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Tunable linear-optical phase amplification
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We combine lossless, phase-only transformations with fully transmitting linear-optical scatterers to define
the principle of linear-optical phase amplification. This enables a physical phase shift φ to be nonlinearly
mapped to a new space γ (φ) using linear optics, resulting in a completely general and enhanced phase shifter
that can replace any standard one. A particular phase amplifier is experimentally realized, allowing the phase
enhancement parameter dγ /dφ to be continuously tuned. Placing this enhanced phase shifter in one arm of
a Mach-Zehnder interferometer led to an intensity-phase slope more than 20 times steeper than what can be
obtained with its unamplified counterpart.
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I. INTRODUCTION

Phase inference and control underlie many applications
of optics. Phase information can only be gathered and un-
derstood from intensity modulations since these contain the
energy that can be measured. The details about these mod-
ulations can be used to obtain information about the phase
itself. For example, from a small phase perturbation �φ, the
corresponding intensity modulation may be described by a
series expansion about the reference point. To first order, the
phase perturbation results in an intensity modulation of

I (φ0 + �φ) ≈ I (φ0) + m(φ0)�φ, (1)

where m is the derivative of intensity with respect to the
phase m(φ) := I ′(φ). The function m(φ) can quantify the local
sensitivity of the interferometer.

A more general concept of phase can be obtained by con-
sidering that the phase carried by the optical state need not
directly stem from a physical phase perturbation; rather, it
might be a function of this. In particular, the phase shift φ

applied in one optical path may undergo a transformation γ

so that the intensity modulation readout provides direct infor-
mation about γ (φ), not φ. Applying γ −1 or an approximation
of this to the measured value γ (φ) maps the measured data
back to the original space, extracting the physical phase φ.
When the magnitude of dγ /dφ evaluated at a given bias point
is large, the effective sensitivity is increased, as

m(φ0) = dI (γ (φ))
dφ

∣∣∣∣
φ0

= dI

dγ

dγ

dφ

∣∣∣∣
φ0

. (2)
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We call any device that alters the phase in this way, without
altering the intensity and direction of the light, an optical
phase amplifier. The term dγ /dφ can then be viewed as the
amplifier gain.

In this paper, we develop the concept of optical phase
amplification, deriving an example device that is entirely
comprised of linear optics. Optical feedback is used to im-
print a nonlinearly varying phase on the incident light. The
emergence of a nonlinear phase from linear optics is due
to the geometric series summation of the round-trip phase.
Combining with the one-way symmetry of a beam splitter
allows the device to imprint this modified phase while leaving
both the intensity and direction unchanged. This approach to a
nonlinear phase response is unlike a standard resonator, such
as a Fabry-Pérot étalon, whose variation in intensity is larger
for sharper phase responses. In addition, the response of these
devices usually depends on fixed material constants. In the
proposed phase amplifier, its response can be continuously
tuned by modifying internal phase shifts, implying it can be
used at any operating wavelength.

Linear-optical phase amplifiers can be realized in many
other configurations. Here, we demonstrate the simplest con-
figuration that can obtain a continuously tunable gain dγ /dφ

that can be operated at any wavelength of interest. Combining
these properties with the fact that these devices can replace
any phase-shifting node leads to an immense number of poten-
tial uses. First, the sharply sloped, high-gain regions generate
a large output phase response for a small input phase. This
could boost phase-sensing resolution. Since the device’s bias
point and perturbation channel φ reside in a loop, amplified
Sagnac phases can be sensed when the apparatus is rotated
[1]. Increased phase response could also be used to enhance
the light-matter interactions [2–5]. This could produce faster
switching times, a smaller half-wave voltage Vπ , and/or a
smaller physical footprint. Often, photonics platforms are
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designed around materials exhibiting a large optical response
to an external perturbation [6,7]. Using a sufficiently high-
gain phase amplifier, materials with a weaker optical response
but other advantages might be considered.

The flat-sloped regions of the amplifier also carry advan-
tages. These regions offer a smaller phase response for a
larger input phase. This could be used to improve stepping
precision of a phase controller. Fluctuations in the input phase
would also be proportionally reduced, leading to increased
stability. Overall, the ability to freely tune between sharp and
flat-sloped regions is very powerful, as this can be used to
infer large phase shifts that would normally land in a differ-
ent cycle than the bias point. In phase contrast microscopy
[8,9], biological samples often fall outside the unambiguous
range [10]. The tunable gain in the phase amplifier could
provide an alternative means to inferring the phase of such
samples. Moreover, with multiple wavelengths, linear-optical
phase amplifiers act as nonreflective, tunable spectral filters,
modifying the dispersive properties of light passing through.
A deeper analysis of this mode of operation is forthcoming.

Other approaches exist for enhancing the optical response
for purposes such as sensing or modulation [11–18]. These ap-
proaches often rely on enhancing the intensity directly; in con-
trast, a phase amplifier is a phase-controlled source of phase,
offering much greater generality. Other techniques can consid-
erably more complex, leading to lower output efficiency. For
example, nonlinear interferometry [19,20] considers the use
of optical parametric amplifiers to obtain a signal gain higher
than that of the accompanying noise. Another approach uses
cascaded nonlinear harmonic generation [21].

While these approaches are considerably more complex
and do not offer tunable gain at any wavelength, they can
globally amplify the phase response, which is typical for a
change in optical frequency. In the presented linear scheme,
this frequency is fixed. Thus, the amplification occurs locally,
exhibiting a tradeoff between sensitivity and dynamic range.
This is highly advantageous for applications that use the flat-
sloped regions, and is a common situation in other linear
amplification systems: Higher magnification means smaller
field of view in optical instruments, and higher gain in an
electronic amplifier implies a lower bandwidth.

Some phase enhancement techniques use quantum sources
since these can have a lower noise power than a classical co-
herent state [22–24]. In the optimal setting, the uncertainty in
the measurement scales quadratically more favorably with the
mean value of photon number N [25]. For example, consider a
state of N photons in a balanced superposition of two clusters:

|ψ〉 = 1√
2

(|N0〉 + |0N〉). (3)

This state is known as a “NOON state” [23]. Each cluster
populates the same spatial mode, so when a phase shift φ

is applied within that mode, each photon acquires a phase
shift of φ. Collectively, the state sees a phase shift of Nφ,
obtaining an N-fold amplification of the interferogram fre-
quency, obtaining a larger maximum slope and thus higher
sensitivity. However, these sources are difficult to efficiently
create, especially as N increases, require a very low signal
level, and are highly sensitive to losses.

FIG. 1. Left: Mach-Zehnder interferometer. Right: An optical
phase amplifier, formed by looping together two ports of a Mach-
Zehnder. The device only modifies the phase of an optical state
passing through it, and when placed in an external readout, can obtain
slopes much larger in magnitude than a standard Mach-Zehnder
interferometer. The arrows illustrate how light moves through these
feed-forward devices; these could be flipped to correspond to input
from the other side.

The device here can realize phase amplification using lin-
ear optics and classical light. Although this means the device
will not obtain quantum-limit uncertainty scaling, it does al-
low for probing the phase in a practical manner, utilizing a
very high average photon number and single detector readout.

II. LINEAR-OPTICAL PHASE AMPLIFIER

Linear-optical scattering devices redistribute an optical
state among orthogonal field modes. These so-called multi-
ports can be viewed mathematically as a linear transformation
acting on the probability amplitudes of the state. Here, we
work with states of monochromatic radiation. Unitary scat-
tering devices can be identified with a unitary matrix by
identifying the Fock basis creation operator a†

j (k) of wave
vector k and spatial mode j with the standard basis vector e j .

Under this formalism, a 50:50 beam splitter could be de-
scribed by the scattering matrix

B = 1√
2

⎛
⎜⎜⎝

0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

⎞
⎟⎟⎠. (4)

Other common conventions could be used. The beam splitter
is sparse in that its ports cannot simultaneously be used for
input and output: The diagonal entries are zero. Such a de-
vice is called directionally biased or feed forward, since light
entering a given port cannot reflect out from that same port.

Another device which possesses this feed-forward symme-
try, inheriting it from the beam splitter, is the Mach-Zehnder
interferometer. This is pictured in Fig. 1 (left). By looping
together two ports we form the feed-forward, U (2) scattering
device shown in Fig. 1 (right). These properties imply the
following scattering matrix structure,

U =
(

0 eiγ1

eiγ2 0

)
, (5)
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where γ j will depend on φ, θ1, and θ2. Because this U (2)
device is feed forward, all incident light must pass through the
device. The intensity cannot change but the phase can, and so
the device is a phase amplifier. The exact γ j obtained depends
on which two ports are used to form the loop. The other cases
lead to either the same behavior or a constant output phase.

The computation procedure of γ1 and γ2 are the same so
only a common γ will be computed here. We assume both
beam splitters take the form of Eq. (4); using arbitrary and
different beam-splitter scattering matrices is similar and is dis-
cussed in Appendix A. Defining θ := θ1 − θ2, the scattering
matrix of the Mach-Zehnder can be expressed as

U = eiθ/2+iθ2

(
cos(θ/2) i sin(θ/2)

i sin(θ/2) cos(θ/2)

)
:=

(
r t

t r

)
. (6)

Here, we use a compressed notation for scattering matrices
which possess a certain permutation symmetry. With ref-
erence to the port labels in Fig. 1, the 2 × 2 form maps
excitations in ports (1, 2) to ports (3, 4) and vice versa.

When light is incident on the phase amplifier, some light
exits the device through the other port and some enters the
loop. This feeds back to the first beam splitter, forming a
directionally biased optical cavity that carries an aggregate
round-trip phase of φ. The feed-forward symmetry of the
beam splitter ensures no light transfers from the ring cavity
to the port from which the light initially entered the device.
The process continues ad infinitum, with an output amplitude
given by

eiγ = r + t2eiφ
∞∑

N=0

(reiφ )N = r + t2eiφ

1 − reiφ
. (7)

A direct formula for γ is readily found by expanding Eq. (7)
in terms of θ1 and θ2, separating into real and imaginary
parts and finally taking the inverse tangent of their quotient.
Each value of θ2 produces a θ -indexed homotopy γθ (φ). For
example, when θ2 = 0,

γθ (φ) = arctan

(
sin(θ ) + cos2(θ/2) sin(φ) − sin(φ + θ )

cos2(θ/2)(2 − cos(φ)) − cos(θ + φ)

)
.

(8)

If the internal beam-splitter S-matrix convention changes,
this and other formulas will vary, but the phases produced
will only be changed by an additive constant. Each homo-
topy shares the property of being a deformation of a line
γ = φ into a step function. Example curves for this case are
shown in Fig. 2 beside the intensity modulation they would
induce if applied in one arm of a standard Mach-Zehnder
interferometer.

We emphasize this is only one among many instances
of a phase amplifier. Utilizing feed-forward symmetry in an
optical cavity makes it straightforward to derive other phase-
amplifying configurations, each with their own particular
amplification properties.

III. EXPERIMENTAL RESULTS

A phase amplifier has constant intensity with respect
to its internal phase parameters. To extract its phase

FIG. 2. Example output of the lossless phase amplifier with θ2

set to 0. The intensity (left) is found by overlapping the phase of the
device output (right) with a reference beam of constant intensity and
phase.

transformation, the device needs to be placed in a readout.
Here, the phase amplifier was nested recursively in another
Mach-Zehnder interferometer. The experimental configura-
tion used is shown in Fig. 3. Internal phase shifts were realized
with standard optical delay lines with piezoelectric control. A
variable neutral-density (ND) filter was placed in the reference
arm to vary the intensity of the reference beam. The source
was a low-power laser with 632.8 nm wavelength. This source
was highly coherent, with a spectral linewidth cited at less
than 100 kHz. The detector was a standard optical power me-
ter, conducting onboard averaging of data (N = 15) sampled
at a rate of 1 kHz.

This experimental configuration of Fig. 3 possesses a prop-
erty allowing one of the three nonloop phases to be fixed
without changing the space of curves observable at the output
detector. This is further detailed in Appendix B, and was
used to fix the phase of the reference arm in the readout
Mach-Zehnder, labeled � in Fig. 3. The three piezoelectric
crystals were swept through drive voltages in an open-loop
configuration to span the other parameters.

In an experiment it is natural for some ideal assumptions to
break down. In this case, the beam splitters were not identical

FIG. 3. Experimental test configuration for the linear-optical
phase amplifier, used to read out the phase it imparts.
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FIG. 4. Measured curves of a standard (bottom) and phase-
amplified (top) Mach-Zehnder interferometer. The phase-amplified
version can be biased around a point with a larger slope, which in
this case is m = −10.3 ± 6.1. This represents a value more than 20
times steeper than the maximum value of ±1/2 that can be obtained
in the regular Mach-Zehnder interferometer. Dashed lines are shown
emanating from the fitted curves to loosely depict the difference in
modulation for the same phase perturbation.

nor were they 50:50 and lossless. Mirrors also contribute to
losses, accumulating quickly as mirrors are used in succes-
sion. With any amount of loss, the output is no longer only
a phase transformation, because this would require all of the
energy to emerge at the other side of the device. To understand
how this affects the phase amplifier, losses were instilled in
the model of Eq. (7) by allowing the individual beam split-
ters to be nonunitary, as well as allowing the loop phase to
carry an imaginary component to represent round-trip losses.
Numerical studies were conducted with these models to in-
vestigate the nature of these deviations from ideal behavior.
Values for these loss parameters were derived directly from
experimental measurements of the round-trip intensity loss
and beam-splitter classical scattering probabilities. Further
details are discussed in Appendix A.

Three-phase sweeps were made to the output of the full
device in Fig. 3. Homotopic evolution of the interference
pattern I (φ) was observed, which went from the traditional
Mach-Zehnder linear phase to increasingly nonlinear phase in
agreement with Fig. 2. The data were fit by finding values
for θ1, θ2 and a constant offset to φ which fit the data best.
The amount of optical power in the reference beam affects the
slope and visibility at the final output. The optimal value for
this amount was found to depend on the amount of loss present
in the system. The numerical models suggested that using the
ND filter to set the reference beam to lie at roughly 80%
of the power of the maximum phase amplifier output would
permit states that possessed good visibility and a large slope.
This value was implemented in the experiment and fixed in all
model fits.

In Fig. 4 data from the internal Mach-Zehnder interfer-
ometer are compared to a curve from the phase-amplified
version. The phase-amplified curve possesses a slope of m =
−10.3 ± 6.1, representing a phase gain factor of greater than
20 in comparison to the maximum value of m = ±0.5 that
can be obtained with a traditional Mach-Zehnder device. In
this case the visibility is slightly above 75%.

For the device to function properly, the coherence length
of the source must be much larger than a round trip through
the loop and one arm of the Mach-Zehnder. In addition to
this, the detector must be unable to resolve times between
these individual round trips. When this holds, the probability
amplitudes for each path through the system are coherently
summed. With our experimental setup having a round-trip
distance � < 1m, we used a source with coherence length
�c > 103m and a quasi-dc optical power meter to ensure these
conditions were met.

Aligning the phase amplifier device in free space requires
simultaneous alignment of a ring cavity and two inputs of
a Mach-Zehnder interferometer. Imperfections in this three-
faceted alignment are likely the cause for the data to exhibit
lower visibility than the model predicts. The transition of the
demonstrated device to an integrated waveguided platform
will ease or eliminate this issue. The many-beam superpo-
sition is also responsible for the comparatively increased
fluctuations in the phase amplifier output shown in Fig. 4;
being only a combination of two beams, the Mach-Zehnder
is naturally more stable. The precision of the piezoelectric ac-
tuators was measured to be about 1.5 mrad; the corresponding
error bars were too small to appear in the figure.

In summary, we have defined and experimentally demon-
strated the general principle of linear-optical phase amplifi-
cation. Devices belonging to this class have the potential for
many uses. Besides this, we highlight our perspective that
entire interferometers and the symmetries they possess can be
used as the basic blocks used to create another device.
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APPENDIX A: NONUNITARY LINEAR-OPTICAL
PHASE AMPLIFIER

Here, we discuss a model for how the phase amplifier
behaves in lossy environments. First, returning to Eq. (7) for
the output amplitude b, we have

b = r + t2eiφ
∞∑

N=0

(reiφ )N = r + t2eiφ

1 − reiφ
, (A1)

where r, t are the scattering coefficients of the Mach-Zehnder
portion and φ is the loop phase acquired per round trip.

If we next assume the scattering coefficients for the beam
splitters comprising the Mach-Zehnder portion are r1, t1 and
r2, t2, this expression can be rewritten in terms of these coef-
ficients and the arm phases θ1 and θ2, which are pictured in
Fig. 3. In this form,

b(φ, θ1, θ2) = (t1t2eiθ1 + r1r2eiθ2 )

+ eiφ (t1r2eiθ1 + r1t2eiθ2 )(r1t2eiθ1 + t1r2eiθ2 )

1 − eiφ (r1r2eiθ1 + t1t2eiθ2 )
.

(A2)
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To model losses, the phases can be complex valued, and
the internal beam-splitter coefficients r1, t1 and r2, t2 can be
derived from a nonunitary transformation, but we assume for

simplicity that this transformation is reciprocal and feed
forward. In particular, we take on the following scattering
transformation for the jth beam splitter,

Bj =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 iδ j

√
1 − δ2

j − ε j

0 0
√

1 − δ2
j − ε j iδ j

iδ j

√
1 − δ2

j − ε j 0 0√
1 − δ2

j − ε j iδ j 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A3)

where δ j and ε j are measured experimentally. Note that any
departure from reciprocity would only affect the output of the
phase amplifier when the source and detectors were swapped.
Since these were kept fixed, it has no effect on the experiment.
Cube beam splitters are known to possess back-reflections,
which if not perfectly back-aligned, exit the system. Those
losses are encapsulated within δ j and ε j . There was also
no need to measure the imaginary components of θ1 and θ2

because those losses could also be capture by δ j and ε j . How-
ever, Im(φ) was determined from measurements of intensity
at the beginning and end of a single round trip. Their ratio
α could be converted to Im(φ) with the relation Im(φ) =
−ln(

√
α). From this one can verify the round-trip amplitude

attenuation factor is exp (i × i Im(φ)) = exp (ln(
√

α)) = √
α,

corresponding to an intensity attenuation factor of α each
round trip.

The final intensity I collected at the detector of the system
in Fig. 3 was modeled as a balanced overlap between the
reference beam and phase amplifier output,

I = 1√
2

∣∣∣b +
√

Aei�
∣∣∣2

. (A4)

The amplitude A was set using the neutral density filter, and
the variable �, being redundant, could be fixed at any value.
After fixing values for δ1, δ2, ε1, ε2, α, and A from laboratory
measurements and setting � = 0, we fit our measured data
to the equation above using a basic form of maximum likeli-
hood estimation: The remaining degrees of freedom, namely
the values of θ1 and θ2, as well as a constant immeasurable
offset to Re(φ), were each selected by finely sweeping [0, 2π ]
and choosing the values which led to the best fit. A similar
procedure was used for fitting the data collected from a con-
ventional Mach-Zehnder interferometer, except that only one
parameter had to be fit. Both the measured and model curves
were normalized prior to fitting to reduce the number of fit
parameters and to always provide a fair basis to compare the
slope, which scales with maximum intensity. Generally, the
fits captured the curves and their expected slope enhancements
well, building confidence in the accuracy of the measured

parameters. However, the fits failed to capture the visibility,
which we attribute to the fact that the modeling does not to
account for potential misalignment between different nonpla-
nar beams.

The present model for losses was is useful for obtaining
insight on the expected tradeoff between the maximum am-
plifier gain d arg b/d Re(φ) and its signal level |b|2 versus
the aggregate losses in the system. This tradeoff can be most
easily understood when the Mach-Zehnder is treated ideally,
so all loss occurs in the loop. Returning to Eq. (A1), we see
that as the loop losses increase, higher-order terms in the geo-
metric series decay much faster than without any loss present.
These terms are only relevant when |r|2 is close to 1. This
corresponds to a high-finesse loop cavity that exhibits a large
maximum phase-to-phase slope. As a result, these sharply
sloped phase regions to exhibit comparatively low robustness
to losses. With a fairly high-finesse ring cavity, for instance,
|r|2 = 0.9, this model predicts that intensity losses of 2%
percent per round trip lead to a final output attenuation factor
of 0.46 at the sharpest-sloped point. However, this attenuation
region is very narrow, so that the flat-sloped regions are barely
affected, losing much less than 1% in the majority of each
modulation period. How significantly these losses manifest
in a real system, especially in comparison to nonlinear and
quantum phase amplification techniques, remains an area of
active investigation.

APPENDIX B: PHASE AMPLIFIER READOUT
PARAMETER REDUCTION

With the formalism established above, one can derive a
useful reduction that allows the removal of one of the four
phase parameters from consideration. In particular any one of
the three parameters �, θ1, θ2 can be discarded. To that end,
first recall that θ1 and θ2 possess a well-known exchange sym-
metry, so that in what follows one can always be substituted
for the other. So, without loss of generality, shift θ2 by an
arbitrary amount α. This has the following effect on the phase
amplifier output amplitude b:

b(φ, θ1, θ2 + α) = (t1t2eiθ1 + r1r2eiθ2+iα ) + eiφ (t1r2eiθ1 + r1t2eiθ2+α )(r1t2eiθ1 + t1r2eiθ2+iα )

1 − eiφ (r1r2eiθ1 + t1t2eiθ2+iα )
(B1)

= eiα (t1t2eiθ1−iα + r1r2eiθ2 ) + eiφ+2iα (t1r2eiθ1−iα + r1t2eiθ2 )(r1t2eiθ1−iα + t1r2eiθ2 )

1 − eiφ+iα (r1r2eiθ1−iα + t1t2eiθ2 )
(B2)
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= eiα

(
(t1t2eiθ1−iα + r1r2eiθ2 ) + eiφ+iα (t1r2eiθ1−iα + r1t2eiθ2 )(r1t2eiθ1−iα + t1r2eiθ2 )

1 − eiφ+iα (r1r2eiθ1−iα + t1t2eiθ2 )

)
(B3)

= b(φ + α, θ1 − α, θ2)eiα. (B4)

Now we use this as a lemma in conjunction with applying the same shift to the final output intensity in Eq. (A4):

I (φ, θ1, θ2 + α,�) = |c1
√

Irei� + c2eiαb(φ + α, θ1 − α, θ2)|2 (B5)

= |eiα (c1
√

Irei�−iα + c2b(φ + α, θ1 − α, θ2)|2 (B6)

= |c1
√

Irei�−iα + c2b(φ + α, θ1 − α, θ2)|2 (B7)

= I (φ − α, θ1 + α, θ2,� − α). (B8)

An immediate corollary of this is that I (φ, θ1, θ2,� + α) = I (φ + α, θ1 − α, θ2 − α,�).
The implication is that a shift in � or θ2 is equivalent to a shift in the other by the opposite amount as well as a shift in the

homotopy phases φ and θ1. However, one can never know φ and θ1 globally anyway, so this shift is undetectable. For a given
�, θ2 one obtains a new continuous family of curves Iθ1 (φ|�, θ2). Hence, to view all possible families of curves, one only must
sweep one of either θ2 and �, since an arbitrary shift in either can be always recast as a change in the other parameters.
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