimental setup under consideration constitutes an
example of indirect measurement. Our analysis reveals that
the presence of a loss in the mechanical mode only has a mini-
mal impact on the overall shape of the Fisher Information (FI).
However, optical field loss, resulting from the measurement of
the field component, causes a rapid reduction in the range of
FI. Specifically, we find that this reduction is quadratic in the
zeroth order of the optical loss coefficient.

In addition to that, our study examines the effects of
the dissipation of optical and mechanical mode on Fischer
information, and also we explore entanglement as a pure
quantum resource. Our findings reveal that the presence of
entangled photons in the lossless system serves two effects.
First, it reduces the time interval required for FI to reach its
maximum value, thereby allowing for more measurements to
be conducted in the same time frame by the experimenters.
Second, the inclusion of entangled photons expands the range
of FI, ultimately leading to promoted sensitivity in parameter
estimation. The impact of entangled photons on FI is depen-
dent upon the presence or absence of mechanical and optical
losses.
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Based on our analysis, we can conclude that to enhance
the sensitivity of temperature parameter estimation, we should
take into account three critical factors in the interferometric
setup that the optomechanical system is on one of its arms.
First, the optomechanical coupling coefficient’s magnitude
must be considered significantly greater than the mechanical
frequency. Second, the measurement sequence should be ad-
justed when the Fisher function reaches its maximum value.
Finally, to control the loss in the system, one should utilize the
entangled photons.
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APPENDIX A: OBTAINING STATE DENSITY MATRIX IN A
CLOSED SYSTEM

From Hamiltonian (5) and by using of polaron transforma-
tion [63,64], we have

ÛOM(t ) =e−i ωR t â†âei θs (t )(â†â)2
eâ†â[η(t ) b̂†−η∗(t ) b̂]e−i ωM t b̂†b̂.

(A1)

By applying the unitary transformation operator (A1) on the
initial state of the system, Eq. (9), we have

ρ̂
{n}
OM(t ) = Û (t )ρ̂{n}

OM(0)Û †(t )

= 1
2

∞∑
j=0

ρ j j
[
ei n2 θs (t ) |nA, 0B; j, n η(t )〉

+ |0A, nB; j〉]
× [〈 j; nB, 0A| + e−i n2 θs (t ) 〈n η(t ), j; 0B, nA|].

(A2)

Now, with use of P (φ|T ) = Tr{φ̂ ρOM(τ )} and Eq. (2), the FI
function can be calculated.

APPENDIX B: EVOLUTION OF OPEN SYSTEM
(MECHANICAL MODE): SOLVING THE

CHARACTERISTIC FUNCTION

When the mechanical mode is in thermal equilibrium with
its environment at temperature T , using the optomechanical
Hamiltonian (5), the Lindblad equation in the interaction pic-
ture is written as follows [65]:

˙̂ρOM(γ , t ) = −[ωMâ†â(εb̂† − ε∗b̂), ρ̂OM(γ , t )]

+ γ (nth + 1)Db̂[ρ̂OM(γ , t )]

+ γ nthDb̂† [ρ̂OM(γ , t )], (B1)

where Dô1ô2 [ρ] = ô2ρô1 − 1
2 {ρ, ô1ô2} and iε = eiωmt . We as-

sume that the system initially prepared in a tensor product of
the mechanical mode in the thermal state and the optical mode
in number state as follows:

ρOM(t = 0) = ρO(t = 0) ⊗ ρM(t = 0)

=
∑
n,m

cn c∗
m |n〉〈m| ⊗

∞∑
j=0

nth

(1 + nth ) j+1
| j〉〈 j|.

(B2)

To determine the time-dependent solution of the above
master equation, we follow the procedure similar to that
found in Refs. [66–69]. By utilizing the initial state given in
Eq. (B2), we can calculate the density matrix of the whole
system at time t as

ρOM(t ) =
∑
n,m; j

Cnm(t ) |n〉〈m| | j, αn(t )〉〈βm(t ), j|, (B3)

where the states | j, αn(t )〉 represent the displeased number
state of the mechanical mode; these states are a broader class
of transformed states that can be obtained by applying the
displacement operator on arbitrary number states.

Since â†â is a constant of motion, we can consider the ele-
ments of Cnm(t ) to be independent of each other. The purpose
of calculating the characteristic function is as follows:

χnm(λ, t ) = TrM{eλ b̂†−λ∗ b̂ ρnm(t )}. (B4)

Using the method detailed in Refs. [66–69], the following
differential equation for the characteristic function is ob-
tained:

χ̂γ (λ, t ) = ei � t (n−m) exp
{ − 1

2γ t (2nth + 1)|λ|2

− 1
2 i g0 t (n + m)(λ + λ∗)

+ [ζ λ + i g0(n − m)]∂λ

− [ζ ∗ λ∗ − i g0(n − m)]∂λ∗
}
χ̂γ (λ, 0).

Algebraic techniques can be used to solve this equation and
determine the value of function χγ (λ, t ). Thus, we obtain

χγ (λ, t ) = ei�(n−m)t ei θt (t )(n2−m2 ) e−(2nth+1)(n−m)2θγ (t )

×
[

1
2 e− 1

2 (2nth+1)|λ|2
]

× e
i g0
2ζ∗ (1−eζ∗t )(n+m)λ∗

e
i g0
2ζ (1−eζ t )(n+m)λ

× e
−i g0 γ

2|ζ |2
(

1+ ζ∗
γ

)
(1−eζ∗t )(n−m)(2nth+1)λ∗

× e
i g0 γ

2|ζ |2
(

1+ ζ

γ

)
(1−eζ t )(n−m)(2nth+1)λ

,

where

ζ = iωM − 1
2γ , ζ ∗ = −iωM − 1

2γ .

By rearranging the terms according to the characteristic func-
tion as

χ̂γ (λ, t ) = TrM

⎧⎨
⎩eλb̂†−λ∗b̂

∞∑
j=0

ρ j j (t ) | j, βn〉〈βm, j|
⎫⎬
⎭,

we can obtain

ρ̂OM(κ, t ) =
∑
nm

∞∑
j=0

ρ j j (t ) |n; j, βn〉〈βm, j; m|. (B5)
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APPENDIX C: EVOLUTION OF OPEN SYSTEM
(OPTICAL MODE)

The effect of decoherence on the optical mode can be
explained by the Lindblad master equation. We can ignore
mechanical attenuation because the radiation mode relaxes
much faster than a mechanical mode, so for the Hamiltonian
(5) the following quantum master equation is obtained [65]:

˙̂ρOM(κ; t ) = 1

i h̄
[ĤOM, ρ̂OM(κ; t )] + κ Dâ[ρ̂OM(κ; t )], (C1)

where the number of thermal photons is ignored at opti-
cal frequencies, i.e., we assume the zero thermal occupation
(kB T /h̄ ωR ≈ 0) for the optical fields; which is a valid ap-
proximation at room temperature, despite the fact that for
microwave fields it may not be correct [34].

The system without damping has an exact solvable solu-
tions as Eq. (A2) with the free evolution operator Û (t ) where
it satisfies the equation i ˙̂U (t ) = Ĥ Û (t ). By using the unitary
time evolution operator used in the closed system (A1), we
modify the master quantum equation (C1) to obtain an integral
equation [63]. By performing the time derivative, using the
equation related to time changes Û and noting that at t = 0 the
initial state is independent of time, the following relationship
can be concluded:

∂t [Û
†
t ρ̂OM(κ; t ) Ût − ρ̂OM(0)] = κ Û †

t Dâ[ρ̂OM(κ; t )] Ût .

By using the unitary property of the time evolution operator,
Eq. (C1) becomes a first-order differential equation with the
following solution:

ρ̂OM(κ; t ) = ρ̂OM(t ) + ρ̂D(t ), (C2)

where

ρ̂D(t ) =κ Ût

{∫ t

0
dt ′ Û †

t ′ Dâ
[
ρ̂OM(κ; t ′)

]
Ût ′

}
Û †

t . (C3)

The equation of linear integrals of this kind can be solved
by successive approximations in which we can consider the
initial nearness guess for our unknown density operator as
[70]

ρ̂OM(κ; t ′) ≈ ρ̂
{n}
OM(t ′). (C4)

A necessary and sufficient condition for the correctness of
the above approximations is that the integral terms in Eq. (C3)
are much smaller than the density operator ρ̂D(t ) 	 ρ̂OM(t ).
It can also be easily verified that TrOM{ρ̂D(t )} = 0, therefore,
the density operator ρ̂OM(κ; t ) is always normalized to unity.
So we can solve the integral equation in Eq. (C2) using the
approximate solution (A2) and obtain

ρ̂
{n}
OM(κ, t )

≈ 1
2

∞∑
j=0

ρ j j [|0A nB; j〉〈 j; nB 0A|

+ (1 − n κ t )|nA 0B; j, nη(t )〉〈nη(t ), j; 0B nA|
+ (

1 − 1
2 n κ t

)|nA 0B; j, nη(t )〉〈 j; nB 0A| ei n2 θs (t )

+ (
1 − 1

2 n κ t
)|0A nB; j〉〈nη(t ), j; 0B nA| e−i n2 θs (t )

+ κ

∫ t

0
dt ′ ∣∣(n − 1)A 0B; j, (n − 1)η(t ) − η∗(t ′)

× e− i ωM t
〉

× 〈
(n − 1)η(t ) − η∗(t ′) e− i ωM t , j; 0B (n − 1)A

∣∣. (C5)

APPENDIX D: CALCULATING QFI USING
SLD OPERATOR

The displacement operator property D̂−1(α) â D̂(α) = â +
α can be employed to perform the calculation of the QFI based
on the SLD operator [71]. The Hamiltonian variance in the
system state at time t can be calculated by using the following
moments:

〈ĤOM〉 = TrOM{ĤOM ρOM(t )}
= 1

2 {−h̄ � + h̄ ωM〈η, j|b̂†b̂| j, η〉
− h̄ g0〈η, j|(b̂† + b̂| j, η〉 + h̄ ωM〈 j|b̂†b̂| j〉}

= 1
2 h̄ [−� − g0 (η + η∗) + ωM |η|2 + 2 ωM nth],

and〈
Ĥ2

OM

〉 = TrOM
{
Ĥ2

OM ρOM(t )
}

= 1
2

[〈
η, j|[−h̄ � + h̄ ωM b̂†b̂ − h̄ g0

(
b̂† + b̂

)
]2| j, η

〉
+ 〈 j|(h̄ ωM b̂†b̂)2| j〉].

So, for the case where η(t ) = g0

ωM
(1 − e−iωMt ), the variance

is equal to

〈(�ĤOM)2〉 = 1

4
β−2 x2

{
csch2

(
1

2
x

)

+ g2
0

ω2
M

csch2

(
1

2
x

)[
1 + sinh

(
1

2
x

)

− cosh

(
1

2
x

)]}
.

Therefore, we can calculate Fκ as follows:

Fκ = β4 kB
〈
(�ĤOM)2

〉 =
(

kB

h̄ ωM

)2

β2 x2
〈
(�ĤOM)2

〉
.

APPENDIX E: ENERGY VARIANCE IN AN ISOLATED
OPTOMECHANICAL SYSTEM

Since the variance is a bounded quantity, we can calculate
the maximum of energy variance and use it to extract optome-
chanical energy, determine optimal measurement conditions,
and establish the arrangement of energy levels in the system.
As the Hamiltonian of the optomechanical system, Eq. (5),
commutes with the photon number operator, the number of
photons remains constant. Therefore, the energy states of the
cavity and the mirror are given by

|εl〉 = |n〉O|n g0/ωM, j〉M, n, j = 0, 1, 2, . . . . (E1)

The Hamiltonian in the subspace of n photons is a har-
monic oscillator with frequency ωM shifted by −nx0, where
x0 = −2xZPFg0/ωM is the displacement due to one photon. As
a result, the eigenvalues of the optomechanical Hamiltonian
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with nonnegative integers n and j are given by

En j = En + Ej = h̄
(
ωR n − g2

0 n2
/
ωM

) + h̄ ωM j. (E2)

The likelihood of selecting one quantum particle from the
optomechanical system, with energy En j , is governed by the
Boltzmann coefficient e−β En j [72]. In the specific basis of
energy states, we represent the density matrix of a cavity
containing N photons as

ρN j = Z−1 e−β EN e−β Ej , j = 0, 1, 2, . . . . (E3)

The partition function Z is determined by its normalization
condition. The trace of the density matrix is time independent
and must adhere to the relation Tr{ρ̂} = 1, thus

Z = e−β EN

∞∑
j=0

e−β Ej . (E4)

Finally, the density matrix of this group of particles is obtained
as follows:

ρ̂ =
∞∑
j=0

|N ; j, Ng0/ωM〉〈Ng0/ωM, j; N | e−β ĤOM

Z . (E5)

The quantum Gibbs state of the optomechanical system is
given by Eq. (E5), which implies that the system is in ther-
mal equilibrium at temperature T and follows the dynamics
governed by the Hamiltonian H . This definition of Gibbs’s
state indicates that the system is in a probability distribution at
equilibrium that remains constant during its future evolution.
To determine the Fisher information, we must calculate the

energy variance for this Gibbs state related to the optome-
chanical system according to the Eq. (4). The variance of the
energy in this case is independent of the number of photons
inside the cavity and results the Fisher function as follows:

F̄G = 1
4 x4csch2

(
1
2 x

)
. (E6)

However, the quantile variance is bounded and therefore its
maximum value is determined by examining its derivative
with respect to energy

∂EN �Ĥ2
O = 0. (E7)

Hence, the best optomechanical energy can be derived from
the subsequent relation [43]

(En j − Em k )[En j + Em k − 2(〈Ĥ〉 + kB T )] = 0. (E8)

The number of photons in the Hamiltonian (5) is a constant
value, meaning that either j and k are equal or the following
relationship holds:

h̄ ωM( j + k) = 2(〈Ĥ〉 + kB T − h̄ ωMN εN ), (E9)

where εN = (ωR/ωM) − (g2
0/ω

2
M)N . This means that the op-

tomechanical system has caused the mechanical oscillator to
behave as a two-level system. Thus, if we adjust the spectrum
to set j = 0, the upper level quantum number is determined
by the gap relationship between two energy levels as follows:

k = coth
(

1
2 x

) + 2/x − 1. (E10)
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