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Controllable lateral optical force in a double-sphere system
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Extensive studies have been conducted on the lateral optical force, which is perpendicular to the direction of
light propagation. Current research is primarily focused on the lateral force experienced by a single sphere. In
this study, we investigate the lateral optical force exerted on a double-sphere system aligned along the direction
of evanescent-wave propagation, utilizing full-wave simulations and the multipole-expansion method. Despite
no apparent lateral asymmetry, we find that each sphere can experience either positive or negative lateral optical
force by tuning the incident wave’s frequency and polarization. Unlike the lateral force experienced by a single
sphere in an evanescent wave, arising solely from recoil force due to Belinfante’s spin momentum in a circularly
polarized evanescent wave or spin angular momentum in a linearly diagonally polarized evanescent wave, the
lateral force exerted on each sphere in the double-sphere system can also stem from an interception force.
This interception force occurs due to the field gradient caused by the spheres’ asymmetric scattering. This
asymmetry is rooted in the real or imaginary part of the complex Poynting vector of the incident wave. It is
the interception force that enables continuous tuning of the lateral optical force of each sphere and their sign
flip. This research advances the understanding of lateral optical force and offers more flexibility for optical
manipulation in multiparticle systems, opening up new opportunities for lateral-force-based applications.

DOI: 10.1103/PhysRevA.109.053505

I. INTRODUCTION

Lateral optical forces [1–9], acting perpendicular to light
propagation, have received considerable attention. One con-
cept possessing a pertinent feature with this is the lateral
optical gradient force, which is caused by the field gradient
and is observed in applications such as transversely trapping
particles on the optical axis in optical tweezers [10–14] and
confining particles near the surface of optical fibers [15,16].
However, lateral optical forces are defined in a direction
where the incident light does not have a field gradient.
Such forces can result from some form of asymmetry, such
as the inherent asymmetry in chiral structures [1,17] and
materials [18–22]. Interestingly, lateral optical forces can per-
sist even when there is no apparent left-right asymmetry in
both the incident optical field and the illuminated particle
[2–4,7–9,23–30]. For instance, these forces can emerge from
the breaking of electric-magnetic symmetry [28], scattering
asymmetry induced by spin-orbit coupling [3,4,23,27], Belin-
fante’s spin momentum (BSM) resulting from the real part of
the complex Poynting vector in a circularly polarized evanes-
cent wave [2], and the transverse spin angular momentum
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(SAM) proportional to the transverse imaginary Poynting vec-
tor in a linearly diagonally polarized evanescent wave [8].

Current research on lateral optical forces is primarily fo-
cused on a single particle. However, many systems consist
of multiple particles, which can be used in various applica-
tions such as biological studies [31], colloidal assembly [32],
quantum technologies [33], imaging techniques [34], and mi-
croscale engineering [35,36]. Given the significant role of
the lateral force in optical manipulation within multiparticle
systems, it is intriguing and necessary to investigate the lateral
optical force in these systems.

In this work, we study the lateral optical forces exerted
on a double-sphere system aligned along the direction of
evanescent-wave propagation. Neither the incident beam nor
the double-sphere system shows any apparent lateral asym-
metry [see Fig. 1(a) for an example]. Through comprehensive
analysis with full-wave simulations and multipole-expansion
theory, we discover that the lateral optical forces exerted
on each sphere in a double-sphere system are contributed
not only by the recoil force but also by an interception
force. This is unlike a single-sphere system. The interception
force originates from the transverse field gradient, which is
caused by asymmetric scattering between the spheres. The
asymmetric scattering of an isotropic sphere arises from the
inherently asymmetrical real part of the complex Poynting
vector of the incident circularly polarized evanescent wave
or the asymmetrical imaginary part in the case of linearly
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FIG. 1. (a) Schematic plot of a double-sphere system. It involves
two identical spheres in the field of a circularly polarized evanescent
wave. This wave propagates along the x direction and decays in the
z > 0 half-space. The two spheres can move laterally in the same or
opposite directions due to the lateral optical force. In the calculations
for this paper, the coordinates for spheres 1 and 2 are set as (−D,
0, λ/2) and (0, 0, λ/2), respectively. The two spheres are aligned
in the direction of propagation, with a separation distance of D.
However, as the incident evanescent wave is uniformly distributed
on the xy plane, the position of the two spheres on the z = λ/2
plane does not affect the results. The outcome remains the same
as long as the relative positions of the two spheres are consistent.
(b) The lateral optical force exerted on the first (F MST

1y , red thick line)
and second (F MST

2y , blue thin line) gold spheres in the double-sphere
system versus the frequency and energy. The incident light is a
circularly polarized evanescent wave (p = √

2/2, q = √
2i/2). For

comparison, the lateral force on a single gold sphere is shown by
the black dashed line (F MST

sy ). The center-to-center distance in the
double-sphere system is D = 0.4 µm.

diagonally polarized evanescent waves. Interestingly, this in-
terception force can cause the lateral optical forces on the
two spheres to point in either the same or opposite directions.
This flexibility could potentially enable the adjustment of
the direction of lateral optical forces in a system involving

multiple spheres. Moreover, in a linearly diagonally polarized
evanescent wave, the lateral optical forces exerted on the two
spheres are less tunable with scattering compared to those
in a circularly polarized evanescent wave. This is attributed
to the less pronounced asymmetric scattering in a linearly
diagonally polarized evanescent wave. Our findings can be
extended to systems composed of more spheres.

II. SYSTEM SETTINGS AND THEORETICAL
FORMALISM

We consider a double-sphere system in a single evanescent
wave, as illustrated in Fig. 1(a). This system consists of two
identical gold spheres. They are aligned in the direction of the
evanescent-wave propagation and situated at z = λ/2. Each
sphere has a radius of r = 0.1 µm, and the distance between
their centers is denoted as D. The permittivity of gold is mod-
eled by the Drude model, εr = 1 − ω2

p/(ω2 + iωγ ), with the
plasmonic frequency given as ωp = 1.37 × 1016 rad/s (corre-
sponding to a photon energy of 8.995 eV) and the damping
frequency given as γ = 4.084 × 1013 rad/s (corresponding
to a photon energy of 2.668 × 10−2 eV) [37]. The electric
field of the evanescent wave, which propagates along the x
axis and decays in the z > 0 half-space, can be expressed as
follows [8]:

Einc = E0

[
iκ

kx
px̂ + k

kx
qŷ − pẑ

]
eikxx−κz, (1)

in which the time dependence e−iωt has been assumed and
omitted for simplicity. E0 represents the amplitude of the
electric field at z = 0. The complex numbers p and q define
the polarization state, normalized by |p|2 + |q|2 = 1. For in-
stance, TM polarization is defined by p = 1 and q = 0. TE
polarization is defined by p = 0 and q = 1. Diagonal linear
polarization (DLP) is defined by p = q = √

2/2. Circular po-
larization (CP) is defined by p = √

2/2, q = ±√
2i/2. The

wave number is denoted by k, the longitudinal wave number
is denoted by kx, and the exponential decay rate is denoted by
κ . They satisfy the equation k2 = k2

x − κ2, and the complex
wave vector is denoted by k = kxx̂ + iκ ẑ. In this paper, the
exponential decay rate is set to κ = 0.1k, and E0 = 106 V/m.

Here, we use two methods to calculate the time-averaged
optical force exerted on the two spheres. On the one hand,
the optical forces FMST exerted on the two spheres are nu-
merically obtained by integrating the Maxwell stress tensor
on a closed surface around each sphere [38]. The total optical
fields are computed using full wave simulation via COMSOL

MULTIPHYSICS. On the other hand, for a better understanding
of the complex lateral optical force behavior in the double-
sphere system, we employ the multipole expansion of optical
forces [39]. The optical force FMUL exerted on a particle in
any monochromatic optical field can be described as a sum
of the interception (extinction) force Fint and the recoil force
Frec [40–43]:

FMUL = Fint + Frec. (2)

The interception force Fint originates from the interaction
between electric (magnetic) multipoles of different orders in-
duced on the particle and the incident electric (magnetic) field.
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Physically, it can be seen as the momentum transferred from
the incident photons to the particle during light-scattering
interception. The recoil force Frec arises from the interaction
between the induced multipoles on the particle. It can also
be interpreted as the momentum gained by the particle during
the scattering reradiation process when the induced multipoles
reemit light. In other words, per the principle of momentum
conservation, particles will gain or lose momentum during the
reemission of light by excited multipoles. This momentum
change results in the particles experiencing a recoil force.
Since this involves a continuous change in the momentum
state of the particles, it is a dynamic physical process. Here,
we express Fint and Frec in terms of the dominant multipoles
up to the electric quadrupole order [42,44]:

Fint = Fp + Fm + FQ, Frec = Fpm + FQp, (3)

where

Fp = 1

2
Re[(∇E∗) · p],

Fm = 1

2
Re[(∇B∗) · m],

FQ = 1

4
Re

[
(∇∇E∗):Q(e)],

Fpm = − k4

12πε0c
Re[p × m∗],

FQp = − k5

40πε0
Im

[
Q(e) · p∗]. (4)

p, m, and Q(e) represent the electric dipole, magnetic dipole,
and electric quadrupole moments, respectively [39]. E and B
represent the total incident electric and magnetic fields acting
on the particle. They can be expressed as E = Einc + Esca and
B = Binc + Bsca, where Einc and Binc are the initial incident
evanescent fields, while Esca and Bsca are the fields scattered
by the other particle. When the particle size is significantly
smaller than the wavelength, Esca and Bsca can be approxi-
mated using the electric and magnetic dipole fields [38,45]:

Esca = 1

4πε0

{
k2(n × p) × n

eikr′

r′

+[3n(n · p) − p]

(
1

r′3 − ik

r′2

)
eikr′

}

− Z0k2

4π
(n × m)

eikr′

r′

(
1 − 1

ikr′

)
,

Bsca = μ0ck2

4π
(n × p)

eikr′

r′

(
1 − 1

ikr′

)

+ μ0

4π

{
k2(n × m) × n

eikr′

r′

+[3n(n · m) − m]

(
1

r′3 − ik

r′2

)
eikr′

}
, (5)

where Z0 = √
μ0/ε0 represents the impedance of the free

space, r′ = |r′| stands for the radial distance, and n denotes
a unit vector in the direction of r′.

III. CIRCULARLY POLARIZED
EVANESCENT-WAVE CASE

In this section, we consider the case in which the inci-
dent evanesce wave is circularly polarized (p = √

2/2, q =√
2i/2). The lateral optical force directly calculated from

Maxwell’s theory F MST
y is shown in Fig. 1(b). It is interesting

that the direction of the lateral force exerted on each sphere
in the double-sphere system can be along either the +y or −y
direction, depending on the incident wave’s frequency. More
importantly, the two spheres can move laterally in the same or
opposite directions due to the lateral force [see Fig. 1(b) and
the schematic diagrams in Fig. 1(a)]. In contrast, for a single
sphere in the same evanescent wave, the sphere can experience
a lateral force only in the −y direction (Fsy), as shown by the
black dashed line, which is induced by BSM [2,8].

To understand the intriguing behavior of lateral forces in
the double-sphere system, we resort to the multipole expan-
sion of optical forces [Eqs. (2)–(4)]. The results from these
two methods align perfectly for a single sphere in an evanes-
cent wave, as seen by the black solid line and the red circles
in Fig. 2(a). Furthermore, for the double-sphere system, the
results from both methods agree well with each other and
have only a small deviation at high frequencies, as shown
in Figs. 2(b) and 2(c). This discrepancy mainly stems from
the use of Eq. (5) to describe the fields scattered by the other
sphere when using the multipole-expansion equations of the
interception force in Eq. (4). At short wavelengths, the other
sphere can no longer be viewed as a dipole.

For a single-sphere system, the interception force F int
sy is

completely zero due to the incident field intensity’s uniformity
on the xy plane. Consequently, the lateral optical force on
the sphere originates entirely from the recoil force F rec

sy , as
shown in Fig. 2(a). This lateral optical force has been proven
to be induced entirely by BSM [2,8], which stems from the
asymmetrical real part of the incident evanescent wave’s com-
plex Poynting vector in the lateral y direction [see the white
arrows in Fig. 2(d)]. However, the interception force can play
a determinative role in changing the lateral force’s sign in
the double-sphere system presented in Figs. 2(b) and 2(c). In
the following, we will analyze the interception force in the
double-sphere system in detail.

In comparison, the nonzero interception force F int
y of one

sphere in the double-sphere system results from the asymmet-
ric scattering from the other sphere. Figure 2(e) presents the
scattered field intensity of a single sphere with asymmetric
distribution along the y axis. For a clearer view, we illus-
trate the normalized field magnitude of the scattered light at
x = −0.4 µm on the sphere’s left side. It shows that the light
scattering tends to propagate in the +y direction, as demon-
strated in Fig. 2(f). In fact, this asymmetry stems from the
real part of the incident evanescent wave’s complex Poynting
vector along the y direction [46].

Moreover, we find that the direction of the interception
force resulting from the spheres’ mutual scattering can be
modified by the incident evanescent wave’s frequency. As
shown in Figs. 2(b) and 2(c), its direction can be positive or
negative, causing the total lateral force exerted on the sphere
to change direction with frequency. The interception force’s
direction dependence on the frequency can be understood
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FIG. 2. (a)–(c) Lateral optical forces exerted on a single sphere or the two spheres in a double-sphere system versus frequency and energy.
These forces are calculated directly from Maxwell’s theory (F MST

y ) or through the multipole expansion of optical forces (F MUL
y , F int

y , F rec
y ).

(d) The uniform intensity of the incident evanescent wave on the xy plane. The white arrows represent the y component of the real part of
the incident evanescent wave’s complex Poynting vector. (e) The intensity of the field scattered from a gold sphere (represented by the gray
stripes), with an incident wave frequency of 350 THz. (f) The normalized scattered field magnitude along the y direction to the left of the gold
sphere at x = −0.4 µm. (g) and (i) The total electric field computed using a full-wave simulation in the presence of a gold sphere (indicated
by a solid black circle) with incident-wave frequencies of 350 and 510 THz, respectively. (h) The normalized magnitude of the electric field
at the vertical black dashed line in (g). (j) The difference between the electric-field magnitude at the upper red and lower yellow dashed lines
in (i). The center-to-center distance in the double-sphere system is D = 0.4 µm. The incident light is a circularly polarized evanescent wave
(p = √

2/2, q = √
2i/2).

by examining the distribution of the total incident optical
field E. As depicted in Figs. 2(g) and 2(i) (corresponding
to frequencies of 350 and 510 THz, respectively), the in-
cident evanescent wave striking a gold sphere (outlined by
the black solid circle) interferes with the backward scattered
light, producing distinct interference fringes in the sphere’s
left area [38,47]. However, there are no apparent interference
fringes in the sphere’s right area. Thus, in the system shown
in Fig. 1(a), sphere 1 is more significantly affected by the
interference field. However, sphere 2 is less affected by the
interference field, so the behavior of its lateral force versus
frequency is similar to that of a single sphere [shown in
Figs. 2(a) and 2(c)]. Next, we analyze the sign change of F int

1y
on sphere 1 shown by the orange and purple stars in Fig. 2(b).
When analyzing the force exerted on sphere 1, we consider
only the dominant first scattering by sphere 2. This refers
to the light scattered to sphere 1 after the incident light hits
sphere 2, disregarding any multiple scattering between the
two spheres. Sphere 1 (marked by the black dashed circle)

is placed in the total incident field composed of the inci-
dent evanescent wave and the scattered field from sphere 2
in Figs. 2(g) and 2(i). When the frequency of the incident
evanescent wave is 350 THz, sphere 1 is situated in the bright
fringe depicted in Fig. 2(g). In addition, the magnitude of the
electric field along the vertical black dashed line is shown
in Fig. 2(h). It is evident that the peak of the electric-field
magnitude is skewed toward the +y direction. As a result of
the field gradient, sphere 1 experiences an F int

1y directed toward
the +y direction. However, as shown in Fig. 2(i), when the
frequency of the incident evanescent wave is 510 THz, sphere
1 is situated in the dark fringe. Figure 2(j) highlights the
difference between the electric-field magnitude at the upper
red dashed line and that at the lower yellow dashed line in
Fig. 2(i), indicating that the field magnitude on the lower side
of sphere 1 is stronger than that on the upper side at x =
−0.4 µm. This results in sphere 1 experiencing an interception
force in the −y direction. Additionally, Fig. 2(j) reveals a
pattern: in the dark fringe, the field magnitude at y < 0 is
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stronger than the field magnitude at y > 0 (the difference
is negative), while in the bright fringe, the field magni-
tude at y > 0 is stronger than the field magnitude at y < 0
(the difference is positive). It can be understood as fol-
lows. The bright fringe is a result of the superposition
between the wave peaks (or troughs) from both the in-
cident evanescent wave and the backward-scattering wave
from sphere 2. Conversely, the dark fringe results from
the superposition between their wave peaks and troughs.
On the left side of sphere 2, the backward scattering
tends to laterally propagate in the +y direction. Therefore,
the magnitude or amplitude of the scattered wave in the
y > 0 area is greater than that in the y < 0 area. At the
bright fringe, the electric-field amplitude in the y > 0 area
is the sum of the uniform incident-wave amplitude and
the relatively large scattering-wave amplitude. Therefore, it
exceeds the sum of the incident-wave amplitude and the rel-
atively small scattering-wave amplitude in the y < 0 area.
However, at the dark fringe, the electric-field amplitude in
the y > 0 area is the difference between the incident-wave
amplitude and the relatively large scattering-wave amplitude.
Hence, it is less than the difference between the incident-
wave amplitude and the relatively small scattering-wave am-
plitude in the y < 0 area, as depicted in Fig. 2(j). Thus, we
can conclude that adjusting the frequency, which effectively
tunes the interference fringe, changes the field-intensity dis-
tribution along the lateral y direction. This enables us to alter
the direction of the lateral optical force exerted on the sphere.

Therefore, the lateral optical force exerted on each sphere
is actually the competition between BSM and the scattering
between the two spheres. At low frequencies, the interception
force induced by the scattering mechanism dominates. This
is due to the distance between the spheres being significantly
smaller than the wavelength, which enhances scattering. To
investigate this effect, we further reduce the distance be-
tween spheres from D = 0.4 µm to D = 0.3 µm. The results
are presented in Fig. 3. It is found that the closer sphere
separation results in opposite directions of lateral forces for
the two spheres over a larger frequency range, particularly
at low frequencies. The lateral forces on the two spheres
are nearly equal in magnitude but opposite in direction due
to strong mutual scattering. One can visualize this as the
photons scattered by the first sphere pushing the second
sphere to move in the +y direction while simultaneously
receiving a recoil in the −y direction. As frequency in-
creases, similar to what happens when increasing the sphere
separation relative to the wavelength, the mutual scattering
weakens. This allows the lateral optical force induced by
BSM mechanism to become apparent and even dominant,
as shown by the green dotted lines in Figs. 2(b), 2(c), 3(b),
and 3(c). This results in the lateral forces exerted on the two
spheres being in the same direction, as seen in Figs. 1(b)
and 3(a).

IV. LINEARLY DIAGONALLY POLARIZED
EVANESCENT-WAVE CASE

A linearly diagonally polarized evanescent wave (p = q =√
2/2) carries pure transverse SAM [2,8]. It has been estab-

lished that the lateral optical force Fy exerted on an isotropic
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calculated directly from Maxwell’s theory and are represented by
red thick and blue thin lines, respectively. (b) and (c) The inter-
ception force F int

y , the recoil force F rec
y , and the total force F MUL

y =
F int

y + F rec
y exerted on sphere 1 and sphere 2 versus frequency and

energy. These forces are calculated through the multipole-expansion
method. The center-to-center distance in the double-sphere system is
D = 0.3 µm. The incident light is a circularly polarized evanescent
wave (p = √

2/2, q = √
2i/2).

sphere in such a wave is proportional to the transverse spin.
This force originates entirely from the recoil force, as shown
in Fig. 4(a).

In the DLP evanescent wave, the imaginary part of the
complex Poynting vector also presents asymmetry along
the lateral y direction [as indicated by the white arrows in
Fig. 4(b)]. This will result in asymmetric scattering in the lat-
eral direction from the sphere [46,48]. Figure 4(c) shows the
distribution of backward scattering of an isotropic sphere in a
DLP evanescent wave in the y direction. Consequently, similar
to that in the CP evanescent wave, each sphere within the
double-sphere system experiences a lateral force that includes
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multipole-expansion method. (b) The uniform intensity of the incident wave on the xy plane. The white arrows represent the y component of
the imaginary part of the incident evanescent wave’s complex Poynting vector. (c) The normalized scattered field magnitude (x = −0.4 µm)
along the y direction to the left of the gold sphere located at coordinates (0, 0) on the xy plane. The frequency of the incident evanescent
wave is 350 THz. (d) and (e) Lateral optical forces exerted on the two spheres in a double-sphere system versus frequency and energy. The
optical forces are calculated using the multipole-expansion method. The center-to-center distance in the double-sphere system is D = 0.4 µm.
(f) Lateral optical forces exerted on the two spheres in a double-sphere system versus frequency and energy. They are directly calculated from
Maxwell’s theory. The solid and dashed lines correspond to center-to-center distances in the double-sphere system of D = 0.4 and 0.3 µm,
respectively. The incident light is a DLP evanescent wave (p = q = √

2/2).

not only the recoil force but also the interception force due
to asymmetric scattering, as depicted in Figs. 4(d) and 4(e).
Moreover, a comparison of the solid red thick and blue thin
lines in Fig. 4(f) with those in Fig. 1(b) reveals that the be-
havior of lateral optical forces experienced by the two spheres
in a DLP evanescent wave differs from that in the CP case. In
the DLP evanescent wave, the two spheres rarely experience
lateral optical forces in opposite directions. Instead, the lateral
forces tend to point in the same direction, akin to the trend of
the lateral optical force experienced by a single sphere shown
in Fig. 4(a). From Figs. 4(d) and 4(e), it is clear that even
though the interception force from mutual scattering arises,
the recoil force from transverse spin remains dominant. This
can be inferred from the distribution of scattered field in the
lateral direction [see Fig. 4(c)]. Compared with the CP case
[with the same parameters; see Fig. 2(f)], the scattered field
distribution in the lateral y direction shows only a slight asym-
metry, leaning toward the −y direction. This suggests that the
lateral optical force exerted on spheres can be further tuned
by changing the incident light’s polarization. For instance, if
the frequency is fixed as 350 THz, sphere 1 (2) experiences
positive (negative) lateral optical forces in the CP case, while
both of them become positive when the light is switched to the
DLP case.

However, one can still observe the lateral optical force
exerted in opposite directions on the two spheres in the DLP
case. Their distance needs to be further reduced to enhance
the mutual scattering, for instance, reducing the distance from
D = 0.4 µm to D = 0.3 µm as depicted in Fig. 4(f).

V. CONCLUSION

In summary, we investigated the lateral optical forces ex-
erted on a double-sphere system aligned along the propagation
direction of an evanescent wave. Through the multipole ex-
pansion of optical forces, we found that in contrast to the
lateral force on a single sphere, which originates solely from
the recoil force due to BSM or transverse SAM, the force
on each sphere in the double-sphere system can also come
from an interception force. This interception force is induced
by asymmetric scattering between the spheres. By modify-
ing the frequency and polarization of the incident evanescent
wave, we can adjust the distribution of the interference field
formed by the incident and scattered light. This allows for
flexible control over the direction of the interception forces
and the lateral optical forces exerted on the two spheres,
which can be the same or opposite. Moreover, we found that
under the same parameters, the asymmetric scattering of an
isotropic sphere in a DLP evanescent wave is less apparent
than that in a circularly polarized evanescent wave. These
conclusions can be extended to systems composed of more
spheres (see Sec. I of the Supplemental Material [49] for
details). In addition, it should be noted that for the entire
double-sphere system, there is no lateral interception force
(F int

y = 0) because the incident-plane evanescent wave does
not have transverse propagation or a transverse intensity
gradient [see Eqs. (3) and (4) for the expression of the in-
terception force]. However, the sum of the interception forces
exerted on each sphere is not zero (i.e., F int

1y + F int
2y �= 0). In

fact, the total (net) lateral interception force is not equal to
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the sum of the interception forces acting on each sphere.
That is, F int

y �= F int
1y + F int

2y , even though it is always true that
Fy = F1y + F2y. More details can be found in Sec. II of the
Supplemental Material [49]. Exploring lateral optical forces
in multisphere systems deepens our basic understanding
of light-matter interactions. It also has potential applica-
tions in particle manipulation, optical sorting, light-driven
micro- and nanomotors, and biophysical studies, among
others.
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and S. H. Simpson, Nat. Commun. 9, 5453 (2018).

[27] Y. N. Fu, Y. Q. Zhang, C. J. Min, K. W. Fu, and X. C. Yuan,
Opt. Express 28, 13116 (2020).

[28] H. J. Chen, H. X. Zheng, W. L. Lu, S. Y. Liu, J. Ng, and Z. F.
Lin, Phys. Rev. Lett. 125, 073901 (2020).

[29] Z. H. Xiu, Y. S. Zhang, H. S. Shi, H. X. Zheng, H. J. Chen,
W. L. Lu, and Z. F. Lin, Phys. Rev. A 104, 053520 (2021).

[30] M. Nieto-Vesperinas and X. H. Xu, Phys. Rev. Res. 3, 043080
(2021).

[31] H. B. Xin, Y. C. Li, Y. C. Liu, Y. Zhang, Y. F. Xiao, and B. J.
Li, Adv. Mater. 32, 2001994 (2020).

[32] A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. M.
Tong, and M. Käll, ACS Nano 9, 3453 (2015).

[33] S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A.
Regal, and E. M. Weig, Nat. Phys. 18, 15 (2022).

[34] J. Yamanishi, H. Yamane, Y. Naitoh, Y. J. Li, N. Yokoshi,
T. Kameyama, S. Koyama, T. Torimoto, H. Ishihara, and Y.
Sugawara, Nat. Commun. 12, 3865 (2021).

[35] J. Parker, C. W. Peterson, Y. Yifat, S. A. Rice, Z. Yan, S. K.
Gray, and N. F. Scherer, Optica 7, 1341 (2020).

[36] T. L. Qi, F. Nan, and Z. J. Yan, Adv. Opt. Mater. 11, 2301158
(2023).

[37] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W.
Alexander, and C. A. Ward, Appl. Opt. 22, 1099 (1983).

[38] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New
York, 1999).

[39] R. E. Raab and O. L. de Lange, Multipole Theory in Electro-
magnetism (Oxford University Press, Oxford, 2004).

[40] J. Chen, J. Ng, Z. F. Lin, and C. T. Chan, Nat. Photon. 5, 531
(2011).

[41] H. J. Chen, S. Y. Liu, J. Zi, and Z. F. Lin, ACS Nano 9, 1926
(2015).

[42] Y. K. Jiang, H. Z. Lin, X. Li, J. Chen, J. J. Du, and J. Ng, ACS
Photon. 6, 2749 (2019).

[43] H. J. Chen, Q. Ye, Y. W. Zhang, L. Shi, S. Y. Liu, Z. Jian, and
Z. F. Lin, Phys. Rev. A 96, 023809 (2017).

[44] Y. K. Jiang, H. J. Chen, J. Chen, J. Ng, and Z. F. Lin,
arXiv:1511.08546.

[45] K. J. Wo, J. Peng, M. K. Prasad, Y. Z. Shi, J. S. Li, and S. B.
Wang, Phys. Rev. A 102, 043526 (2020).

053505-7

https://doi.org/10.1038/ncomms4307
https://doi.org/10.1038/ncomms4300
https://doi.org/10.1038/ncomms9799
https://doi.org/10.1038/nphoton.2015.200
https://doi.org/10.1021/acsnano.7b01428
https://doi.org/10.1038/s41566-018-0200-x
https://doi.org/10.1126/sciadv.abn2291
https://doi.org/10.1002/lpor.202300212
https://doi.org/10.1038/s41467-023-42076-x
https://doi.org/10.1364/OL.11.000288
https://doi.org/10.1364/AO.36.002107
https://doi.org/10.1364/OE.14.006963
https://doi.org/10.1364/JOSAB.26.002242
https://doi.org/10.1038/s41377-019-0168-4
https://doi.org/10.1002/smll.201905209
https://doi.org/10.1002/adfm.201905568
https://doi.org/10.1021/acsphotonics.5b00516
https://doi.org/10.1364/OL.40.005530
https://doi.org/10.1073/pnas.1516704112
https://doi.org/10.1038/s41377-020-0293-0
https://doi.org/10.1103/PhysRevLett.125.043901
https://doi.org/10.1103/PhysRevA.101.043808
https://doi.org/10.1038/ncomms6327
https://doi.org/10.1103/PhysRevX.5.011039
https://doi.org/10.1038/nphys3732
https://doi.org/10.1038/s41467-018-07866-8
https://doi.org/10.1364/OE.390214
https://doi.org/10.1103/PhysRevLett.125.073901
https://doi.org/10.1103/PhysRevA.104.053520
https://doi.org/10.1103/PhysRevResearch.3.043080
https://doi.org/10.1002/adma.202001994
https://doi.org/10.1021/acsnano.5b00286
https://doi.org/10.1038/s41567-021-01402-0
https://doi.org/10.1038/s41467-021-24136-2
https://doi.org/10.1364/OPTICA.396147
https://doi.org/10.1002/adom.202301158
https://doi.org/10.1364/AO.22.001099
https://doi.org/10.1038/nphoton.2011.153
https://doi.org/10.1021/nn506835j
https://doi.org/10.1021/acsphotonics.9b00746
https://doi.org/10.1103/PhysRevA.96.023809
https://arxiv.org/abs/1511.08546
https://doi.org/10.1103/PhysRevA.102.043526


WANG, LI, LI, ZHANG, AND CHEN PHYSICAL REVIEW A 109, 053505 (2024)

[46] M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L.
Chantada, Opt. Express 18, 11428 (2010).

[47] M. Born, E. Wolf, and E. Hecht, Phys. Today 53(10), 77 (2000).
[48] Y. Zhou, X. H. Xu, Y. N. Zhang, M. M. Li, S. H. Yan, M. Nieto-

Vesperinas, B. J. Li, C. W. Qiu, and B. L. Yao, Proc. Natl. Acad.
Sci. USA 119, e2209721119 (2022).

[49] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.109.053505 for (1) the lateral optical force
in the three-sphere system and the four-sphere system and (2)
the inequality between the sum of the interception force on each
sphere in a double-sphere system and the interception force on
the entire system, which includes Refs. [18,22].

053505-8

https://doi.org/10.1364/OE.18.011428
https://doi.org/10.1063/1.1325200
https://doi.org/10.1073/pnas.2209721119
http://link.aps.org/supplemental/10.1103/PhysRevA.109.053505

