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Amplitude-modulated mirror pulses for improved cold-atom gravimetry
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Cold-atom gravimetry is susceptible to environmental factors and noise resulting from the expansion of the
atom cloud, thereby impacting the quality of gravity signals. An amplitude-modulated mirror-pulse scheme for
cold-atom gravimeters is proposed to enhance the stability of the gravity measurement. The amplitude-modulated
pulse is calculated based on the combined optimal control method of differential evolution and gradient ascent
pulse engineering. This combination imparts high robustness to the amplitude-modulated pulse against detuning
and coupling strength. Numerical modeling of the atom gravimeter with a cloud of 3 µK 87Rb atoms suggests
that, compared with the rectangular pulse, the amplitude-modulated mirror pulse reduces the uncertainty of the
gravity value extracted from a single interference fringe, increases the contrast of the interference fringe by
about 1.5 times, and improves the stability of the gravity measurement. Additionally, by imposing constraints
on pulse-shape smoothness, the phase-noise transfer function of the gravimeter using the amplitude-modulated
mirror pulse closely approximates the performance of the rectangular pulse.
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I. INTRODUCTION

Atom-interferometry sensors can obtain ultrahigh-
precision measurements in diverse fields, including inertial
measurements [1–3], the determination of fundamental con-
stants [4,5], and tests of the weak-equivalence principle [6,7].
Cold-atom absolute gravimetry, primarily reliant on the
Mach-Zehnder three-pulse atom-interferometry principle [8],
provides the advantage of automatic cycle measurement
without mechanical friction. It can be employed in domains
such as volcano [9] and earthquake monitoring [10],
oceanography [11], and resource exploration. The fidelity
of the coherent manipulation of quantum states constitutes
a critical factor that influences the precision of cold-atom
absolute gravimetry.

The practical application of atom gravimeters necessi-
tates dealing with adverse field conditions, including the
nonuniformity of the bias magnetic field and fluctuations in
the Raman laser frequency and intensity [12,13]. Moreover,
during the free-fall process of the atom cloud, nonuniform
longitudinal velocity distributions and horizontal expansion
can occur [14,15]. Due to limitations in laser power, typical
cold-atom gravimeters employ long-duration, low-intensity
rectangular pulses. The pulses are sensitive to the Doppler
shift and exhibit a Gaussian-shaped horizontal intensity dis-
tribution. When the laser interacts with the atom cloud, the
fidelity of the quantum states manipulated by the pulse de-
creases. Consequently, the contrast of interference fringes
is diminished, and the sensitivity of atom interferometry is
limited [16].

Composite pulses [17,18] and modulated pulses [19–21]
are control signals developed in the field of nuclear-magnetic-
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resonance spectroscopy. They are capable of robustly han-
dling variations in coupling strength and detuning. Composite
pulses comprise multiple single pulses organized in a spe-
cific sequence designed to reduce systematic errors. Although
the principles of pulse manipulation for atom interferome-
try differ from those of nuclear magnetic resonance, several
composite-pulse schemes have been applied in atom interfer-
ometry to achieve robust quantum state manipulation [22,23].
However, it is essential to consider the effects of variations
in sequence length. Pulse shaping involves the modulation
of the pulse amplitude or phase and has been extensively
utilized in the field of quantum information processing to
construct quantum gates [24,25]. Phase-modulated pulses
have been shown to enhance fringe contrast in atom inter-
ferometry [26,27]. However, atom gravimeters often employ
frequency chirping and are vulnerable to environmental vibra-
tions [28,29], which can impact the interference phase. These
influences can disrupt the implementation of pulse phase mod-
ulation. Therefore, it is necessary to establish robust pulses for
atom gravimetry through pulse-amplitude-shaping methods,
where changes in coupling strength are not intertwined with
phase [30]. Compared with the rectangular π pulse, the tran-
sition response of the rectangular π/2 pulse is superior under
the same disturbance, and the quantum state after evolution
is closer to the target state. Therefore, it is highly meaningful
to explore the optimization of the π pulse for Mach-Zehnder-
type atom gravimeters.

In this paper, we design an amplitude-modulated mir-
ror pulse for atom gravimeters and discuss its impact on
improving gravity measurement. We employ a combina-
tion of differential evolution (DE) [31] and gradient ascent
pulse engineering (GRAPE) [32], a quantum optimal control
algorithm based on the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS-B) algorithm, to optimize the
amplitude shape of the mirror pulse. In this scheme, we
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implement a second-order finite-difference method to impose
constraints on the smoothness of the mirror pulses. Addi-
tionally, we enforce boundary conditions to ensure that the
amplitude range remains within the effective Rabi frequency
of the rectangular mirror pulse. We examine the response
of pulses optimized using state-to-state and gate-synthesis
methods to detuning and coupling strength [33,34]. Utilizing
a numerical simulation system for the 87Rb atom gravime-
ter, we investigate the impact of the amplitude-modulated
mirror pulse on single interference fringes and the resultant
enhancement in the stability of the gravity measurement.
The sensitivity-function curve and the phase-noise transfer
function of a gravimeter with an amplitude-modulated mirror
pulse are solved.

II. PULSE-SHAPING METHOD

A. Quantum state evolution

Atom-interferometry gravimeters are typically based on
two-photon stimulated Raman transition. In the process of in-
terference of the rubidium-atom ensemble, it can be regarded
as a two-level system. The quantum state in the Bloch sphere
can be expressed as follows [35]:

|ψ〉 = cos
(ν

2

)
|0〉 + eiϕ sin

(ν

2

)
|1〉, (1)

where ν and ϕ are the polar and azimuth coordinates of the
points on the surface of the Bloch sphere, |0〉 represents the
ground state, and |1〉 represents the excited state. The Hamil-
tonian of its interaction with the laser can be written in the
rotating coordinate system as

H = h̄

2
�R · σ, (2)

where σ is the vector of the Pauli matrix and �R is the field
vector. It can be expressed as

�R = �eff cos (φL )x + �eff cos (φL )y + δz, (3)

where �eff is the effective Rabi frequency, φL is the Raman
laser phase, and δ(t ) is the two-photon detuning [36]:

δ(t ) = ω1(t ) − ω2(t )

−
(

ωeg+ P · keff

m
+ h̄|keff |2

2m
+ keff · v

)
+ δac. (4)

Here ω1(t ) and ω2(t ) represent the frequencies of the two
Raman laser beams, and ωeg represents the energy-level dif-
ference between the ground state and the excited state. keff

is the Raman wave vector k1 − k2. Pkeff/m is the Doppler
shift caused by the free fall of the atom cloud, which records
information about the acceleration of gravity. h̄|keff |2/2m is
the recoil shift, keff · v is the frequency shift caused by the
relative speed of each atom to the center of the atom cloud, and
δac is the ac Stark shift. The interaction between the laser pulse
and atoms and the two-photon Raman transition process in
the Mach-Zehnder atom-interferometry gravimeter is shown
in Fig. 1.

The matrix representation of the Hamiltonian is

H = h̄

2

(
δ �effe−iφL

�effeiφL −δ

)
. (5)

FIG. 1. (a) The interaction of laser pulses with atoms in an
atom-interferometry gravimeter. (b) The two-photon Raman transi-
tion process.

The evolution of quantum states over a period of time is
described by propagators [26]:

U = exp

[
−i

∫ τ

0
dtH (t )/h̄

]
. (6)

And the propagator of a Raman pulse with a duration �t and
a constant field vector �R can be expressed as [22]

U (θ, φL, α) =
(

C∗ −iS∗
−iS C

)
, (7)

with

C = cos (�R�t/2) − i sin α sin (�R�t/2), (8)

S = eiφL cos α sin (�R�t/2), (9)

where α is the polar angle of the rotation axis determined
by the field vector, that is, α = arcsin(δ/�R) and �R =√

δ2 + �2
eff . The angle of rotation of the state vector |ψ〉

around the rotation axis of the field vector �R on the Bloch
sphere is calculated using θ = �R�t . Furthermore, the quan-
tum state |ψe〉 after evolution can be obtained through the
propagator, which is denoted as

|ψe〉 = U |ψ〉. (10)

B. Atom-cloud expansion and contrast loss

The horizontal intensity distribution of the Raman laser
in the ideal cold-atom gravimeter is consistent, and the laser
frequency remains stable. Furthermore, all atoms freely fall
at the same velocity, ensuring that all atoms experience the
same Raman pulse area �Rt . In practice, due to the thermal
motion of atoms, the cold-atom cloud undergoes expansion.
The positions and velocity distributions of these atoms follow
a Gaussian distribution and are mutually independent. The
probability distribution in phase space can be expressed as
follows [37]:

N (x, y, z, vx, vy, vz ) =
∏

μ∈{x,y,z}
f (μ0, σ0) f (vμ0 , σv ), (11)

where f represents a one-dimensional Gaussian distribution.
The atom cloud possesses a longitudinal relative velocity dis-
tribution f (vμz , σvz ), which results in an overall two-photon
detuning keff f (vμz , σvz ). For the initial state of an atom cloud
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in a low-energy level, when we consider only the longitudinal
velocity distribution, the Raman transition probability is the
integral of the atomic longitudinal velocity distribution [38]:

Pv =
∫ ∞

−∞
f (vμ0 , σv )|Sv|2dv, (12)

where Sv represents the elements of the propagation opera-
tor influenced by the relative velocities of atoms. When we
consider only the velocity distribution of the atom cloud and
the intensity of the Raman beam, the horizontal intensity
distribution of the Raman beam can be expressed as follows:

�eff (r) = �0 exp

[
−2r2

w2

]
, (13)

where �0 represents the Rabi frequency at the center of the
Raman beam and w refers to the radius of the Raman beam.
Therefore, the coupling strength experienced by atoms at dif-
ferent positions varies, and the Raman transition probability
in cylindrical coordinates can be expressed as

P� =
∫ ∞

−∞

∫ ∞

0
N0 exp

(
− r2 + z2

2a(t )2

)
|S�|2drdz, (14)

where N0 represents the density at the center of the atomic
ensemble, a(t ) is the Gaussian radius of the atom cloud at
time t , and S� denotes the propagation operator elements
influenced by the uneven distribution of Rabi frequencies.
The propagator U is altered due to the expansion of the atom
cloud, resulting in a decrease in transition probability under
single-pulse excitation.

For the case of a three-pulse Mach-Zehnder gravimeter
with pulse interval time T and chirp rate α, the final transition
probability is [39]

Pe = |Cπ/2|4|Sπ |2 + 2|Sπ/2|2|Cπ |2|Cπ/2|2 + |Sπ/2|4|Sπ |2
− 2Re[eiφgCπ/2Sπ/2(S∗

π )2C∗
π/2Sπ/2]. (15)

It can be converted to cosine form:

Pe = A(δ) − B(δ)

2
cos[φg + �(δ)], (16)

where φg represents the interference phase due to the gravita-
tional effect −keff gT 2, �(δ) denotes the phase shift introduced
by the three Raman pulse phases φS1

π/2 + φS3
π/2 − 2φSπ , and

it equals αT 2 when there is no additional phase noise. A(δ)
represents the bias of the interference fringe, while B(δ)
denotes the contrast 4|Cπ/2|2|Sπ |2|Sπ/2|2. Therefore, the lon-
gitudinal velocity distribution and horizontal expansion of the
atom cloud, as well as the uneven distribution of the horizontal
intensity of the Raman beam, deteriorate the propagators and
cause the loss of the contrast of the interference fringe.

C. Optimal control objective

In comparison to rectangular mirror pulses, smoother pulse
shapes exhibiting amplitude-time-varying characteristics may
yield superior transition and phase responses, thereby alter-
ing the robustness to detuning and coupling strength. The
effective Rabi frequency governing the two-photon Raman
transition is contingent upon the intensity of the dual-laser

source:

�eff (t ) = �e(t )∗�g(t )

2�
eiφL = �2

√
Ie(t )Ig(t )

2�Is
eiφL , (17)

where Ie(t ) and Ig(t ) represent the intensities of the two Ra-
man lasers, � denotes the single-photon detuning, Is and �

signify the saturation intensity and the natural linewidth of
the atom, respectively, and φL stands for the phase difference
between the two lasers. Two Raman beams merge and pass
through an acousto-optic modulator (AOM). When the laser
intensity is modulated over time, the ac Stark shift of the
two ground states changes correspondingly. The differential
ac Stark shift between the two states matters can be eliminated
by adjusting the intensity ratio of the two lasers [38].

Quantum optimal control utilizes the concept of piece-
wise constants, wherein the temporal evolution of a system
is discretized equidistantly into multiple segments, each of
which incorporates a constant control input. The Hamiltonian
is computed at each time step to determine the optimal control
parameter, facilitating the attainment of optimal control. Upon
segmentation of the control pulses, the propagator adopts the
form of the product of N segmenting operators, with each
operator spanning a time step �t :

U =
N∏
k

Uk =
N∏
k

exp

[
i

h̄

(
H (0) +

2∑
n=1

c(n)
k H (n)

)
�tk

]
, (18)

where c1
k is the same as c2

k , which is the effective Rabi fre-
quency �eff . The effective Rabi frequency of the segmented
pulse is optimally controlled to maximize the fidelity be-
tween the final evolved state and the target state. For π -pulse
optimization, there are two methods: state to state and gate
synthesis. If the optimization goal is state to state, the initial
state can be set to X0 = |0〉. For the π pulse, the target state is
Xtarg = |1〉, and the evolved state XN is

XN = UNUN−1 · · · U2U1|0〉. (19)

If the goal is gate synthesis, the initial matrix can be set to the
identity matrix E , and when φeff is zero, the target gate of the
π pulse can be set to

Xtarg =
[

0 −1 j

−1 j 0

]
. (20)

The propagator of the finally evolved gate is

XN = UNUN−1 · · · U2U1E . (21)

The objective of optimal control is the fidelity of Xtarg and XN .
In the optimization process, it is necessary to try two different
fidelity definitions and choose the best control scheme. When
taking the real part of the inner product of two quantum states
as the fidelity, the global phase should be taken into account.
Conversely, when taking the modulus of the inner product of
two quantum states as the fidelity, the global phase can be
disregarded.

Furthermore, it is meaningful to limit the smoothness of
the pulse [40]. For this purpose, the sum of the squares of
the second-order differences within sequence �eff (k) is incor-
porated into the fidelity as a term denoting smoothness. This
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addition serves as the control objective:

S = λ

N−3∑
k=1

[�eff (k + 2) − 2�eff (k + 1) + �eff (k)]2, (22)

where λ is used as the smoothing coefficient to adjust the
influence of the smoothing term on the overall control target.
Given that the edge flatness of the pulse will impact the sup-
pression effect of the atom interferometer on high-frequency
phase noise and the maximum amplitude should not surpass
the amplitude �rec of the rectangular π pulse corresponding
to the pulse duration, a boundary constraint is imposed on the
amplitude sequence:

|�eff (k)| � �rec, (23)

�eff (1),�eff (N ) → 0. (24)

To enhance the robustness of the pulse against detuning and
coupling strength, the primary control objective should focus
on achieving higher fidelity across a range of detuning and
Rabi frequency-offset conditions.

D. Combinatorial optimization

Owing to the markedly nonlinear nature of the objective
function, the pulse optimization problem is plagued by local
minima, rendering the search for the globally optimal solution
intricate. The selection of the initial value is an important part
of gradient optimization of pulses [41]. The combination of
intelligent optimization and gradient optimization is a feasi-
ble method to solve this problem, which is convenient for
effectively finding the optimal solution [42]. Consequently,
we employ a combined optimization strategy that integrates
the DE and GRAPE algorithms.

In the global-search phase, the DE algorithm is em-
ployed to explore the initial value of the pulse-amplitude
sequence. The DE algorithm is rooted in population-based
evolution and possesses strong global-search capabilities, typ-
ically utilized to address continuous parameter optimization
problems [43,44]. The initial population of the differential
evolution can be initialized with prior knowledge. An indi-
vidual is represented by a set of pulse-amplitude parameters,
and within the population space of a group of individuals,
variation, crossover, and selection processes are executed to
accomplish evolutionary objectives. During the mutation pro-
cess, three individuals are chosen from the population to
generate a new individual through a linear combination:

v
(t+1)
i = x(t )

r1 + F · (
x(t )

r2 − x(t )
r3

)
, (25)

where x(t )
r1 , x(t )

r2 , and x(t )
r3 represent the ith dimension parameters

of three individuals randomly selected from the current pop-
ulation, t denotes the iteration rounds, and v

(t+1)
i represents

the parameter values after variation. The scaling factor F is
a parameter ranging from 0 to 1 that regulates the influence
of the parent individual in the mutation operation. During
the crossover process, the mutated individual is amalgamated
with the parent individual to yield the subsequent generation

of individuals:

u(t+1)
i =

{
v

(t+1)
i , if rand(·) � PCR,

x(t )
i , otherwise,

(26)

where u(t+1)
i represents the parameter value after the crossover

in the ith dimension and rand(·) is a random number evenly
distributed within the range [0, 1]. The crossover probability
PCR determines the extent to which the mutant and the parent
are combined in the crossover operation. By comparing the
objective-function values of the variant individual and the
crossed individual, the superior one is selected as the next-
generation individual. This process facilitates the search for
the optimal solution through iterative updates. Differential
evolution introduces randomness and diversity, enabling ex-
tensive exploration of the solution space while reducing the
risk of getting trapped in local minima. After a specified num-
ber of iterations, a potential initial point is identified within
the pulse-amplitude parameter space. This enables faster con-
vergence to the global optimal solution during subsequent
optimization.

In the gradient-descent optimization stage, the amplitude
sequence obtained by the DE method is utilized as the ini-
tial value for GRAPE optimization. The GRAPE algorithm
is a widely recognized gradient-based optimization method
originally developed for designing NMR pulse sequences.
The GRAPE scheme, utilizing the L-BFGS-B algorithm, is
employed to determine the optimal solution. The L-BFGS-B
algorithm, a quasi-Newton optimization approach, obviates
the need for second-derivative computations of the objective
function and instead iteratively constructs an approximation
of the inverse Hessian matrix [45–47]. The L-BFGS-B algo-
rithm retains only a limited set of recent iteration information
and does not require storage of a complete Hessian ma-
trix, making it particularly well suited for high-dimensional
pulse optimization problems. The precise computation of the
gradient of the objective function significantly expedites the
convergence process of the L-BFGS-B algorithm. Initially,
the derivative of the fidelity function with respect to all control
parameters at each time step must be computed. In the case
of pulse-amplitude optimization, the control parameter is the
effective Rabi frequency. As for the objective function for gate
synthesis, the initial step is as follows:

∂F

∂c(n)
k

= F

(
Utarg,UN · · · ∂Uk

∂�eff (k)
· · · U1E

)
. (27)

Here the derivative calculation of the propagator for each time
step can be expressed as

∂Uk

∂�eff (k)
= ∂

∂�eff (k)
exp

(
− i

h̄

{
1

2
δσz + 1

2
�eff (k)

× [cos(φL )σx + sin(φL )σy]

}
�t

)
. (28)

The quantum state evolution and gradient are calculated
by using forward propagation and back propagation, and the
pulse amplitude of each segment is updated. The final gradient
is the sum of the gradient of the fidelity function and the
gradient of the smooth term. The GRAPE algorithm calculates
the gradient based on the current pulse shape and adjusts the
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pulse parameters along the direction of the gradient, gradu-
ally improving the pulse shape until optimal performance is
achieved. In addition, during the DE and L-BFGS-B opti-
mization, constraints are imposed to limit the amplitude of the
pulse sequence.

III. OPTIMIZATION AND EVALUATION

The amplitude �rec of the rectangular pulse is considered
to be 1, serving as the maximum amplitude constraint in the
optimization process, with a duration of π . Since excessively
long pulse durations introduce more adverse factors that affect
pulse quality, the duration of the mirror pulse is determined
under the constraint of the maximum effective Rabi frequency
amplitude. For state-to-state and gate-synthesis optimizations,
optimal smoothing factors are separately determined to ensure
that the optimization achieves a certain degree of smoothness
without overly affecting fidelity. A range of detuning and Rabi
frequency are introduced into the objective function, with de-
tuning ranging from −0.4 to 0.4 and effective Rabi frequency
ranging from 0.9 to 1.1.

The pulse amplitude is divided into 128 constant segments
at fixed time intervals. In the process of DE optimization, the
design of the initial population directly affects the starting
point of the algorithm and the direction of the search pro-
cess. A series of pulse shapes, including rectangular, sinc,
Gaussian, and others, are selected as the initial population
to ensure diversity. The results of the DE algorithm after
multiple iterations are used as initial values. Combined with
computed precise gradient information, the GRAPE algorithm
is employed for a further local search to obtain the optimal
solution.

A numerical model for a cold-atom gravimeter is es-
tablished to evaluate the amplitude-modulated mirror pulse.
An atom cloud consisting of 5 × 104 87Rb atoms is created
in three-dimensional space, with the velocity and position
of their thermal motion following a Gaussian distribution.
The Raman beam is tuned to the hyperfine levels of states
|52S1/2, F = 1〉 and |52S1/2, F = 2〉. To achieve adiabatic
elimination, a large single-photon detuning is set for the
intermediate state |52P3/2, F = 0〉. The atom cloud freely
falls along the direction of the Raman beam with a certain
gravitational acceleration and undergoes free expansion. The
horizontal intensity of the Raman beam follows a Gaussian
distribution, and the laser frequency changes chirpingly dur-
ing the interference process.

IV. RESULTS AND DISCUSSION

A. Optimization ability

The effect of the GRAPE algorithm optimization in state-
to-state mode using a standard rectangular pulse as the initial
value is depicted in Fig. 2(a). The result of adding the smooth-
ing term and the fidelity corresponding to the detuning and
Rabi frequency is taken as the subfunction value, and the
objective-function value is the mean of a series of subfunction
values. It can be observed that the initial objective-function
value obtained by the rectangular pulse is 0.532. After more
than 10 iterations, the objective function converges to 0.322.
This demonstrates that, despite accurately solving the gradient

FIG. 2. (a) The iteration of the objective-function value in the
GRAPE algorithm optimization process. (b) The iteration of the
objective-function value in the DE-GRAPE algorithm optimization
process.

of the objective function, the complexity of the objective
function increases significantly due to the constraints im-
posed by the defined regularization term and the boundary
conditions. Selecting a suitable initial value is a challenging
task; otherwise, it can lead GRAPE to easily converge to a
local minimum within the high-dimensional solution space.
Under the same conditions, the iterative curve of the objective-
function value in the DE-GRAPE combinatorial optimization
process is shown in Fig. 2(b). As a global optimization algo-
rithm, the DE algorithm can efficiently search the potential
solution space and find an approximate optimal solution. By
setting multiple different initial values of many types, the
value of the objective function converges to 0.099 after a
suitable number of iterations. Subsequently, the wave form
obtained through DE serves as the initial value for the GRAPE
algorithm, and local gradient optimization is executed to
swiftly attain a more precise solution. After exceeding 10
iterations, the value of the objective function converges to
0.034, at which point the gradient of the function falls
below 10−5.
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FIG. 3. (a) The shape of the pulses optimized by the state-to-state
method and the gate-synthesis method. The two are denoted as the
SS pulse and the GS pulse, respectively. (b) The trajectories of the
quantum state evolution on the Bloch sphere start from |0〉 under
the action of the rectangular, SS, and GS pulses when the Raman
detuning δ is set to +0.2�rec.

B. Pulse performance

The results of pulse shaping using state-to-state and gate-
synthesis methods are shown in Fig. 3(a), referred to as the
SS pulse and the GS pulse, respectively. It can be seen that the
SS pulse exhibits symmetry. During the optimization process,
a balance between pulse duration and performance needs to
be achieved, with both SS and GS pulses ultimately set to a
duration of 3π . Under the control of the smoothness regular-
ization term, the optimized pulse amplitudes are sufficiently
smooth to meet the hardware response capability. Two Raman
beams are phase locked through an optical phase-locked loop
and combined to pass through an AOM. By adjusting the
power of the radio-frequency signal injected into the AOM
using a wave-form generator, the intensities of the two output
Raman beams can simultaneously vary to form arbitrary pulse
shapes. For a negative Rabi frequency of the pulse, this can be
achieved by setting the π phase shift at the zero crossing of the
amplitude. It requires a wave-form generator combined with a
sufficiently fast phase jump.

For a detuning δ of +0.2�rec, the evolution trajectory of
quantum states on the Bloch sphere from the low-energy level
|0〉 to the high-energy level |1〉 under the action of three types
of mirror pulses is shown in Fig. 3(b). It is observed that under
the action of the rectangular pulse, the trajectory of a quantum
state rotating around the x axis deviates significantly. In con-
trast, the evolution trajectories under the SS- and GS-pulse
actions are more complex, and their final states are closer
to the high-energy level. Level transitions exhibit a certain
degree of robustness against detuning.

FIG. 4. (a) Transition-probability response (red solid line) and
phase response (blue dashed line) of various amplitude-modulated
mirror pulses to detuning. (b) The transition-probability response
of the rectangular pulse and the SS pulse to detuning and coupling
strength.

The transition probability response of some typical
amplitude-modulated mirror pulses to detuning and the phase
response of the propagator element S are shown in Fig. 4(a),
where �′

eff is 2π × 25 kHz. The response to detuning reflects
the robustness of the pulses against Doppler shifts, Zeeman
frequency shifts, and laser frequency fluctuation. The standard
deviation of the Gaussian pulse is set to 0.4, and it is truncated
at 4 times the standard deviation. The sinc2 and sinc3 pulses
are truncated versions of the sinc wave form at the second
and third zero crossings, respectively. A Hermite pulse is
generated by specifying control points, tangent vectors, and
four basis functions. The peak amplitudes of all pulses are
constrained to match that of the rectangular pulse. The pulse
duration is adjusted to achieve a π -pulse effect, and the time
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TABLE I. Comparison of the properties of various amplitude-
modulated pulses. Bandwidth refers to the range of detuning at which
the transition probability is reduced to 90% or 50%.

Bandwidth

Pulse Pulse width π 90% 50%

SS 3 0.806 1.16
GS 3 0.986 1.369
Rectangle 1 0.368 0.944
Gaussian 3.2 0.288 0.725
Sinc2 4.5 0.369 0.608
Sinc3 5.7 0.686 0.923
Hermite 1.5 0.337 0.844

step for each pulse is optimized to be as close as possible. It
can be observed that the transition bandwidth for the SS and
GS pulses is superior to that of other classical pulses. Table I
shows the duration of each pulse and the bandwidth when the
transition probability decreases to 90% and 50%. The phase
response of the GS pulse reverses with the change in detuning
in the passband region. The nonlinear phase response will ul-
timately affect the output phase of the interferometer, and this
is related to the ability to optimize control objectives for phase
control. The performance of the SS pulse and the rectangular
pulse under the combined action of Rabi frequency and detun-
ing is shown in Fig. 4(b). It can be observed that the transition
effect under the action of the SS pulse is significantly superior
to that of the rectangular pulse.

C. Atom-interferometry gravity measurement

The SS pulse is tested based on the numerical model of the
cold-atom-interferometry gravimeter. The local gravitational
acceleration is set to 9.80664999 m/s2. The first and third
Raman pulses are rectangular pulses with a Rabi frequency
�′

eff of 2π × 25 kHz. The mirror pulse is configured as the
SS pulse or the rectangular pulse. The radius of the Raman
laser is 10 mm. The single-photon detuning is 1.5 GHz. The
triggering time of the first Raman pulse is set to 30 ms after
the release of the atoms. The initial cold-atom cloud has a
Gaussian radius of 1.5 mm, with an atom-cloud temperature
of 3 µK, and no velocity selection is performed. The numer-
ical model considers only the influence of detuning and the
Rabi frequency. The detuning fluctuation is caused by the
Gaussian longitudinal velocity distribution of the atom cloud.
The Gaussian position distribution and expansion of the atom
cloud, along with the Gaussian distribution of Raman light
intensity, contribute to the Rabi frequency fluctuation. Only
interference fringes with positive chirp rates are measured to
extract gravity values. Interference fringes are obtained by
scanning the chirp rate of the laser frequency and calculating
the population of the final excited state of the atomic ensem-
ble. Interference fringes resulting from the rectangular mirror
pulse and the SS mirror pulse under different Raman time
intervals T are shown in Fig. 5(a). The reference chirp rate is
keffg in the fitting process. The contrast and phase uncertainty
of fringe fitting in various cases are given in Table II. It can
be observed that the contrast of the interference fringes of the

FIG. 5. (a) Interference fringes of the cold-atom gravimeter with
the rectangular pulse and the SS pulse as the mirror pulses at different
Raman intervals. (b) Allan variance of the gravity measurement with
the cold-atom gravimeter with the rectangular pulse and the SS pulse
as mirror pulses. (c) Variation of the contrast of the interference
fringes of the cold-atom gravimeter with different mirror pulses as
a function of the temperature of the atom cloud.

gravimeter can be enhanced by approximately 1.5 times when
employing the SS mirror pulse at different Raman intervals.
The SS pulse significantly diminishes the phase uncertainty
of fitted fringes and the uncertainty of gravity corresponding
to a single fringe.

A single gravity-measurement period is set at 40 s, and
200 gravity measurements are conducted using the two pulse
sequences separately through the numerical model. The Allan
variance of the residual gravity measured by the two pulse
schemes is calculated. The Allan variance can be employed to
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TABLE II. The fitting effect of the interference fringes of the
atom gravimeter with the SS pulse and the rectangular pulse as
mirror pulses and the uncertainty of the phase and gravity values
corresponding to a single fringe.

T (ms) Mirror pulse Contrast ±�(mrad) ±g (μGal)

50 Rectangle 0.181 8.217 20.394
SS 0.277 6.712 16.658

80 Rectangle 0.163 8.285 8.034
SS 0.246 6.641 6.441

100 Rectangle 0.141 7.753 4.812
SS 0.222 6.251 3.88

analyze and evaluate the stability of atom gravimeters. The
Allan variance results for gravity measurements are shown
in Fig. 5(b). It can be observed that the long-term stability
of gravity measurements using the rectangular pulse and the
SS pulse is 1.606 and 0.951 µGal, respectively. The SS pulse
scheme is employed as the mirror pulse to enhance the stabil-
ity of the gravity measurement.

For a temperature of the cold-atom cloud in the range of 0.1
to 50 µK, the change in fringe contrast of the atom gravimeter
under various amplitude-modulated mirror pulses is illus-
trated in Fig. 5(c). The fringe contrast under the influence of
classical amplitude-modulated pulses closely resembles that
of the rectangular pulse. The contrast of the sinc3 pulse is
slightly superior to that of the rectangular pulse at lower atom-
cloud temperatures. The GS pulse exhibits a notably poor
fringe contrast, primarily attributed to its reversed phase re-
sponse. In contrast, the fringe contrast of the SS pulse remains
significantly higher than those of other pulse types across the
entire temperature range.

D. Sensitivity function

The sensitivity function was originally used to study the
degradation of atomic clocks due to the phase noise of
the local oscillator. The sensitivity function of a cold-atom
gravimeter can be used to describe the response of the phase
of the interference fringe δ� to the instantaneous change in
the relative phase δφ(t ) between two Raman lasers at a given
time t [48]. The sensitivity function is defined as

g(t ) = lim
δφ→0

δ�(δφ, t )

δφ(t )
. (29)

The effect of phase jumps during and between three Raman
pulses on the phase of the gravimeter fringe can be quantified
by the sensitivity function. This quantification enables com-
pensation for the vibration noise and phase noise of the Raman
laser. In a Mach-Zehnder sequence in which all three pulses
are rectangular, the second pulse is centered at t = 0. The
function g(t ) is an odd function, and for t > 0, the sensitivity
function is as follows:

g(t ) =

⎧⎪⎪⎨
⎪⎪⎩

sin(�rt ), 0 < t < τ,

1, τ < t < T + τ,

− sin[�r (T − t )], T + τ< t < T + 2τ,

0, t > 2τ,

(30)

FIG. 6. (a) The sensitivity-function curves of the cold-atom
gravimeter with the rectangular pulse and the SS pulse as mirror
pulses. (b) The transfer functions of the cold-atom gravimeter with
the rectangular pulse and the SS pulse as mirror pulses.

where τ is the length of the first and third pulses. The
sensitivity-function curve of the atom gravimeter, for which
the first and third pulses are rectangular and the mirror pulse is
the SS pulse and the rectangular pulse, respectively, is shown
in Fig. 6(a). The Raman pulse interval T is 10 ms, and the
peak Rabi frequency of the pulse is 2π × 25 kHz. It can be
seen that for the sequence of the SS pulse as the mirror pulse,
the sensitivity-function curve changes gently in the part of the
mirror pulse, and the rising slope near the center is close to
that of the rectangular pulse.

The change in pulse-smoothing intensity is related to
the effect of the atom interferometer on suppressing high-
frequency phase noise [49]. The transfer-function curves
corresponding to the two sequences are shown in Fig. 6(b).
For the rectangular pulse, the computation is carried out
analytically, while for the SS pulse, a numerical method is
employed. The transfer function of the sequence with the SS
pulse as the mirror pulse in the low-frequency region is con-
sistent with that of the rectangular pulse, and its suppression
effect on the high-frequency phase noise is very close to that
of the rectangular pulse. While the SS pulse exhibits a wider
range of amplitude variation in the Rabi frequency, constraints
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are imposed on the start and end points of the pulse to limit its
extent, as well as its smoothness during the pulse optimization
process, to ensure that it does not deteriorate the suppression
of high-frequency phase noise. This indicates that the SS pulse
is also applicable for the practical implementation of atom
gravimeters in real-world environments from the perspective
of phase noise.

V. CONCLUSION

In summary, an amplitude-modulated mirror-pulse scheme
for atom gravimeters was designed in this study. The numer-
ical results demonstrate that the SS mirror pulse can enhance

the fitting effect of interference fringes and improve the stabil-
ity of gravity measurement. In future work, we will investigate
the joint optimization of the phase and amplitude of pulses in
the atom gravimeter, including the design of π/2 pulses.
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