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Quench-induced spontaneous currents in rings of ultracold fermionic atoms
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We have observed the spontaneous appearance of currents in a ring of ultracold fermionic atoms (6Li) with
attractive interactions, following a quench to a BCS-like pair superfluid. We have measured the winding number
probability distribution for a range of quench rates, with a quench protocol using simultaneous forced evaporation
and interaction ramps to achieve faster effective quench rates with less atom loss than a purely evaporative
quench. We find that for the fastest quenches the mean-square winding number of the current follows a scaling
law in the quench rate with exponent σ = 0.24(2), which is somewhat lower than that predicted by the Kibble-
Zurek mechanism for the three-dimensional XY model (1/3) and unexpectedly closer to the value obtained from
mean-field theory (1/4). For slower quenches nonuniversal effects become significant and we observe a lower
rate of spontaneous current formation that does not follow a simple scaling law.
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I. INTRODUCTION

When a system is quenched through a second-order phase
transition, the finite speed at which information propagates
from one region to another prevents the order parameter from
taking on a uniform global value. Local fluctuations in the
disordered phase can cause the order parameter to take on
independent values in different regions of space as it grows
after the system crosses the phase transition [1]. As these
domains grow and merge, the variations between them can
lead to the formation of topological features, e.g., vortex lines.
The formation and subsequent evolution of these topologi-
cal features over short timescales can be quite complex, but
over longer timescales remarkable macroscopic effects can
emerge, such as the appearance of a stable quantized current
in a multiply connected system that was noncirculating before
the quench [2].

The probability for a spontaneous current to appear in
the ordered phase after a quench is related to the average
number of independent domains expected to form around a
closed path. The core assertion of the Kibble-Zurek mecha-
nism (KZM) is that the initial density of these domains should
scale with quench rate, with an exponent that is determined by
the universal static properties of the phase transition. There
have been numerous experimental observations of sponta-
neous defect formation in different condensed-matter systems
following a quench, including liquid crystals [3,4] superfluid
4He [5–8] and 3He [9,10], superconductors [11], ion crys-
tals [12,13], and ultracold quantum gases of bosonic [14–25]
and fermionic [26–29] atoms. There is consistently strong
qualitative support for the predictions of the KZM in these
experiments, but establishing clear quantitative agreement be-
tween experimental observations and the ideal version of the
theory has often been difficult.

There are many reasons for these experimental challenges,
from defect dynamics to the implementation of the quench,
and most of them involve physics that is interesting in
its own right. We focus here on issues most relevant to

experiments like our own; a broader review of these topics
can be found elsewhere [30]. One major practical con-
sideration is that the defects take time to form, continue
to evolve, and the defect density generally decreases with
time due to annihilation and decay. This fact is especially
important in liquid helium, where the most carefully per-
formed experiments to date measured vortex densities two
orders of magnitude lower than expected, with the discrep-
ancy attributed to rapid decay [7,31]. Efforts to measure
scaling with quench rate are also complicated by the fact
that annihilation rates increase with defect density, leading
to saturation of defect density for fast quenches in some
experiments [25,26,32].

Zurek anticipated these difficulties in his original proposal
and suggested that measuring the current around an annulus
long after a quench could provide a more stable measure
of the initial defect density. He also predicted a linear rela-
tionship between the defect density and the variance of the
winding number in a sufficiently large ring when the defects
are spatially well defined (see also [33]). Other challenges
have prevented a successful quenched-ring experiment with
liquid helium, but experiments with multiply connected su-
perconductors [11,34–36] and ultracold Bose gases [20] have
established the feasibility of this approach.

This paper is organized as follows. In Sec. II we discuss the
application of the KZM to our experimental conditions and
explain challenges in making quantitative comparisons with
predictions of the KZM in various settings. In Sec. III we de-
scribe our experimental procedures for preparing, quenching,
and measuring the current and provide information about the
state of the system during the quench. In Sec. IV we present
the results of our experiments, discuss a few key observations
pertaining to these results, and then give a brief overview of
potential extensions to this work. Section V offers a simple
theoretical description of the quench dynamics and statistics
from a mean-field stochastic Landau-Ginzburg model to pro-
vide further context to the discussion, before we summarize
our findings in Sec. VI.
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II. COMPARING IDEAL AND REAL SYSTEMS

When the reduced temperature ε = 1 − T/Tc of a ho-
mogeneous system is linearly swept across a second-order
transition [ε(t ) = t/tq, with 1/ε̇ = tq the quench time], the
KZM predicts the typical size of the uncorrelated domains that
form, ξ̂KZ ∼ tν/(1+νz)

q . Within the so-called adiabatic-impulse
picture, this domain size is obtained from the equilibrium
correlation length ξ ∼ |ε|−ν at the moment t = −t̂KZ ∼
−tνz/(1+νz)

q the order parameter ceases to follow the quench
adiabatically due to the diverging relaxation time τ ∼ ξ z.
These independent phase domains are frozen in until t = t̂KZ

after the transition when the order parameter can again follow
the quench adiabatically. Around this time the rapidly growing
condensate permits topological order to form from the merg-
ing independent phase domains.

For a thin one-dimensional ring of circumference C with
domain size ξ̂KZ � C, the number of uncorrelated domains
formed at the freeze-out point is Nd ∼ C/ξ̂KZ. This is the sce-
nario originally envisaged by Zurek [2], who further predicted
random-walk scaling of the mean absolute winding number
〈|w|〉 ∼ N1/2

d in accordance with a true Gaussian distribution
of the winding numbers, thus connecting the measurable 〈|w|〉
with the exponents ν and z. For purposes of comparison with
theory, it is important to note that the scaling exponent of the
variance of the winding number is the same as the scaling ex-
ponent for the defect density. While a fairly robust power law
scaling of 〈w2〉 with Nd is expected and has indeed been ob-
served for even the modest defect densities achieved in prior
annular Bose gas experiments [20,37], the Zurek or random-
walk regime of Gaussian probabilities is only accessed when
〈w2〉 ∼ 〈|w|〉2, which has not yet been realized in this setting.

While the KZM elegantly predicts scaling laws for the
defect density for an idealized set of conditions, it over-
looks several important practical considerations. The first is
that controlling the parameters that drive the phase transition
without introducing unwanted effects on the system is an
experimentally nontrivial task. Second, the dynamics that lead
to topological ordering from the merging domains involve
complicated stochastic processes, even if the initial domains
are well conditioned [37,38]. As noted above, the defects also
continue to evolve and are subject to decay and annihilation
processes even when the order parameter is well established. It
is then a natural question to ask when the right time to measure
the defect density is, and this has been explicitly addressed
theoretically [39] and in several experiments [21,23].

In a nonuniform system such as a quantum gas in a
harmonic trap, the KZ scaling exponents are modified, as
causality restricts the trap region in which the KZM can
proceed as usual. There has been some notable success adapt-
ing the basic KZM framework to describe inhomogeneous
conditions by including finite-size corrections to correlation
functions and accounting for modified causality conditions
in nonuniform systems [11,36,40]. In harmonic and uniform
box traps, postquench dynamics of the spontaneously nu-
cleated vortices lead to saturation of the defect density for
fast quenches. These observations complicate interpretations
of the Kibble-Zurek (KZ) scaling laws in those settings.
Kibble-Zurek mechanism studies in ring-shaped traps have
some advantages for mitigating these effects: The ring is

azimuthally homogeneous and the spontaneous excitations
(persistent currents) are much longer lived than vortices in a
simply connected trap.

Because the expected current scaling exponents are usually
subunity, experimental efforts to accurately measure them are
hampered by practical limits on both system size and max-
imum achievable quench rates. The latter, for an ultracold
atomic gas, are typically set by the timescale for thermal-
ization, of order h/μ, with h Planck’s constant and μ the
chemical potential [20]. Thus, fast quenches with a large
dynamical range are desirable for precise measurements of
the scaling exponent in this regime. In our experiments, the
use of 6Li allows for rapid quenches (in comparison to those
performed using weakly interacting bosons) to be enacted
by leveraging both large local thermalization rates and fast
ramps of the interaction strength by varying the magnetic field
around a Feshbach resonance. In particular, the typical elastic
collision rates in the regions of highest density in our trap are
several tens of kilohertz, substantially greater than the several
hundred hertz collision rates typical of weakly interacting
boson experiments. Furthermore, the timescale with which
the scattering length can adjust to changes in the external
Feshbach field is limited only by the extremely rapid Landau-
Zener dynamics of scattering pairs [41] or excitation of the
Higgs mode [42,43], with the more practical limitation being
technical challenges to enacting rapid magnetic-field changes.

Another important consideration in conducting KZM ex-
periments with quantum gases is that system sizes are
comparatively limited and finite-size effects are not negligi-
ble. In the case of slower quenches performed in a ring, ξ̂KZ →
C and the concept of a correlation length becomes ill-defined
as correlations begin to extend around the entire ring. Theo-
retical analyses in this limit predict a doubling of the scaling
exponent, an exponential damping of the winding number
variance, and winding number statistics that become depen-
dent on the exact phase profile within each domain [11,36,44].
Many of the experiments involving superconducting rings
were conducted exclusively in this regime and required a very
large number of experimental repetitions to make accurate
measurements of the very low rates of spontaneous current
formation. The limited repetition rates and lifetime of a quan-
tum gas experiment make it an impractical setting to explore
this limit.

III. EXPERIMENTAL METHODS

The standard experimental method for quenching quantum
gases through the superfluid phase transition has been to use
evaporative cooling, but for atoms with a Feshbach resonance
like lithium it is also possible to drive the system through a
phase transition with a ramp of the interaction strength..

The details of the trap and the prequench state preparation
are outlined schematically in Figs. 1 and 2(a). Additional
technical information can also be found in Refs. [45,46].
We begin with a roughly equal mixture of 105 total 6Li
atoms in the two lowest-energy hyperfine states, which have
broad Feshbach resonance at 83.2 mT. We prepare the sys-
tem at a field of 98 mT where the tunable s-wave scattering
length is a = −0.236 µm (−4460a0, with a0 the Bohr radius).
The atoms are transversely confined in a double-ring dimple

053320-2



QUENCH-INDUCED SPONTANEOUS CURRENTS IN RINGS … PHYSICAL REVIEW A 109, 053320 (2024)

FIG. 1. Schematic illustrating the sequence of stages in the
preparation and hybrid quench procedure. Neither the vertical axis
nor the time axis is to scale with respect to the actual experimental
values. The quench stage occurs over a variable ramp time interval
tr , while all of the other stages occur over fixed time intervals and
have self-explanatory labels. The state preparation stage terminates
at the end of the phase labeled “Prep,” at which point the hybrid
quench proceeds. The diagram in the row labeled DMD represent
the time-varying pattern of the red-detuned beam used to create
the concentric double-ring potential, where the black color denotes
high-intensity (low-potential) regions of the trap.

geometry superimposed upon a broad sheetlike background,
where the radii of the inner and outer rings are 7.5 and 12.5
µm, respectively, with Gaussian half-widths of 1.5 µm, as
shown in Figs. 2(a) and 2(b). The inner and outer rings are
kept at the same depth throughout the experiments and the
oscillation frequency for radial motion about their minima
also remains constant at fr = 5.5 kHz.

The initial Fermi energy determined from a model of the
trap is EF = h × 33.2 kHz (h is Planck’s constant), and the
interaction parameter 1/kF a ≈ −0.7 in the regions of high-
est density. (See Table I for further details.) We obtain the
initial system temperature from measurements of the density
profile of atoms which form a dilute nondegenerate halo with
a radius significantly larger than the outer ring and find that
(T/TF )initial ≈ 0.25 in the sheet [46,47]. With the critical tem-
perature given by Tc/TF = 0.277 exp(−π/2kF |a|) [48], we
confirm that the system is entirely in the normal phase with
(T/Tc)initial ≈ 2.7. The halo serves an additional desirable
purpose of mitigating collision-induced heating and atom loss
from the ring region during quenches [46].

To initialize the system in a nonrotating state before the
quench, we raise narrow barriers in both rings over 100 ms.
This is achieved by updating the pattern on the digital mi-
cromirror device (DMD) (Texas Instruments DLP Lightcrafter
6500) controlling the vertically propagating red-detuned beam
used to generate the potential. The barrier in the inner
experiment ring is then lowered over the same timescale, re-
connecting the ring before the quench. In contrast, the barrier
in the outer reference ring is maintained until after the quench,
but lowered before the atoms are released from the trap for

FIG. 2. Interferometric detection of persistent currents. (a) Av-
erage optical depth of 20 absorption images showing the prequench
state of the system, with an equal mixture of N = 9.6 × 104 total
atoms in a double-ring potential, at a field of 97.6 mT and T/TC ≈
2.7. (b) Average optical depth of 20 images taken after a 50-ms
hybrid quench (see the text for details), with N = 6.4 × 104 atoms
remaining. The broad, dilute thermal halo is present in both images
and is responsible for limiting the deleterious effects of heating and
atom loss due to collisions and for maintaining a roughly constant
peak density in the ring dimple region during the quench. A small,
dilute ring-shaped region of atomic density within the inner ring can
be seen and is likely due to ghosting of the ring beam generated
from reflections off the many optical surfaces in the projection and
imaging assembly. (c) Examples of distinct matter-wave interference
patterns for different winding numbers, which appear in absorption
images taken 1.3 ms after the trap potential is shut off (single realiza-
tions). The optical depth color bars are not shown for these images.

interferometric detection (see Fig. 1). This procedure ensures
that the reference ring is in a zero-current state when the
atoms are released from the trap and allowed to interfere. We
selected the inner ring as the experiment ring because optical
imperfections more strongly affected the uniformity of the
outer ring.

After preparing the system with a connected inner ring and
broken outer ring, we drive it into the superfluid phase with
a hybrid quench, where both the temperature and the critical
temperature are ramped simultaneously over a variable ramp
time tr . Temperature is reduced by forced evaporative cooling,
achieved by lowering the sheet beam power linearly from
400 mW to 40 mW. The critical temperature is increased by
lowering the magnetic field linearly from 98 mT to 85 mT,
which changes the scattering length from a = −0.236 µm to
−1.31 µm (−4460a0 to −24 800a0). We chose to use this
approach because we found that we could achieve faster ef-
fective quench rates while using less extreme ranges of control
parameters.
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TABLE I. Controlled, measured, and calculated system param-
eters at key points during the simultaneous ramp of magnetic field
B and sheet beam power Ps. We additionally include the total atom
number N , Fermi wavelength λF = 2π/kF , and Fermi time tF =
h/EF .

Parameter Initial Critical Final

t/tr 0 0.61 1
B (mT) 98 90 85
Ps (mW) 400 180 40
fz (kHz) 4.7 3.2 1.5
a (µm) −0.236 −0.408 −1.31
N (104) 10 7.8 6.4
Tc (µK) 0.17 0.19 0.22
TF (µK) 1.6 1.3 1.0
1/kF a −0.70 −0.43 −0.15
λF (µm) 1.0 1.1 1.3
tF (µs) 30 36 48
T (µK) 0.40 0.19 0.05
T/TF 0.25 0.14 0.05
T/Tc 2.7 1 0.24
ε −1.7 0 0.76
tq/tr 0.31 0.43 0.63

We obtained measurements of the final current state of the
inner ring for ramp times ranging from 50 ms to 4.4 s, with the
minimum time set by limits on the slew rate of the magnetic
field. While our vacuum-limited lifetime allowed for quenches
longer than 4.4 s, we did not observe any nonzero spontaneous
currents in this limit. For the ramp parameters given above,
the system is predicted to go through the superfluid transition
60% of the way through the ramp, for all ramp durations.
Additional information about the controlled, measured, and
calculated system parameters during the quench are provided
in Table I. The freeze-out dynamics occurs over a sufficiently
small part of the ramp (ε̂ � 0.01; see Sec. IV) that it is still
reasonable to treat the change in reduced temperature as linear
over that range, even though the scattering length and critical
temperature are nonlinear functions of the magnetic field,
especially toward the end of the ramp. Furthermore, due to
the tight transverse confinement of the rings, we can safely
approximate the critical temperature by its peak value and, in
contrast to experiments performed in broad harmonic traps,
disregard modifications of the quench dynamics due to the
inhomogeneity in the transverse directions. For the conditions
in our experiment, the ramp duration tr and the instantaneous
quench time tq(t ) ≡ 1/ε̇(t ) at the critical point are related by
tq ≈ 0.43tr , where we emphasize that tq(t ) is time dependent
due to the weak nonlinearity of the ramp.

After the end of the quench we remove the barrier in the
outer ring adiabatically over 100 ms to allow matter-wave
interference with the nonrotating reference ring. We then
simultaneously turn off the trapping beams and the current
in one pair of bias magnet coils. The rapid magnetic field
jump to 65 mT efficiently converts the weakly bound Cooper
pairs to molecules [49], which is essential for preserving the
coherence of the pairs during ballistic expansion. After 1.3 ms
we measure the molecule density using resonant absorption
imaging of atoms in the |1〉 state on a closed transition at

65 mT. The winding number of the phase around the inner
ring is clearly visible as a spiral in the pattern created by
matter-wave interference between the inner and outer ring, as
shown in Fig. 2(c).

In testing our experimental protocol we also considered the
possibility of postquench decay of the persistent currents be-
fore detection. To assess the rate of decay (via, e.g., thermally
activated phase slips) we repeatedly initialized the inner ring
(with approximately 100% fidelity) in the highest observed
|	| = 2 persistent current state using a blue-detuned stirring
beam [45]. We observed no instances of current decay even
for hold times exceeding 5 s and concluded that the decay rate
was negligible.

We also considered the possibility of simultaneously
quenching two unbroken concentric rings, which can boost
the dynamic range of the winding number difference while
preserving the essential scaling laws in the KZ regime of fast
quenches. This occurs if the winding number distributions
for each ring are statistically independent, each possessing
a variance that scales as a power law of the quench time in
the KZ regime. Interestingly, the Zurek argument suggests the
winding number difference between two independent rings of
circumferences C1 and C2 should act statistically equivalent to
the winding number in a single ring of circumference C1 + C2.
Evidence of spurious rotational biases in exploratory work on
unbroken rings, however, motivated us to develop the proce-
dure using barriers described above, which greatly reduced the
asymmetry of the current distributions.

IV. RESULTS AND DISCUSSION

We repeated the experimental procedure described above a
minimum of 40 times for 17 different quench rates, sampling
the distribution of winding numbers over the entire exper-
imentally accessible range. Several example histograms of
measured winding numbers are shown in Fig. 3. We found that
the distribution of measured winding numbers was reliably
peaked around w = 0 as long as the barriers were applied as
described to eliminate any bias arising from currents in the
normal state or the reference ring, with only the fastest quench
still showing some small indication of bias due to bulk flow
that was possibly induced during the quench.

We show in Fig. 4 the mean-square winding number of
spontaneous currents for all the quench rates sampled in this
experiment. The vertical error bars are 1-σ uncertainties ob-
tained from a bootstrapping technique employed because the
discreteness of the winding number distribution is important
under our experimental conditions [50]. Values of the mean
square winding number for our fastest quenches are consis-
tent [37] with an average number Nd ∼ 10 domains formed
at freeze-out. For the nine fastest quenches, we see an ap-
proximate power-law scaling of the form 〈w2〉 ∼ t−σ

r with
an exponent falling in a range between about 0.2 and 0.3.
However, the best-fit value shifts appreciably when the points
included in the fit are varied, as shown in the inset of Fig. 4.
(Uncertainties are a 1-σ confidence interval obtained from the
fit covariance matrix.) Using the first five to nine points gives
a roughly consistent exponent of 0.24(2), which is in line with
the scaling expected from mean-field predictions (νMF = 1/2
and zMF = 2 give σKZ = 1/4).
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FIG. 3. Observed occurrences of winding numbers for various
quench times (blue histograms). Each histogram contains at least
40 samples. The number of samples for each displayed histogram
is given by the largest number on the vertical axis. We also show
a histogram of winding numbers for all quenches (red histogram).
The average of all winding number measurements combined 〈w〉all =
0.0(2), indicating that there are minimal biases to the winding num-
ber distribution. The uncertainty is computed as the standard error of
the mean of all winding numbers. The asymmetries in the histograms
for all quench rates except the fastest one are well within the limits of
sampling error. The p-value for a shift from a zero-mean distribution
for the fastest quench is 3.2% and weakly indicative of a bias from
bulk flow.

However, mean-field scaling is only expected to occur if
the freeze-out occurs far enough from Tc that the fluctuations
of the order parameter are smaller than its mean [51–53]
and our system is strongly interacting. The range of reduced
temperatures where beyond-mean-field physics is expected to
be important is given by the Ginzburg-Levanyuk number Gi.
In a uniform three-dimensional (3D) system of strongly in-
teracting fermions, Gi ∼ 0.2 at 1/kF a = −0.4 [54,55]. In the
KZM framework, the reduced temperature at the freeze-out
time should be ε̂ = (τ0tνz

q )1/(1+νz), where τ0 is on the order
of the Fermi time tF ≈ 35 µs. From these relations we expect
ε̂ ∼ 0.001 for our slowest quenches and approximately 0.01
for the fastest, placing the freeze-out in the critical region
where beyond-mean-field effects are significant.

Under these conditions, the predicted scaling exponents
are those of the 3D XY model (sometimes referred to as
model F [56]) for which νF = 2/3, zF = 3/2, and σKZ = 1/3.
There is some tension between our data and this prediction,
and further experimental work will be required to refine the
measurements and better understand the factors involved. One
potential issue is that ramping the interactions causes Tc and
Gi to increase during the quench, and it is possible that this
is leading to unexpected effects that could be identified in
future experiments comparing results from pure evaporation
quenches, pure interaction quenches, and hybrid quenches.
Another potential issue is that it may not be reasonable to
expect our system to conform to the predictions for a uniform
3D system, given that its radial width is only a few times

FIG. 4. Plot of measured mean-square winding number versus
ramp duration (blue circles). A power-law fit to the measured data
for the nine fastest quenches yields a scaling exponent σ = 0.24(2).
We also show the variances obtained from the simulated winding
number distribution obtained using the 1D SLGE (red squares). The
straight red dotted line shows a power law with exponent 0.25. The
inset shows the power-law-fit-extracted exponents σ obtained from
fits to various numbers of fastest-quench data points. The dotted
lines show the mean-field and F -model predictions σ = 1/4 and 1/3,
respectively.

the Fermi length. Varying the ring width may help identify
whether this is the case.

For slower quenches, we observe a clear departure from KZ
scaling into a regime where the mean-square winding number
falls more rapidly with quench time. We had expected this to
occur as the typical domain size becomes comparable to the
circumference of the ring [36] but found that the probability
for spontaneous currents to appear falls off somewhat faster
than predicted by a linearized stochastic Ginzburg-Landau
model we used for quantitative comparison (see Sec. V). This
unexpectedly sharp decrease in current formation in the slow
quench limit could instead be the result of weak coupling
between the transverse acoustic modes of the two rings on
longer timescales. This is possible because the local chem-
ical potential in the region between the rings is small but
nonzero at the time the high-density regions pass through the
phase transition. When the timescale associated with this cou-
pling becomes comparable to the condensate growth timescale
t̂KZ ∼ (τ0tq)1/2 (which holds for both mean-field and F-model
universality classes since νz = 1) adjacent regions of the two
rings may phase lock before independent and topologically
protected persistent currents can form within each ring. In this
case noncirculating states in the experiment ring become more
probable, because the outer phase reference ring is by design
encouraged to be noncirculating.

We estimate that the timescale for coupling between the
rings is on the order of 1 ms, using a simple circuit-
hydrodynamic model where the rings are treated as a
capacitance connected by the linear kinetic inductance as-
sociated with normal-state flow through the region of lower
density that separates them [57]. For the ramp duration tr ≈
0.5 s (tq ≈ 0.2 s) at which the winding number variance falls
abruptly, the condensate growth timescale is also estimated
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to be of order 1 ms, taking τ0 to be the Fermi time at the
critical point (see Table I). We also note that theoretical in-
vestigations of Josephson vortex formation after a quench
of tunnel-coupled rings predicted qualitatively similar effects
when coherent coupling between rings becomes large enough
[58]. In future experiments employing a blue-detuned double
ring, this effect can be studied in greater detail by tuning and
even eliminating the inter-ring coupling via the local chemical
potential between the rings.

We also note an important distinction between the dimen-
sionality of thermal excitations near the ring-shaped minimum
and the dimensionality of fluctuations in the order parameter
as it is driven through the transition. The fermionic thermal
excitations have predominantly three-dimensional character
as determined by the ratios kBTc/h̄ω⊥ and EF /h̄ω⊥, where
ω⊥ is the largest transverse trap angular frequency, in this
case the angular frequency (ωr = 2π × 5.5 kHz) associated
with radial motion about the ring-shaped potential minima.
While the former ratio is of O(1) near the freeze-out point, the
latter is typically of O(5). Transverse excitations of the order
parameter, on the other hand, are strongly suppressed since the
correlation length of phase fluctuations at the freeze-out time
is always larger than the ring width in our quenches. Thus, al-
though the phase transition is probably best described as three
dimensional in character, the dynamics of the order parameter
near the transition should have effectively one-dimensional
character.

Finally, we briefly discuss possible extensions to this work
that are within experimental reach. First, as was pointed out
in [59], Kibble-Zurek scaling laws may be modified by reser-
voir interactions. In particular, energy-exchanging collisions
between the coherent population comprising the order pa-
rameter and the surrounding incoherent thermal bath were
shown to significantly increase the dynamical scaling expo-
nent z. This in turn leads to a decrease in the KZ exponent
of the winding number variance. A natural extension of this
work would be to study scaling laws in a trap where any
nondegenerate fermionic halo, if present, can be selectively
isolated from the double ring. Experimentally, this would be
most easily achieved by employing a blue-detuned ring trap,
and in this way, reservoir interactions and their effects on KZ
scaling laws may be studied. As mentioned earlier, employing
a blue-detuned ring trap would have the additional advantage
of decoupling possible inter-ring interactions during slower
quenches.

A second extension of this work regards the potentially
interesting role that fermionic pairing may play in the gen-
eration of spontaneous currents following quenches across a
pair-superfluid phase transition. It is known that there is a
temperature gap separating superfluid transition temperature
Tc and the temperature at which bound fermion pairs form T ∗
(see, e.g., [60]). For transitions closer to unitarity, it is a nat-
ural question to ask what role so-called preformed pairs, i.e.,
noncondensed yet bound fermionic pairs that exist in a sub-
stantial temperature range Tc < T < T ∗, play in the formation
of spontaneous currents. Deviations from the usual KZ scaling
laws, however, have not yet been seen for quenches covering
a modest range of the BEC-BCS crossover [26]. However, for
transitions taking place in the deep BCS limit, the temperature
band in which these preformed pairs can exist approaches

zero. Thus, one would expect that the statistics of spontaneous
current formation would in this limit be affected by the rate
at which unbound fermions can bind into Cooper pairs and
subsequently attempt to establish macroscopic order as the
transition is crossed, as opposed to the usual KZ scenario
which presupposes the existence of some fluctuating yet disor-
dered coherent field above the transition. With modifications
to our magnet coil circuitry that enable controlled field jumps
from the BCS limit to the near-unitary limit on 10–100 µs
timescales, the role of this fermionic pairing mechanism in
the KZM can be studied. This would be a complementary
experiment to those performed in [27,28], which directly in-
vestigated the rate of pair formation and condensate growth
after rapidly crossing the transition on the BCS side of the
Feshbach resonance.

V. PHENOMENOLOGICAL KZM

We now provide an analytical framework for reproduc-
ing and interpolating between the fast and slow quench
limits in the absence of inter-ring coupling. To do this,
we treat the Fourier components of the fluctuating order
parameter as Gaussian variables evolving according to an
overdamped, stochastically driven Landau-Ginzburg model.
In a single smooth quasi-one-dimensional ring of radius
R, the time-dependent stochastic Landau-Ginzburg equa-
tion (SLGE) describing the evolution of the order parameter
can be written

∂ψ

∂t
=

(
α(t ) + ∂2

∂θ2
+ β|ψ |2

)
ψ + ζ (θ, t ), (1)

which is expected to approximate the dynamics at the mean-
field level [61]. Here we measure time in units of γ /�0, where
γ is a phenomenological dimensionless relaxation rate and
�0 = h̄/mpR2 is the frequency associated with the quantized
circulation of pairs of mass mp around the ring. In addition,
α(t ) = (R/ξBCS)2ε(t ) is the dimensionless Landau-Ginzburg
chemical potential, written in terms of the BCS coherence
length ξBCS, and β is the nonlinear interaction strength.
Further, ζ (θ, t ) is a zero-mean complex Gaussian white-
noise field, satisfying 〈ζ (θ, t )〉 = 0 and 〈ζ ∗(θ, t )ζ (θ ′, t ′)〉 =
Dδ(θ − θ ′)δ(t − t ′), with D ∼ kBT a phenomenological dif-
fusion constant. Finally, angular brackets denote averaging
over the independent and identically distributed normal dis-
tributions from which the ζ are pulled.

To study quench dynamics, we vary the reduced tem-
perature linearly as ε(t ) = t/tq,0 (distinguishing the dimen-
sionful quench time tq from the dimensionless quench time
tq,0 = �0tq/γ ), and we can write α(t ) ≡ t/tα with tα ≡
(ξBCS/R)2tq,0. Close to the transition, where the length scale
of fluctuations in the order parameter is expected to become
frozen in, we may neglect the nonlinear term and write a
linearized Fourier-space representation of (1),

dc	/dt = (t/tα − 	2)c	 + ζ	(t ), (2)

where ψ (θ, t ) = ∑
	 c	(t ) exp(i	θ ) and ζ (θ, t ) =∑

	 ζ	(t ) exp(i	θ ). We take the quench to begin at t = −∞
where ψ (θ, t = −∞) = 0. The central objects essential to
describing the statistics of spontaneous current formation
are the mean-square fluctuations of the discrete Fourier
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components, obtained from the formal solution to (2),

〈|c	(t ; t̂ )|2〉 ≡ σ 2
	 (t ; t̂ ) = √

πDt̂F (t/t̂ − t̂	2), (3)

where t̂ ≡ √
tα . The dimensionless function F (x) ≡

exp(x2)[1 + erf(x)]/2 = erfcx(−x)/2, where erfcx is the
complimentary scaled error function. At any time t , σ 2

	 (t ; t̂ )
is symmetrically peaked around 	 = 0. Additionally, the
growth dynamics of the σ 2

	 depends only on the variable
x	(t ) ≡ t/t̂ − t̂	2. Since F (x) ∼ exp(x2) for x � 1, the
fluctuations in mode 	 = 0 experience a brief period of rapid
growth, before any other mode, following the transition at
times t ≈ t̂ when x	=0(t ) ≈ 1. For t � t̂ , nonlinear effects
kick in and the condensate begins to relax toward its
instantaneous nonzero equilibrium value [62]. Thus, in some
short interval of time following this blow-up time t̂ , the
condensate becomes robust with respect to fluctuations large
enough to cause any persistent current to decay; the winding
number becomes a topologically protected quantity at times
t � teval ≡ f t̂ . Here f > 1 is a roughly constant fudge factor
that scales the blow-up time to the so-called evaluation time
where the winding number is stabilized [39].

The goal now is to calculate the probability of observing
a given winding number given the set of time-dependent
Gaussian random Fourier coefficients c(t ) obtained from
(2). At any given time the winding number w can be ob-
tained from the density-phase representation of the order
parameter ψ (θ ) = √

n(θ ) exp[iφ(θ )]. To compute w directly,
we may logarithmically differentiate this expression [assum-
ing n(θ ) > 0, which is almost certainly true at any given
time] and then integrate around the ring, using the defini-
tion

∫ 2π

0 dθ dφ(θ )/dθ = 2πw and then the substitution z =
exp(iθ ),

w = 1

2π i

∫ 2π

0
dθ

d

dθ
ln ψ (θ )

= 1

2π i

∮
|z|=1

dz
d

dz
ln �(z; c), (4)

where we have defined the Fourier-like expansion of the order
parameter, truncated at modes 	 = ±	c, as

�(z; c) =
	c∑

	=−	c

c	z	. (5)

Using Cauchy’s argument principle, the winding number is
then given by

w = m − 	c, (6)

with 0 � m � 2	c the number of roots of �(z; c) lying within
the complex unit disk |z| < 1. This Fourier-space method of
computing the winding number circumvents issues with phase
ambiguities associated with the real-space computation of w.

We numerically simulate the winding number distribution
by sampling the c	(t ; t̂ ) from the complex Gaussian distri-
bution CN (0, σ	(t ; t̂ )). The variances σ 2

	 (t ; t̂ ) are given by
(3). For a single randomly chosen set c(t ; t̂ ), the roots of
�(z; c(t ; t̂ )) are found numerically and w(t ) is then computed
via (6). When evaluated at teval, the probability distribution
depends only on the variable tα ∼ tq/R4 where the tempo-
ral dimension was restored. Notably, the phenomenological

diffusion constant D drops out of the winding number dis-
tribution as long as the winding numbers assume their final
values at teval and nonlinear effects can be neglected. We note
that the algebraic decay of the σ 2

	 ∼ 1/	2 at large |	| means
that a large 	c is required to faithfully simulate the winding
number distribution, especially for fast quenches. We chose
a generous 	c = 1000 for simulations and confirmed that our
results across all quench times did not change significantly
after increasing this value.

We show in Fig. 4 the numerically simulated mean-square
winding number evaluated at dimensionless time teval = 3t̂ .
To compare this theoretical prediction with measurements
without knowledge of phenomenological model parameters,
we rescaled the model quench time tα to best fit the data in
the fast quench regime. We see good agreement in the mea-
sured and simulated data for the fastest quenches, bolstering
the Zurek argument for spontaneous current formation in 1D
rings. Additionally, we see a rapid falloff in the mean-square
winding number for slower quenches in both the measured
and simulated data, although the simulated data do not match
the measured values in this regime. In the model, this falloff
is attributed to finite-size effects, although the rate of falloff
depends on microscopic parameters and fudge factors that are
difficult to estimate experimentally. As discussed previously,
it may be necessary to eliminate the effects of phase locking
between the rings with an impenetrable barrier in order to
explore this regime.

VI. CONCLUSION

We have studied the statistics of spontaneous current for-
mation in a thermally quenched ring of ultracold fermionic
atoms with strong attractive interactions, where the currents
are long-lived and topologically protected. We observe a
fast-quench regime where the mean square of the winding
number follows an algebraic scaling, as expected from KZ
theory, and a slow-quench regime governed by a more rapid
suppression of spontaneous current formation. A stochastic
Landau-Ginzburg model of spontaneous current formation
showed quantitative agreement with data for fast quenches
but only qualitative agreement for slow quenches that we at-
tributed to finite-size and possible inter-ring coupling effects.
It is somewhat unexpected that the observed scaling exponent
of 0.24(2) for fast quenches is better in line with the value
of 1/4 obtained from mean-field theory than the value of 1/3
predicted for the 3D XY model, given our estimates of how
strong fluctuations should be at the freeze-out time under the
conditions of our experiment. There are many complications
involved in real experiments that can impact the observed
scaling, and it appears that further work will be required to
determine how the scaling might be affected by factors like
using a fast interaction ramp, being close to a dimensional
crossover, and having two rings coupled by a dilute normal-
state background.
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