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Superbandwidth laser pulses in a dispersive medium: Oscillating
beyond the Fourier spectrum with unexpected propagation features
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The concept of superbandwidth refers to the fact that a band-limited signal can exhibit, locally, an increase
of its bandwidth, i.e., an effective bandwidth greater than that predicted by its Fourier transform. In this work,
we study the propagation of superbandwidth laser pulses in a dispersive medium, characterized by the group
velocity dispersion. In particular, two important results arise from the analysis of the instantaneous frequency of
the pulse obtained through the Wigner function distribution. First, local oscillations of the electric field which
are beyond the Fourier spectrum of the incoming pulse can be observed. Second, for a range of values of the
pulse synthesis parameters, surprisingly, the dynamics of the instantaneous frequency within certain temporal
regions, corresponds to that of a pulse propagating in a medium with a group velocity dispersion of opposite
sign. This phenomenon is intrinsic to the special characteristics of the pulse and not to the dispersive properties
of the medium.

DOI: 10.1103/PhysRevA.109.053507

I. INTRODUCTION

Wave phenomena are perhaps the most frequent physical
phenomena in nature. They are present in all branches of
physics, from quantum mechanics to general relativity, and
together with the superposition principle, play a key role in the
description of the universe. Therefore, the wave phenomenon
known as superoscillations has gained attention in the area of
classical optics and beyond [1].

Superoscillations occur when a band-limited function lo-
cally oscillates faster than the highest frequency in its Fourier
spectrum, which can be accomplished by manipulating the
spectral phase of such a function to cause destructive inter-
ference between Fourier components. This phenomenon was
initially studied in a purely mathematical framework [2,3], to
later find real applications to subdiffractive beams [4–7], sig-
nal processing [8,9], ultrashort pulses [10,11], acoustic waves
[12,13], among others [14–18].

In this context, we present two equivalent techniques to
obtain subdiffractive Gaussian beams through the destruc-
tive interference of two pulses with different spatial widths
[19]. After considering the mathematical equivalence between
Gaussian beams and ultrashort pulses, the same idea was
implemented to obtain sub-Fourier ultrashort pulses [20]. In
the temporal domain, these techniques generate an ultrashort
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pulse with a central temporal lobe whose full width at half
maximum (FWHM) is below the Fourier limit. Subsequently,
in Ref. [21], we introduced the wave phenomenon of su-
perbandwidth (SB), in which these sub-Fourier laser pulses
interact locally with matter as if they had a spectral bandwidth
greater than that predicted by the Fourier transform. In other
words, the SB pulse interacts as if it had frequencies higher
and lower than those present in its Fourier spectrum [22].

As is known, when a laser pulse E (t ) propagates in a
dispersive medium (DM), it spreads temporally since each
frequency within its spectrum travels at a different speed. At
first order, this phenomenon is described by the group velocity
dispersion (GVD) [23], which we will characterize by the
parameter β2. In the case where the medium has a positive
(negative) dispersion, i.e., β2 > 0 (β2 < 0), lower frequencies
travel faster (slower) than the higher ones. Moreover, as a DM
allows to decompose the spectral content of a Fourier-limited
laser pulse along the time axis as it travels through such a
medium, the GVD produces the temporal Fourier transform,
when the pulse propagates a long distance [24,25]. Thus, the
possibility of controlling and manipulating both the sign and
value of GVD through different devices such as prisms [26],
diffraction gratings [27], or chirped mirrors [28] is essential in
ultrafast optics [29,30] and strong-field laser physics [31].

In this work, we theoretically study the propagation of a
SB laser pulse in a DM. The laser pulse is represented by a
linear operator which introduces a quadratic phase HD(ω) =
e−i�(ω−ω0 )2

, where � = 1
2β2 × z and z is the propagation dis-

tance. Although the medium is linear and the synthesis of the
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SB pulse can be obtained by a simple experimental technique,
the instantaneous frequency of such a pulse, ω(t ) = dφ(t )

dt , as it
travels through the medium exhibits a very complex and phys-
ically rich behavior. First, we will report the existence of local
oscillations of the electric field, represented by ω(t ), which
appear when the SB pulse propagates through the medium.
Within some temporal window, these oscillations are beyond
the Fourier spectrum of the original pulse. Second, we will
show that, in a range of values of the parameters that control
the synthesis of the SB pulse, surprisingly, ω(t ) behaves as if
the pulse were traveling in a medium with a GVD of opposite
sign. Both effects disappear when the propagation distance is
large enough, and the frequency ω(t ), as given by the Fourier
spectrum, is recovered.

II. RESULTS

We will start by defining the SB pulses analyzed in
this work, which are similar to those studied in Ref. [22].
These pulses arises from the destructive interference between
two Gaussian pulses with different amplitudes and temporal
widths, which can be easily synthesized using an interferomet-
ric system. In the spectral domain, the SB pulses are described
by the expression

ẼSB(ω) = e−( ω−ω0
�ω

)2 − αe−( ω−ω0
β�ω

)2

, (1)

where the first term ẼG(ω) = e−( ω−ω0
�ω

)2
corresponds to the

electric field of the initial Gaussian pulse with normalized unit
amplitude, which travels, unchanged, through the interferom-
eter. In this context, ω0 and �ω denote its carrier frequency
and bandwidth, respectively. The second term in Eq. (1),
stands for the pulse that was modified before recombination.
A theoretical analysis on the reduction of the temporal FWHM
of the central lobe of the SB pulse, as a function of α and β,
can be found in Ref. [19]. Consequently, the synthesized SB
pulse when propagating through a DM, can be expressed as

ED
SB(t ) ≡ ∣∣ED

SB(t )
∣∣eiφ(t ) = F

[
ẼD

SB(ω)
]

= F
[
ẼSB(ω)e−i�(ω−ω0 )2]

. (2)

In what follows, we will resort to the Wigner function for-
malism, which allows for a time-frequency analysis to study
the dynamics of pulse propagation through DMs [32,33],
and provides a more complete interpretation of the physics
behind the phenomenon (see Appendix A for the analysis
made through the Wigner function distribution that reveals
the different propagation features.) For instance, starting from
the representation of the field in the frequency domain, the
Wigner function distribution in the time-frequency phase
space is defined as

W (t, ω) = 1

2π

∫ ∞

−∞
Ẽ (ω + s/2)Ẽ∗(ω − s/2)eitsds, (3)

from where, by replacing the mathematical expression of the
field under consideration, the instantaneous frequency can be
obtained as the average

ω(t ) =
∫ ∞
−∞ ωW (t, ω)dω∫ ∞
−∞ W (t, ω)dω

. (4)

FIG. 1. Instantaneous frequencies ωD
SB(t ) (blue dashed lines) and

ωD
G (t ) (red dashed lines) normalized to the carrier frequency ω0.

Panels (a)–(e) correspond to different values of the parameter �

which take in to account the propagation of the pulse through a
DM: � = 0, 1, 5, 10, and 2 opt. cycles2, respectively. In addition,
the corresponding fields ED

SB(t ) (blue solid lines) and ED
G (t ) (red solid

lines) are shown.

Our aim is to show the behavior of the instantaneous fre-
quency of the SB pulse in the DM [ωD

SB(t )] and compare
it with that of the Gaussian pulse [ωD

G (t )]. To this purpose,
we calculate the expression in Eq. (4) for the set of values
ω0 = 2π and �ω = 0.5 (both in units of rad

opt.cycles ), which cor-

responds to a Gaussian pulse ẼG(ω) with a temporal FWHM,
τ = 2

√
2ln2

�ω
≈ 5 opt. cycles. These results are shown in Fig. 1,

where we adopt the values α = 1 and β = 0.5 for the syn-
thesis parameters to obtain the SB pulse ẼSB(ω), while �

was varied to take into account the effect of different media
(GVD) and propagation distances (z): �=0 [Fig. 1(a)], �=1
[Fig. 1(b)], � = 5 [Fig. 1(c)], and � = 10 [Fig. 1(d)], all in
units of opt. cycles2. From these figures it can be seen that,
while ωD

G (t ) has a linear behavior, ωD
SB(t ) is almost constant

except within two temporal windows that are localized, sym-
metrically, on either sides of t = 0. These local oscillations
of the electric field ẼD

SB(ω), have a frequency value below
and above the minimum and maximum values reached by
ωD

G (t ), and we will refer to those frequencies as ωlow and
ωhigh, respectively. Such oscillations tend to disappear when
� increases, and ωD

SB(t ) converges to ωD
G (t ).
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FIG. 2. Parametric curves [ω(t ), |E (t )|] for a pulse propagating
in a DM, and superimposed, the spectral amplitude |Ẽ (ω)| of the
corresponding field. (a) Gaussian pulse ED

G (t ). In panels (b)–(d) the
field considered is that of the SB pulse ED

SB(t ). The arrows in (b,c)
indicate the evolution of the parametric curve with time.

A more detailed visualization of the phenomenon is shown
in Fig. 1(e). This figure is obtained for � = 2 opt. cycles2 and
corresponds to high and low oscillations with frequency val-
ues ωhigh ∼ 1.25ω0 and ωlow ∼ 0.75ω0, localized at t = tL =
−3.95 opt. cycles and t = tH = 3.95 opt. cycles, respectively.
The shadow regions indicate the temporal windows where
this phenomenon occurs. In addition, it can be observed how
the period of the field ED

SB(t ) (blue line) varies in relation
to the period of ED

G (t ) (red line). Finally, to estimate the
weight of these oscillations, we calculate the amplitude ra-
tios between the different fields: |ED

SB(tH )|/|ED
SB(0)| = 0.192,

|ED
SB(tH )|/|ED

G (0)| = 0.094, |ED
SB(tH )|/|EG(0)| = 0.089. As

reference value, we can consider the weight in the
Fourier spectrum of the Gaussian pulse at the frequency
value ω = 1.25ω0, which is given by ẼG(1.25ω0)/ẼG(0) =
e−( 1.25×2π−2π

0.5 )2 = e−π2 = 5.17 × 10−5. From all the proposed
ways to quantify the weight of the frequency ωhigh, this
value is at least, three orders of magnitude greater than the
value given by the Fourier spectrum. It should be noted that
|ED

SB(tL )| = |ED
SB(tH )|, so the analysis is also valid for the

frequency ωlow.
In Fig. 2, we show a set of parametric curves in the form

[ω(t ), |E (t )|], which allow a general quantification of the os-
cillations represented by ω(t ). In addition, the corresponding
spectral amplitude |Ẽ (ω)| is superimposed. Figure 2(a) corre-
sponds to the parametric curves for the Gaussian pulse ED

G (t ),
propagating in a DM with � = 1, 2, 5, and 25 opt. cycles2.
From this figure it can be observed how, as the pulse prop-
agates through the medium, the parametric curves converges
to the spectral amplitude |ẼG(ω)|. This result can be seen as
equivalent to obtain the temporal Fourier transform, which
does not provide information about localized events, by the
GVD of the medium [24]. In Fig. 2(b), it is shown the para-
metric curve for the SB pulse propagating in a DM, ED

SB(t ),
with � = 2 opt. cycles2 [the same example of Fig. 1(e)],
where the arrows indicate the evolution of the curve with time.
It is observed that the curve crosses the spectral amplitude

|ẼSB(ω)| and the maximum distance between both occurs for
t = tL and t = tH , denoting the appearance of two localized
oscillations, of significant weight that are clearly outside the
Fourier spectrum of the pulse. From Fig. 2(c), we can see a
similar behavior, now for the case with � = 5 opt. cycles2

[the same example of Fig. 1(c)], being the maximum distance
to |ẼSB(ω)| shorter than in Fig. 2(b). Finally, in Fig. 2(d) we
display the case with � = 500 opt. cycles2. Here, the shape of
the parametric curve is quite similar to the shape of |ẼSB(ω)|.
As in the case of Fig. 2(a), when the pulse propagates enough
through the medium, the temporal Fourier transform is ob-
tained. In analogy with the spatial domain, where the far-field
Fraunhofer diffraction is proportional to the spatial Fourier
transform, we can conclude that the appearance of local oscil-
lations at frequencies ωhigh and ωlow occurs in the “temporal
near field.”

An estimate of the ranges in which a behavior like that of
Fig. 1(e) is present in a realistic situation can be obtained,
for example, by considering a fused silica glass whose GVD,
at λ0 = 800 nm (T0 ≈ 2.7 fs), is β2 = 36.163 fs2/mm. Since
the dispersion length is defined as LD = τ 2/|β2|, then � =
1
2β2 × z = 1

2τ 2 z
LD

. In our case, with � = 2 opt. cycles2 and

τ = 2
√

2ln2
�ω

≈ 5 opt. cycles, we find that z/LD = 2�/τ 2 =
4/25 = 0.16, i.e., the pulse propagates in the medium z =
0.16LD ≈ 0.8 mm. In Appendix B, where the mathematical
analysis of the frequency ωD

SB(t ) is presented, it is shown
that the appearance of these local oscillations occurs when
��ω2 ≈ 1. In addition, other kinds of SB pulses are analyzed
in Appendix C.

To study the effect of the DM on different SB pulses,
in Fig. 3 we show the evolution of a pulse with the same
synthesis parameter as the SB pulse analyzed up to this point,
except for the value of the parameter α. As we showed in
Ref. [22], the temporal FWHM of the central lobe of the
pulse given by Eq. (1), decreases when the product α × β

increases and converges to zero when α × β → 1. In our case,
since β = 0.5, we vary α in the range 1 � α < 1.9. However,
we consider that the SB pulse propagates in a medium with
� = 2 opt. cycles2. From Figs. 3(a) (α = 1.1), 3(b) (α = 1.3),
3(c) (α = 1.6), and 3(d) (α = 1.7), it can be seen that the
frequencies ωhigh and ωlow (at tH and tL, respectively) increase,
in absolute value with respect to ω0, as α increases, up to
a certain value for which the times tH and tL are reversed,
and the opposite behavior is observed, i.e., the values of
those frequencies begin to decrease when α increases. In
Fig. 3(e), we show the case with α = 1.9. A clear change in
the behavior of ωD

SB(t ) is observed with respect to the lower
values of α. In a temporal region around t = 0, ωD

SB(t ) can be
approximated by a straight line with a negative slope, opposite
to that of ωD

G (t ). The temporal position of the frequencies
ωhigh and ωlow are now inverted, i.e., tH < 0 and tL > 0. In
other temporal regions the value of ωD

SB(t ) remains constant.
It is worth mentioning the similitude between the shape of
ωD

SB(t ) and the shape of the instantaneous frequency given by
the phenomenon known as self-phase modulation [34]. The
mathematical expression for the change in sign of the slope of
ωD

SB(t ) at t = 0 is analyzed in Appendix B.
To conclude, we highlight that the phenomena presented

in this work extend to SB pulses synthesized from the
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FIG. 3. Similar to Fig. 1, but for different values of the synthesis
parameter α of the SB pulse [Eq. (1)]. Panels (a)–(e) correspond to
α = 1.1, 1.3, 1.6, 1.7, and 1.9, respectively. In all cases, the pulse
propagates through a DM with � = 2 opt. cycles2.

coherent superposition of non-Gaussian ultrashort pulses,
with a complex frequency spectrum. As a concrete example,
in Fig. 4(a), we show the Fourier spectrum of a non-Gaussian
pulse ẼNG(ω), which is centered at ωC ≈ 2.35 rad/fs (λC ≈
800 nm) and limited between ωmin ≈ 1.8 and ωmax ≈ 2.9
rad/fs. The dashed green lines indicate the bandwidth �ωR

of the spectral rectangular filter considered to obtain a sec-
ond non-Gaussian pulse ẼR(ω), which subsequently interferes
with ẼNG(ω). Figure 4(b) corresponds to the temporal rep-
resentation of the original pulse ENG(t ), and the pulse ER(t )
broadened as a consequence of the spectral filtering. As pre-
viously shown, in the frequency domain the SB pulse is
given by ẼSB(ω) = ẼNG(ω) − αẼR(ω) [see Eq. (1)], and dif-
ferent synthesis result depending on the amplitude ratio α

between both fields. Without loss of generality, we consider
that the SB pulse propagates through a fused silica glass, so
that ED

SB(t ) = F[ẼSB(ω)e−iK (ω)×z], with K (ω) = ω
c nglass(ω),

for which a fifth-order fit function in ω is considered, with
nglass(ω) being the refractive index of the medium [23]. In
Fig. 4(c), corresponding to α = 0.85 and z = 300 μm, the
instantaneous frequency ωD

SB(t ) reveals the presence of two
local oscillations beyond the Fourier spectrum of the pulse
ENG(t ), in the central region where the frequency ωD

NG(t ) re-
mains almost linear. Similar to what was seen in Fig. 1, ωD

SB(t )
has a behavior consistent with a positive DM β2 > 0. In the
present example, unlike the previous one, a second pair of
oscillations appear on either side of the central region, where

FIG. 4. (a) Fourier spectrum of the non-Gaussian pulse ẼNG(ω)
(pink region) and response of the rectangular spectral filter to obtain
the pulse ẼR(ω) (green dashed lines). (b) Pulses ENG(t ) (red solid
line) and ER(t ) (green dashed line). (c) Instantaneous frequencies
ωD

SB(t ) (blue dashed line) and ωD
NG(t ) (red dashed line) for a synthesis

parameter α = 0.85, when the propagation length in the DM is
z = 300 μm. The pink region indicates the spectral content of ENG(t )
[see Fig. 4(a)]. In addition, the propagating pulses ED

SB(t ) (blue solid
line) and ED

NG(t ) (red solid line) are shown. (d) Similar to (c) but for
α = 1.37. Here, ωD

SB(t ) is displayed in brown dashed line and ED
SB(t )

in brown solid line.

ωD
NG(t ) deviates from the linear behavior and also shows two

side oscillations. However, these secondary oscillations have
a negligible weight compared to the primary ones. Finally,
in Fig. 4(d) which corresponds to α = 1.37 and z = 300 μm,
the primary local oscillations exhibit the change in behavior
previously observed in Fig. 3, that is, the slope of the instan-
taneous frequency change its sign as if the pulse had traveled
through a medium with β2 < 0.

III. CONCLUSION

We studied the superbandwidth phenomenon in laser
pulses through the propagation characteristics of SB pulses in
a DM. We showed the appearance of local oscillations of the
electric field that are beyond the Fourier spectrum of the SB
pulse. Here, the superoscillatory phenomenon and the com-
plementary phenomenon of suboscillations [35] take place as
part of a single phenomenon since they occur for the same SB
pulse at the same propagation distance. For some ranges of
values of the pulse synthesis parameters, these local oscilla-
tions behave as if they had traveled through a medium with a
positive or negative GVD, beyond the dispersion properties of
the material, behavior that is not expected to occur in linear
media.

In addition to the direct application that these results could
have for coherent control [36–38], pulse shaping [29,39,40],
signal processing [41–43], and ultrafast spectroscopy [44–46],
the concept of superbandwidth of a band-limited function
can be extended to other wave phenomena. Moreover, the
spatiotemporal coupling in ultrashort laser pulses could be the
key to isolate, spatially, the local oscillations of the electric
field given by its superbandwidth [47,48].
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FIG. 5. Panels (a)–(d): Wigner function W (t, ω) of a propagating
SB pulse. Panels (e,f) Cross section of the 2D map of W (t, ω) corre-
sponding to the dashed white lines in panels (a) to (d), respectively.
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APPENDIX A: TIME-FREQUENCY ANALYSIS
FROM THE WIGNER FUNCTION DISTRIBUTION

A different perspective of the underlying physics behind
the phenomenon can be obtained from the analysis of the
Wigner function distribution, which allows us to decom-
pose the superbandwidth phenomenon in a time-frequency
representation. To this end, in Fig. 5 we show the Wigner

distribution W (t, ω) for a SB pulse, as obtained from Eq. (4)
in the main text. Two SB pulses, with a different value of
the parameter α, are considered. When the SB pulse trav-
els through a medium with � = 0, i.e., without dispersion,
W (t, ω) exhibits a positive central lobe along two negative
regions, horizontally or vertically aligned for the case with
α = 1 [Fig. 5(a)] or α = 1.9 [Fig. 5(c)], respectively. In these
cases, the negative values of W (t, ω) account for the destruc-
tive interference resulting from the coherent superposition
of two Gaussian pulses [49], which results in the synthesis
given by Eq. (2) of the main text. In addition, the Wigner
distribution is symmetric with respect to both axes. However,
when the pulse propagates in a dispersive medium [� = 2
opt. cycles2 for the examples that are shown in Figs. 5(b)
and 5(d) corresponding to α = 1 and α = 1.9, respectively],
such symmetry is broken. This breaking of the mirror sym-
metry of W (t, ω) originates from the time dependence of the
instantaneous frequency ω(t ). In Figs. 5(e) to 5(h), we show a
cross section of the two-dimensional (2D) maps in Figs. 5(a)
to 5(d), respectively, for a given value of t = t∗ (dashed white
lines). From these figures, it becomes clear that since ω(t∗)
is the average frequency weighted by W (t∗, ω), when � = 0
the instantaneous frequency coincides with the carrier fre-
quency [ω(t∗) = ω0], independently of the negative values of
W (t∗, ω) [Figs. 5(e) and 5(g)]. For � 	= 0, the asymmetry of
W (t∗, ω) causes the time dependence in ω(t ), which can now
reach higher and lower values than those given by the Fourier
spectrum as a consequence of the negative values of W (t∗, ω)
[50] (otherwise, a positive function distribution always has
a first moment whose value is between the minimum and
maximum values of the variable).

APPENDIX B: MATHEMATICAL ANALYSIS OF SB LASER
PULSES PROPAGATING IN A DISPERSIVE MEDIUM.

The temporal representation of the real electric field of
the initial Gaussian pulse can be described as Re[EG(t )] =
|EG(t )|cos(ω0t ). According to Eq. (2) of the main paper,
which we replicate here to ease the derivation as Eq. (B1)

ẼSB(ω) = e−( ω−ω0
�ω

)2 − αe−( ω−ω0
β�ω

)2

, (B1)

the complex fields of the initial pulse, which we rename here
as EG(t ) = E1(t ) to simplify the derivations, and modified
pulse, E2(t ) are, respectively,

E1(t ) = �ω

2
√

π
e− (�ωt )2

4 eiω0t , (B2)

E2(t ) = β
�ω

2
√

π
e− (β�ωt )2

4 eiω0t . (B3)

Then, the SB pulse can be represented as

ESB(t ) = E1(t ) − αE2(t )

= �ω

2
√

π
(e− (�ωt )2

4 − αβe− (β�ωt )2

4 )eiω0t . (B4)

Considering a medium having second order dispersion
(GVD) with transfer function HD(ω) = e−i�(ω−ω0 )2

, the real
electric fields of both pulses traveling through such a
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medium are

Re[ED
1 (t )] = |ED

1 (t )| × Re[eiφD
1 (t )]

= �ω

2
√

π

e− (�ωt )2

4[1+(��ω2 )2]

[1 + (��ω2)2]
1
4

× cos

(
ω0t + ��ω4

4[1 + (��ω2)2]
t2 + θD

1

)
, (B5)

Re
[
ED

2 (t )
] = ∣∣ED

2 (t )
∣∣ × Re[eiφD

2 (t )]

= αβ
�ω

2
√

π

e
− (β�ωt )2

4[1+(�β2�ω2 )2]

[1 + (�β2�ω2)2]
1
4

× cos

(
ω0t + �β4�ω4

4[1 + (�β2�ω2)2]
t2 + θD

2

)
,

(B6)

where φD
1 (t ) and φD

2 (t ) are the corresponding chirps that
the medium imprints on both pulses, θD

1 = 1
2 arctan(−��ω2)

and θD
2 = 1

2 arctan(−�β2�ω2) are constant phase values, and
|ED

1 (t )| and |ED
2 (t )| are the modulus of the dispersed fields

with durations that increased by a factor of
√

1 + (��ω2)2

and
√

1 + (�β2�ω2)2, respectively.

The real electric field of the dispersed SB pulse can be
written as

Re
[
ED

SB(t )
] = ∣∣ED

1 (t )
∣∣cos

(
φD

1 (t )
) − α

∣∣ED
2 (t )

∣∣cos
(
φD

2 (t )
)
.

(B7)

By combining the two sinusoidal functions into a single
one, the expression can be rearranged as

Re
[
ED

SB(t )
] = ∣∣ED

SB(t )
∣∣ × Re[eiφD

SB(t )]

= |ED
SB(t )| cos

(
φD

1 (t ) + φD
2 (t )

2
+ �φ(t )

)
,

(B8)

where |ED
SB(t )| is the envelope of the real electric field of the

dispersed SB pulse and �φ(t ) a phase term, both functions
defined as∣∣ED

SB(t )
∣∣2 = ∣∣ED

1 (t )
∣∣2 + |ED

2 (t )|2

− 2α
∣∣ED

1 (t )
∣∣∣∣ED

2 (t )
∣∣ cos

(
φD

1 (t ) − φD
2 (t )

)
,

tan(�φ(t )) =
∣∣ED

1 (t )
∣∣ + α

∣∣ED
2 (t )

∣∣∣∣ED
1 (t )

∣∣ − α
∣∣ED

2 (t )
∣∣ tan

(
φD

1 (t ) − φD
2 (t )

2

)
.

(B9)

The phase of the dispersed SB pulse has the expression
presented in Eq. (B15)

φD
SB(t ) = φD

1 (t ) + φD
2 (t )

2
+ arctan

[∣∣ED
1 (t )

∣∣ + α
∣∣ED

2 (t )
∣∣∣∣ED

1 (t )
∣∣ − α

∣∣ED
2 (t )

∣∣ tan

(
φD

1 (t ) − φD
2 (t )

2

)]

= ω0t +
(

1

1 + (��ω2)2
+ β4

1 + (�β2�ω2)2

)
��ω4t2

8
+ θD

1 + θD
2

2

+ arctan

{∣∣ED
1 (t )

∣∣ + α
∣∣ED

2 (t )
∣∣∣∣ED

1 (t )
∣∣ − α

∣∣ED
2 (t )

∣∣ tan

[(
1

1 + (��ω2)2
− β4

1 + (�β2�ω2)2

)
��ω4t2

8
+ θD

1 − θD
2

2

]}
. (B10)

Differentiating the phase of the dispersed SB pulse we find its instantaneous frequency in Eq. (B11)

ωD
SB(t ) = dφD

SB(t )

dt
= ω0 +

(
1

1 + (��ω2)2
+ β4

1 + (�β2�ω2)2

)
��ω4t

4
+ �ω(t ). (B11)

It can be seen that the dispersed SB pulse has a main linear chirp as it would be expected for a dispersed single Gaussian
pulse, but it also presents a deviation �ω(t ) that after many derivations can be expressed as

�ω(t ) =
(∣∣ED

1 (t )
∣∣2 − ∣∣ED

2 (t )
∣∣2

)
1
2

(
dφD

1 (t )
dt − dφD

2 (t )
dt

)
∣∣ED

SB(t )
∣∣2 +

(∣∣ED
1 (t )

∣∣ d|ED
2 (t )|
dt − ∣∣ED

2 (t )
∣∣ d|ED

1 (t )|
dt

)
sin

(
φD

1 (t ) − φD
2 (t )

)
∣∣ED

SB(t )
∣∣2 . (B12)

It can be analyzed the asymptotic behavior of ωD
SB(t ) if

the range of values when |ED
1 (t )| becomes negligible, i.e.,

|t | is greater than three times the standard deviation of the

Gaussian pulse, is considered. In this case, d|ED
1 (t )|
dt is also

approximately zero, |ED
SB(t )|2 ≈ α2|ED

2 (t )|2 and �ω(t ) ≈
− 1

2 ( dφD
1 (t )
dt − dφD

2 (t )
dt ), so the instantaneous frequency has the

asymptotic expression of Eq. (B13)

ωD
SB(t ) ≈ ω0 + �β4�ω4

2[1 + (�β2�ω2)2]
t,

|t | > 3

√
2

�ω

√
1 + (��ω2)2. (B13)
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FIG. 6. Instantaneous frequency of the dispersed SB pulse nor-
malized with respect to ω0: (a) the complete amplitude range,
(b) zoom in of the amplitude; ωD

SB(t ) (solid red line), its asymptotic
response (dashed blue line), |�ω(t )| (dashed black line), with α = 1,
β = 0.5, and � = 2.

The dispersed SB Gaussian pulse presents a linear chirp
over the region of its tails governed by the instantaneous fre-
quency of the dispersed modified Gaussian pulse ED

2 (t ). When
|t | decreases, the chirp of both dispersed pulse components,
ED

1 (t ) and ED
2 (t ), start to interact and the behavior of ωD

SB(t )
becomes more intricate as we approach to the region near tL
or tH where |ED

SB(t )|2 becomes greatly diminished and makes
�ω(t ) to be highly increased with respect to ω0. This effect
can be appreciated in Fig. 6(a) where ωD

SB(t ) and its asymp-
totic response are presented in solid red line and dashed blue
line, respectively, together with �ω(t ) in the dashed black line
for the same parameters of Fig. 1(e) of the main paper (α = 1,
β = 0.5, and � = 2), all normalized with respect to ω0.

In Fig. 6(b) we present a zoom in of the amplitude of the
instantaneous frequency in Fig. 1(a). It can be appreciated
in detail that if |t | is further decreased, i.e., t values inside
the central part of the dispersed SB pulse, the response of
the instantaneous frequency is dominated by �ω(t ), meaning

that, for low values of the α parameter, can be approximated
by Eq. (B15)

ωD
SB(t ) ≈ ω0 + �ω(t ),

|t | � |tL|, |tH | , 0 < α < 1. (B14)

When higher values of the α parameter are considered, the
complete expression of ωD

SB(t ) should be analyzed.
Now it can be clearly understood the foundations of the

local oscillations with frequency values that are below and
above than those expected for a regular dispersed Gaussian
pulse. Moreover, for particular synthesis parameters of the
dispersed SB pulse, the instantaneous frequency reaches val-
ues beyond those expected by its Fourier transform. The
expression of the instantaneous frequency deviation �ω(t ),
which is inversely proportional to the squared real-valued en-
velope of the dispersed SB pulse |ED

SB(t )|2, makes it possible
to explain the appearance of these local oscillations, why they
present an increased absolute value with respect to ω0, and
why their positions are in the range where the envelope has
local minima.

In Figs. 3(a) through 3(d) of the main article, the evolution
of a pulse with the same synthesis parameters, except for the
value of α, was introduced. It was shown that the frequencies
ωhigh and ωlow (at tH and tL, respectively) increase, in absolute
value with respect to ω0, as α increases, up to a certain value
for which the times tH and tL are reversed. This behavior
can be easily understood due to a change of the sign in the
numerator of the frequency deviation �ω(t ) because of its
dependence on the parameter α, and remembering that the
denominator, the squared real valued envelope |ED

SB(t )|2, has
a positive value. This particular value of α may be obtained,
if the values of tH or tL are known, by calculating the roots of
the quadratic polynomial present in the numerator of �ω(t )
when it is evaluated at tH or tL.

Finally, in Fig. 3(e) of the main paper it was shown that,
for a value of α = 1.9 (β = 0.5, � = 2) in a temporal region
around t = 0, the instantaneous frequency of the dispersed SB
pulse can be approximated by a straight line with a negative
slope, opposite to that present on a dispersed single Gaussian
pulse. This surprising behavior where the local oscillations
around t = 0 behave as if they had traveled through a medium
with opposite sign GVD, beyond the dispersion properties of
the material, start to happen, for a given dispersion value �,
when α surpasses a critical value αc. This particular value of
α can be found by differentiating the instantaneous frequency
and equating it to 0, while evaluating this expression for t = 0.
By performing this procedure a quadratic function of αc is
obtained, which after proper mathematical manipulation, is
shown as Eq. (B15)

β6

[1 + (�β2�ω2)2]
3
2

α2
c − 1

[1 + (��ω2)2]
1
4

1

[1 + (�β2�ω2)2]
1
4

[(
1

1 + (��ω2)2
+ β4

1 + (�β2�ω2)2

)
cos(�θD)

− 1

��ω2

(
1

1 + (��ω2)2
− β2

1 + (�β2�ω2)2

)
sin(�θD)

]
βαc + 1

[1 + (��ω2)2]
3
2

= 0, (B15)
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FIG. 7. (Top panels) Absolute value of the spectral field |ẼSB1(ω)| in red region and the spectral phase Arg[ẼSB1(ω)]/π blue region. The
left panel correspond to r = 0.4 and the right panel correspond to r = 0.7. (Bottom panels) Real part of the temporal fields ESB1(t ) in dashed

red line, ED
SB1(t ) in blue line, and the instantaneous frequency ωD

1 (t ) = dArg[ED
SB1(t )]

dt /2π in dashed blue line. The left panel correspond to r = 0.4
and the right panel correspond to r = 0.7. The value of the dispersion for both panels is � = 2 opt. cycles2.

where �θD = θD
1 − θD

2 = 1
2 arctan(−��ω2) − 1

2 arctan(−�

β2�ω2) = 1
2 arctan( −��ω2(1−β2 )

1+�2β2�ω4 ). The roots of Eq. (B15) will
present two values of αc, and typically the lower root will be
below 2 for β = 0.5 which represents a practical value for the
dispersed modified pulse (αβ < 1).

It should be noted that the phenomenon is clearly evident
when the pulse is propagated through a dispersive medium
with length z � LD, which means that the initial Gaussian
pulse is spread temporally twice or less. This spreading of
the Gaussian pulse is given by an increase in its duration
of

√
1 + (��ω2)2. By considering ��ω2 = 1, the temporal

spreading becomes
√

2, determining a clear compromise rela-
tion between � and �ω for which the phenomenon occurs.
If we consider a modified pulse with β = 0.5, a value of
αc = 1.593. This means that for values of α > 1.593 there is
a change of the sign of the instantaneous frequency slope at
t = 0, as if the central part of the pulse had traveled through a
medium with a second order dispersion opposite to that of the
actual medium.

APPENDIX C: OTHER KINDS OF SB LASER PULSES

In this section we will show two other kinds of SB pulses
propagating in a dispersive medium, characterized by the op-
erator HD(ω) = e−i�(ω−ω0 )2

.
The first SB pulse to be analyzed, described by the field

ẼSB1(ω), is a Gaussian pulse to which a π -phase mask is

printed [51]. Mathematically, such a mask is represented
by the operator Hπ (ω) = eiπ×rect( ω−ω0

r�ω
), where the rectangular

function rect(x/x0) is defined as

rect(x/x0) =
{

1 if |x| � x0/2,

0 if |x| > x0/2.
(C1)

Thus, we can write the field ẼSB1(ω) as follows:

ẼSB1(ω) = e−( ω−ω0
�ω )2

eiπ×rect( ω−ω0
r�ω ), (C2)

where the parameters ω0 and �ω represent, as in the Eq. (1)
of the main paper, the carrier frequency and the bandwidth
of the pulse. The parameter r indicates the region where a
phase shift equal to π occurs. In the time space, by varying
the parameter r, a pulse with sub-Fourier characteristics in its
temporal width is obtained [51].

We considered here the same values of the pulse parame-
ters ω0 and �ω of the initial Gaussian pulse ẼG(ω) in the main
paper, i.e., ω0 = 2π and �ω = 0.5, which correspond to a
FWHM of τ = 2

√
2ln2

�ω
≈ 5 opt. cycles. In Fig. 7 the top panels

show the field ẼSB1(ω) with r = 0.4 and r = 0.7, indicating
the spectral field amplitude |ẼSB1(ω)| in red, while colored in
blue the region where the phase change equal to π occurs. The
bottom panels show the real part of the temporal fields ESB1(t )
(dashed red line), ED

SB1(t ) (blue line), and the instantaneous
frequency ωD

1 (t ) = d
dt (Arg[ED

SB1(t )]) normalized to the carrier
frequency ω0 (dashed blue line). The left panel (right panel)

053507-8
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FIG. 8. Real part of the temporal field ESB1(t ) [ED
SB1(t )] in dashed red line (blue solid line). In dashed blue line, the instantaneous frequency

ωD
1 (t ) = dArg[ED

SB1(t )]

dt normalized to the carrier frequency (ω0 = 2π ), is shown. Left panel corresponds to the case with with α = 0.9, βD = 2
opt. cycles2, and � = 1 opt. cycle2. In the right panel, the value of the parameter α was increased to 1.02.

corresponds to pulses with r = 0.4 (r = 0.7) in a dispersive
medium with � = 2 opt. cycles2. From these figures, the
same behavior of the instantaneous frequency shown in the
Figs. 1 and 3 of the main paper can be seen, i.e., the ap-
pearance of local oscillations beyond the Fourier spectrum of
the pulse (left panel), and also the phenomenon in which the
behavior changes as if the dispersion of the medium changed
its sign.

The second SB pulse, ẼSB2(ω), is that studied in Ref. [21]
for which a destructive interference between two Gaussian
pulses with different temporal widths is reached by printing
a quadratic phase (chirp) into one of those pulses. The simili-
tude between the field ẼSB2(ω) and the field ẼSB(ω) analyzed
in the main paper [Eq. (1) in the main paper], are analyzed in
Ref. [19]. This SB pulse can be written as

ẼSB2(ω) = e−( ω−ω0
�ω

)2 + αeiφD (α,βD )e−( ω−ω0
�ω

)2
e−iβD (ω−ω0 )2

,

(C3)

where βD is the chirp parameter. For this SB pulse, the
condition of destructive interference is achieved for a phase
difference φD(α, βD) (see Refs. [19,20]). In the left panel of
Fig. 8 is shown the real part of the temporal field ESB2(t ),
with α = 0.9 and βD = 2 opt. cycles2 (dashed red line), the
dispersed SB pulse, ED

SB2(t ), with � = 1 opt. cycle2

(blue line), and the instantaneous frequency, ωD
2 (t ) =

d
dt (Arg[ED

SB2(t )]) (dashed blue line). In the right panel we
replicate these plots but for a different value of the parameter
α (α = 1.02 in this case). Again, in these figures can be
appreciated the same behavior of the instantaneous frequency
shown in the Figs. 1 and 3 of the main paper.

It is worth mentioning that both fields, ESB1(t ) and ESB2(t ),
have their own characteristics when they propagate in a dis-
persive medium, which depend on their respective synthesis
parameters, and are different from those of the field ESB(t )
studied in the main paper.
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