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Propagation properties of the electron circular vortex beam based on the butterfly catastrophe
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In this paper, an alternative kind of electron circle butterfly vortex beam (ECBVB) based on the butterfly
catastrophe is introduced, and its propagation characteristics in free space and constant magnetic field are
numerically discussed. In free space, the ECBVB exhibits autofocusing and self-healing properties, and the
probability flow density vector and cross-section intensity distribution are also analyzed. Compared to that in the
free space, the focusing intensity of the ECBVB in the magnetic field increases by two orders of magnitude. By
changing the distribution factor, the magnetic flux density, and the second-order chirp factor, the autofocusing
properties of the ECBVB can be adjusted flexibly. In addition, adjusting the topological charges and the initial
transverse velocity of the ECBVB is conducive to obtaining the desired propagation behavior of the ECBVB.
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I. INTRODUCTION

According to the. de Broglie theory and Born theory of
quantum mechanics [1], an electron beam can be viewed
as a matter wave, whose behavior can be described as a
complex-valued wave function conforming to the Schrödinger
equation [2]. The wave function describes the space-time
probability distribution of the electron beams, linking the
properties of the wave and the particle.

Inspired by structured beams [3], structured wave packets
have found fertile ground in the field of electronics. A com-
mon way to customize electron-beam packets is to sculpt the
electron wave function using nanoscale phase masks [4]. In
2007, the dynamics of electron wave-packet states with vortex
are proposed [5]. In 2010, an electron vortex beam with helical
wavefront structure was generated in experiment [6–8], and
since then the theory of the electron vortex beam has been
greatly improved and developed [9–12]. In 2013, Voloch-
Bloch et al. experimentally generated a self-accelerating
electron Airy beam for the first time and investigated its
properties; their work proposes an alternative field for manip-
ulating trajectories of particles by designing initial probability
density wave functions of particles [13]. Then Karlovets and
coworkers perfected the development of electron Airy beams
in free space [14–16]. In 2014, a holographic approach was
used to generate electron Bessel beams in transmission elec-
tron microscopy, and its properties such as nondiffraction and
self-healing have aroused much interest [17–19]. Due to the
special effect of magnetic fields on charged particles, the
electron beam will rotate with constant radius and constant
angular frequency in a constant magnetic field [20,21], and
this unique property has been noticed by some scholars. In
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2021, Goutsoulas and Efremidis investigated the dynamics of
self-accelerating electron Airy beams in a constant magnetic
field [22]. Subsequently, the properties of electron Pearcey
and Airy wave packets in a constant magnetic field were also
explored [23–25]. From the above, the various properties of
the electron beams are conducive to practical applications
such as high-resolution phase contrast imaging, measurement
of crystal chirality, and manipulation of nanoparticles [11,26–
28].

In recent years, the catastrophe theory, which shows some
excellent properties, has been widely used in electron op-
tics and electron beams with catastrophe functions [29–31].
From the perspective of the potential function, a mutation
function can be divided into seven basic catastrophes: fold,
cusp, swallowtail, butterfly, elliptical umbilic, hyperbolic um-
bilic, and parabolic umbilic. For example, the electron Airy
beams described by the Airy function have the properties
of self-healing and self-accelerating, corresponding to the
fold catastrophe. The electron Pearcey beam described by
the Pearcey function corresponds to the cusp catastrophe,
which has the properties of autofocusing, self-healing, and
form invariance. Until now, some higher-order catastrophes
such as the swallowtail catastrophe and butterfly catastrophe
have been applied in optics and proved to have some excellent
properties [32,33]. However, these higher-order catastrophes
have not been studied for electron beams. To fill this gap, this
paper focuses on an alternative type of electron beam which is
described by butterfly catastrophe, the electron circular butter-
fly vortex beam (ECBVB). We investigate the propagation of
the ECBVB in free space and a constant magnetic field. The
focal length and the focal intensity of the ECBVB not only
exhibited flexible tunability but also showed different propa-
gation properties in different environments. In the free space,
the ECBVB can form an electronic bottle (EB) after adding
the Gaussian absorption obstacle. In the constant magnetic
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field, its focal intensity can be two orders of magnitude higher
than that in free space but the ECBVB loses self-healing prop-
erty. Whether in free space or a constant magnetic field, the
ECBVB exhibits the dynamic property of rotation. Moreover,
we also introduce a second-order chirp factor to expand the
autofocusing properties of the ECBVB further and realize the
regulation of autofocusing.

II. THEORETICAL MODEL OF THE ECBVB

A. Propagation of the ECBVB in free space
and constant magnetic field

In the presence of an electromagnetic field, an electron
wave packet arises as a solution to the Schrödinger equation[

ih̄
∂

∂t
+ eφ(r, t )

]
� = 1

2m

(
p̂ + e

c
A

)2
�, (1)

where h̄ is the reduced Planck constant, m is the electron
mass, e is the electron charge, p̂ = −ih̄∇ is the momentum
operator, φ and A are respectively the scalar and the vector
potentials, and � is the wave function. The magnetic-field
direction is aligned with the propagation z direction. The
relationship between the magnetic field and vector potential
is satisfied by B = ∇ × A = Bez, and the symmetric gauge
A = B

2 (xey − yex ). B is the magnetic flux density. The poten-
tial function φ(r, t ) = 0. The wave packet can be expressed
as

� = ψei(p0z−E0t )/h̄, (2)

where E0 = p2
0/(2m). We define a coordinate system

that moves along with the electron wave packet,
ζ = z − h̄k0t/m, τ = t . To simplify the calculation, we
use normalized dimensionless coordinates: z → z0z, t →
t0t, (x, y) → L(x, y), B → B0B, with t0 = mL2/h̄, z0 =
k0L2, B0 = ch̄/(eL2), p0 = h̄k0. Under the paraxial
approximation, we obtain

i∂τψ =
[
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∇2
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8
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]
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In polar coordinates, Eq. (3) can be expressed as
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ψ. (4)

In a constant magnetic field, the integral form of Eq. (4) can
be expressed as

ψ (r, τ ) =
∫∫

ψ0(ρ)K (r, ρ, τ )ρdρdσ, (5)

where r = xex + yey, ρ = x′ex + y′ey, and ψ0(ρ) is the initial
wave function of the electron beam. K is the propagator of
the electron beam in a longitudinal constant magnetic field,
corresponding to Eq. (3). It can be written as

K (r, ρ, τ ) = B

4π i sin Bτ
2

ei B
4 cot Bτ

2 (r−ρ)2+i B
2 r×ρ. (6)

By expanding the vector identity and combining the above
formulas, we get a final expression that is easier to compute:

ψ = w

2π i

∫∫
R2

ψ0(ρ, σ )eivρ2−i[S1ρ cos (σ )+S2ρ sin (σ )]ρdρdσ ,

(7)
where v=B

4 cot( Bτ
2 ), w=B

2 csc( Bτ
2 )eivr2

, S1 = 2v[r cos(θ ) +
r sin(θ ) tan( Bτ

2 )], and S2 = 2v[r sin(θ ) − r cos(θ ) tan( Bτ
2 )].

According to the catastrophe theory, we know that the catas-
trophe function can be classified into the following seven
categories: fold, cusp, swallowtail, butterfly, hyperbolic um-
bilic, elliptic umbilic, and parabolic umbilic catastrophes,
which conform to the equation

Cn(a1, a2, . . . , an−2)

=
∫ ∞

−∞
exp{iPn[(a1, a2, . . . , an−2), s]}ds. (8)

The expression of the canonical potential function
Pn[(a1, a2, . . . , an−2), s] is given by

Pn[(a1, a2, . . . , an−2), s] = sn +
n−2∑
j=1

a js
j . (9)

The butterfly function (Bu) corresponds to the case of n = 6,
and we substitute it into Eq. (8) to get the following form:

Bu(a1, a2, a3, a4)

=
∫ ∞

−∞
exp[i(s6 + a4s4 + a3s3 + a2s2 + a1s)]ds. (10)

The butterfly catastrophe provides four control parameters
that we can arbitrarily choose to use as the cross-sectional
spatial coordinates. The initial wave function of the ECBVB
can be expressed as

ψ0(r, θ ) = A0Bu

(
0, q

r0 − r

w0
, 0, 0

)
exp

[
−

(
a

r0 − r

w0

)2
]

×exp

(
− ic1r2

w2
0

)
exp

{
i
[β1r cos (θ )+β2r sin (θ )]

w0

}
× exp [iϕ(r, θ )]Q(r, θ ), (11)

where A0 is a constant term, w0 is the initial beam width,
a is the distribution factor parameter, r0 represents the ra-
dius of the primary butterfly ring, r =

√
x2 + y2, c1 is the

second-order chirp factor, β1 and β2 are the initial transverse
velocities in the x and y directions, and the phase ϕ(r, θ ) is
used to adjust the position of the vortex and the number of
topological charges, which can be expressed as

ϕ(r, θ ) = lθ + αr, r > r1 (12)

where l is the vortex topological charge and r1 is the closest
position where the vortex exists. Q(r, θ ) is an aperture that
limits the range and energy of the field, and it can be written
as

Q(r, θ ) =
{

1, 0 � r � R, 0 � θ � 2π

0, other
(13)

where R is the radius of the outermost ring. In this paper, we
use original coordinates that are not normalized to specify
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the parameters. We assume that λ=633 pm, q=1,w0 =
10 nm, α=2π, r1 =200 nm, A0 =1, β1 =β2 = 0, c1 = 0.001
unless otherwise specified. For magnetic flux density B, we
use the international system of units. Substituting Eq. (11)
into Eq. (7), we get

ψ = w

2π i

∫∫
R2

ρψ0(ρ, σ )

× eivρ2−i[S1ρcos(σ )+S2ρsin(σ )]dρdσ. (14)

We expand the Q(r, θ ) into a finite sum of complex Gaus-

sian functions, and get Q(r) = ∑N
j=1 Bj exp(−C2

j r2

R2 ), where
Bj and Cj are the coefficients and N is the number of complex
Gaussian terms [34]. For β1 = β2 = 0, r1 = 0, Eq. (14) can
be expressed as
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i
exp (−ilϕ2) exp
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where k is odd or zero, � is the Gamma function, M is the
Whittaker function, ϕ2 = arctan( S1

S2
), E = a2

w2
0
+ Cj

R2 + ic1

w2
0
−

i B
4 cot( Bτ

2 ), F =
√

S2
1 + S2

2 , and

Bu2(a1, a2, a3, a4, k)

=
∫ ∞

−∞

(
2a2 r0

w2
0
+ iα − i qs2

w0

)k

k!

× exp[i(s6 + a4s4 + a3s3 + a2s2 + a1s)]ds.

B. Numerical methods

We utilize the split-step Fourier method to simulate the
intensity distribution and the motion trajectory of the ECBVB
numerically. Next, we will provide an explanation of how
we use this approach. We use a second-order Strang-type
splitting scheme which is a method for solving differential
equations numerically. The Schrödinger-type operator can be
separated into three terms: the diffraction operator LD, the
operator for the parabolic potential LP, and the operator for
the orbital angular momentum LA. LA can be divided into two
operators, LA,1 and LA,2, which are proportional to x∂y and
y∂x respectively. By utilizing the Strang splitting to minimize
the number of operations required, we obtain

ψ (τ + δ) = e(LD+LP+LA )δψ (τ )

= e
LDδ

2 e
LA,1δ

2 eLA,2δe
LA,1δ

2 eLPδe
LDδ

2 ψ (τ )

+ O
(
δ3

)
. (16)

The diffraction operator can be solved through the utilization
of Fourier transforms and inverse Fourier transforms:

eLDδψ = F−1
{
e−i(k2

x +k2
y )δ/2F {ψ}}. (17)

FIG. 1. The normalized intensity distribution (background) and
the probability flow density vector (arrows) of the ECBVB propagat-
ing in the free space with w0 = 10 nm and l = 6.

The parabolic potential which results in a parabolic phase is
given by

eLPδ = e−iB2 (x2+y2 )δ/16. (18)

By performing the Fourier transformation and the inverse
Fourier transformation separately along the y and x axes, one
can calculate the integration of LA,1 and LA,2, and the specific
transformation operation can be expressed as

eLA,1δψ = F−1
y {e−iBxkyδ/2Fy{ψ}},

eLA,2δψ = F−1
x {e−iBykxδ/2Fx{ψ}}. (19)

III. NUMERICAL SIMULATION AND DISCUSSIONS

A. Free space propagation

1. The probability flow density vectors of the ECBVB

From Fig. 1, we can observe that the probability flow
density vector (the arrows) at the initial propagation is inward.
The intensity distribution of the ECBVB shrinks inward and
its shape becomes smaller gradually. However, once the side-
lobes reverse their directions, the directions of the probability
density flow will change to be outward. In other words, the
directions of the probability flow density vector clearly re-
veal how the rotation directions of the ECBVB’s sidelobes
are flipped. The directions of the probability flow density
vector on the main lobe or sidelobes are centrosymmetric
in arbitrary profile, so it can be verified that the probability
density distribution of the ECBVB is centrosymmetric during
the propagation process when l = 6.

2. Propagation of the ECBVB

The intensity profile of the ECBVB during its propagation
in a vacuum is illustrated in Fig. 2, and the white curve
represents the corresponding distribution of intensity. It is
important to note that the unit of measurement employed in
this context is time. In the free space part, we set the value of
T corresponding to the case where B = 5.

In a vacuum, the ECBVB does not exhibit circular motion
like in the presence of the magnetic field due to the absence of
any force acting upon it from the magnetic field. The results
depicted in Fig. 2 demonstrate that there will be sidelobes
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FIG. 2. The normalized intensity distribution of the ECBVB propagating in the free space with w0 = 10 nm, l = 6. The white curve is the
peak intensity cross-section at different times, and the scale values on the left of the figures are the intensity values corresponding to the white
curve.

whose number corresponds to topological charges. We find
the intensity distribution is relatively uniform in the main
lobe and sidelobes before 0.8T , and there is little difference
in strength between the main lobe and the side lobe. Sub-
sequent to the value of 1.2T , however, there is an evident
gradual concentration of energy towards the center circle, and
the intensity difference between the main lobe and the side
lobe becomes larger, as shown by the white curve in Fig. 2.
The ECBVB begins to autofocus. The rotation directions of
the ECBVB’s sidelobes are deflected after some moment.
Moreover, we find that the position of reversal is related to the
focusing position of the ECBVB, so when we appropriately
increase or decrease the value of c, the position of reversal is
advanced or delayed respectively.

3. Self-healing

In Fig. 3, we observe the change of the electron beam
by introducing a Gaussian absorption obstacle and find that
the ECBVB has the property of self-healing. We place the
Gaussian absorption obstacle at τ = 1.20T , which can be
expressed as

T (x, y) = 1 − exp

[
− (x − Gx )2 + (y − Gy)2

w2
G

]
, r < ri,

(20)
where wG is the width of the Gaussian absorption obstacle,
and ri is the range in which the Gaussian absorption obstacle
exists. We set (Gx, Gy) = (0, 0), then T (x, y) can be written
as T (r) = 1 − exp[− r2

w2
G

], r < ri.
Figure 3 shows the propagation of an electron beam with

different topological charges when the Gaussian absorption
obstacle is placed in the τ = 1.20T plane. In the τ = 1.20T
plane, a circular hole appears in the center of the ECBVB
with almost no probability density, which is caused by the
Gaussian absorption obstacle. The energy distribution of
the ECBVB is mainly concentrated on the main lobes outside
the circular hole, and their number depends on the topological
charge l; if l is even, then these main lobes are symmetric
about the center. Outside each main lobe there is a region with
some sidelobes shaped like blades, and the number of blades
also depends on the topological charge l . In Fig. 3(c), after

the ECBVB passes through the Gaussian absorption obstacle,
its intensity distribution focuses again. After that, the circular
hole-shaped defect area quickly heals, which means that the
energy outside the hole flows to the defect area. However, the
healing pattern expands outside from the center of the hole
gradually, so the energy does not flow inside from the outside
of the defect area directly. After the ECBVB heals, not only
the main lobes whose amount depends on topological charges
diffuse inward but also several rings of different sizes appear
in the central area of the original circular hole surrounded by
these main lobes. By observation, we find that the greater the
topological charge l is, the more rings there are, as shown in
Figs. 3(b1)–3(b3).

Moreover, we discover that changing the size of the Gaus-
sian absorption obstacle affects the self-healing properties of
the ECBVB. When we increase the range ri of the Gaussian
absorption obstacle, the peak intensity of the ECBVB after
passing through the Gaussian absorption obstacle becomes
lower. By comparing Figs. 4(a1)–4(a3), we find that the heal-
ing pattern at the center of the ECBVB passing through the
Gaussian absorption obstacle is smaller when the correspond-
ing value of ri is larger, which can be reflected in Figs. 4(a2)
and 4(a3), and the conical beam behind the Gaussian ab-
sorption obstacle becomes thinner. In particular, Fig. 4(a3)
reveals that when we increase the value to a certain extent,
the phenomenon of secondary autofocusing disappears. Fig-
ure 4(b) is the peak intensity diagram during the propagation
process of the ECBVB under different ri; the larger the value
of ri, the lower the intensity of the ECBVB after passing the
Gaussian absorption obstacle. Combined with Fig. 4, it can
be inferred that the self-healing performance of the ECBVB
is not significantly correlated with the focused conical beam
in the middle before the Gaussian absorption obstacle but is
closely related to the area around the conical beam.

In addition, after adding the Gaussian absorption obstacle,
the ECBVB forms an EB when ri = 40 nm. As shown in
Fig. 4(a1) where the white coil is placed, there is a dark area
in the middle, and the first focus of the ECBVB forms the
head of the EB. Then the ECBVB partially diverges to the
sides, forming the main body of the EB. Finally, the ECBVB
focuses again to form the bottom of the EB. This property is
expected to be applied to trapping particles.
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FIG. 3. Propagation of the ECBVB with w0 = 10 nm, ri = 40 nm under different values of l . (a1)–(a3) τ = 1.20T plane. (b1)–(b3) τ =
1.35T plane. (c1)–(c3) Side views of the ECBVB propagating with l = 2, 6, 12. Panels (a) and (b) correspond to planes 1 and 2 marked in
panel (c), respectively.

B. Constant magnetic-field propagation

1. Propagation of the ECBVB

Figure 5 shows the intensity of the ECBVB change over
a cycle, from which we can get some of its dynamic char-
acteristics. We can see that the initial plane appears toroidal.
In the process that follows, the ECBVB gradually contracts
inward, and some sidelobes appear on the outside of the inner
ring. At τ = T/2, the ECBVB shrinks into a tiny fraction, at
which moment its intensity becomes extremely large. After
τ = T/2, the ECBVB diffuses outward again. An interesting
phenomenon of the external vortex is that the sidelobes out-

FIG. 4. Propagation of the ECBVB with w0 = 10 nm, l = 6 un-
der different values of ri. (a1)–(a3) Side views of the ECBVB
propagating with ri = 40, 60, and 80 nm. (b) Peak intensity as a
function of the propagation time τ for different values of ri, and the
three curves correspond to panels (a1), (a2), and (a3) respectively.

side the inner rings of the ECBVB reverse directions after
τ = T/2. It must be emphasized that the sidelobes and the
interior of the main lobe rotate dynamically during propaga-
tion. At the beginning of propagation, the rotation speed inside
the main lobe increases to a high level gradually in half a
cycle, and then gradually decreases after half a cycle, until one
cycle when the rotation is exactly no longer. During the whole
process, we observe that the interior of the ECBVB rotates
counterclockwise at high speed because of the action of the
vortex. At τ = T/8, the sidelobes rotate clockwise as shown
in Fig. 5(a2), then the overall shape of the ECBVB gradu-
ally becomes smaller. At τ = 3T/8, the rotation directions
of the sidelobes change from clockwise to counterclockwise
due to internal rotation and the constant magnetic field. After
τ = T/2, the sidelobes turn clockwise again, and the shape
of the ECBVB gradually expands and returns to the original
state.

2. Initial transverse velocity

There is a linear phase [β1r cos(θ ) + β2r sin(θ )]/w0,
which produces an initial transverse velocity

(
β1

β2

)
. The motion

caused only by the initial velocity is a circular trajectory with

radius R =
√

β2
1 +β2

2

B .
In Fig. 6, it is found that the central area of the electron

beam is obviously moved, and the pattern of the ECBVB
gradually moves away from the origin of the coordinates. The
center of the ECBVB successively moves to the right up, right
down, left down, and finally slowly returns to the center of the
coordinate. During the whole process, the rotating motion and
the pattern of the ECBVB are not altered by the linear phase.
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FIG. 5. The normalized intensity distribution during a cycle of the ECBVB propagating in the constant magnetic field with w0 = 10 nm,
l = 6, B = 5. The white arrows represent the direction of rotation of the sidelobes and within the main lobe.

3. The influence of magnetic flux density B and initial
beam width w0

To further investigate the autofocusing characteristics of
the ECBVB, we look for the influence of different parameters
on the autofocusing distance and the autofocusing intensity
of the ECBVB. Different magnetic flux densities will lead
to different cycles. When approaching the end of a cycle,
the intensity of the ECBVB is very small compared with the
peak intensity, so the cycle corresponding to B = 6 is adopted
in the Fig. 7(a). A valuable phenomenon is that magnetic
flux intensity influences the maximum focus intensity and the
focus position. As shown in Fig. 7, the ECBVB will reach
a relative maximum value before focusing, and the position
of the relative maximum value is close to the position of the
absolute maximum focusing intensity. We find a positive cor-
relation between the maximum autofocusing intensity and the
magnetic flux density: with the increase of the magnetic-field
intensity, the maximum autofocusing intensity and the auto-
focusing distance of the ECBVB also increase. However, an
increase in autofocusing intensity also means that the energy
of the ECBVB is more concentrated, which leads to a decrease
in the focal depth. It is seen from Fig. 7(a) that the higher the
crest of the bulge is, the narrower the crest is. To better observe
the change of the focal depth, we use normalized intensity
instead of peak intensity in Figs. 7(b1)–7(b5). For the case of
different magnetic flux intensities, the ECBVB achieves aut-
ofocusing and has a relative maximum value before focusing,
and the depth of the relative maximum peak is close to the
focal depth. Two depths have the same variation trend when
magnetic flux intensity changes.

When the magnetic-field intensity is small, the wave crest
is relatively flat, and the focal depth is larger. However,
with the increase of the magnetic-field intensity, the wave
crest gradually becomes sharp, and the focal depth becomes
smaller. We find in Fig. 7(a) that when the magnetic-field
intensity increases, the relative maximum intensity and the
absolute maximum focusing intensity increase concurrently.
However, in Figs. 7(b1)–7(b5), due to the use of the normal-
ized intensity, the maximum intensity of the ECBVB in one
cycle is 1. With the increase of the magnetic-field intensity,
the relative maximum gradually decreases, which means that
the relative difference value between the relative maximum
and the absolute maximum intensity also increases. Moreover,
we note that with the initial beam width w0 increasing, the
focusing intensity of the ECBVB also increases with little
change in the corresponding depth of focus. Different from the
case of increasing the strength of the constant magnetic field,
increasing the value of w0 appropriately causes the relative
difference between the relative maximum and the absolute
maximum intensity of the ECBVB to decrease.

4. The influence of vortex

Contrary to the situation in Ref. [19], the focusing inten-
sity of the ECBVB decreases when the vortex exists. This
is because the vortices contribute to the production of side-
lobes whose number is equivalent to the topological charges.
As a result, the partial energy originally concentrated in the
center is divided equally among these sidelobes, as shown in
Fig. 8(b). Interestingly, the topological charges have almost no
effect on the peak intensity of the ECBVB, which is related

FIG. 6. The normalized intensity distribution of the ECBVB propagating in the constant magnetic field with w0 = 10 nm, l = 6, B = 5,
and β1 = β2 = 5. We build the coordinates from the center of the figures.
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FIG. 7. The peak intensity and the normalized intensity of the ECBVB propagating in the constant magnetic field with different parameters
when l = 6. (a), (b1)–(b5) With different B. (c1–c3) With different w0 when B = 5.

to the range in which we set the vortex. Although changing
the topological charges causes a change in the number of
sidelobes, when a given vortex is present, the intensity of
the central circle which determines the peak intensity remains
constant. In other words, the energy assignment relationship
of the central circle is fixed for different values of l when the
vortex exists.

FIG. 8. The normalized cross-section intensity distribution and
the peak intensity of the ECBVB with and without vortex when
w0 = 10 nm, B = 5. (a1)–(a3) Snapshots of the normalized cross-
section intensity distribution of the ECBVB at the plane marked in
(b). (b) The peak intensity of the ECBVB with different l .

5. The influence of the second-order chirp parameter

In order to adjust the focusing effect and the focusing
position of the electron beam, we set a second-order chirp
factor c1 in the initial field of the ECBVB, as shown in Fig. 9.
When c1 = 0.001, the ECBVB achieves the autofocusing in
one cycle, and the autofocusing time is relatively short, as
shown by the red line in Fig. 9(a). In this case of c1 > 0,
we gradually increase the value of c1 and find that the focus-
ing position of the ECBVB is gradually pushed forward, the
maximum focusing intensity of the ECBVB increases, and the

FIG. 9. The peak intensity and the three-dimensional normal-
ized intensity distribution of the ECBVB propagating in a constant
magnetic field with different second-order chirp parameters when
w0 = 10 nm, l = 6, B = 5.
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focus depth of the ECBVB is almost unchanged. In Figs. 9(c)
and 9(d), we can see that the peak intensity (when the pattern
size is minimal) of the ECBVB corresponds to different times
when the value of c1 is different. If we want to adjust the
focusing position of the ECBVB backward, we can make the
second-order chirp factor negative. For example, when c1 =
−0.15, the focusing position of the ECBVB shifts backward
obviously and the ECBVB still maintains the autofocusing in
one cycle. When c1 is negative, increasing the absolute value
of c1 still increases the maximum focusing intensity of the
ECBVB. By adjusting the second-order chirp factor, we find
that the focal intensity changes along with the change in the
focal position. If we want to precisely achieve the desired
value for the intensity at the focal position, we only need to
add a proportional coefficient to the initial field. However,
this will increase the complexity and cost of practical appli-
cations. If the initial beam width is adjusted together with the
second-order chirp factor mentioned above, it is possible to
set the focal length and the focusing intensity we want without
changing the depth of focus.

IV. CONCLUSION

In summary, we propose the ECBVB based on the butterfly
catastrophe and numerically investigate the propagation prop-
erties of the ECBVB in free space and a constant magnetic
field. In free space, we discuss the cross-section intensity
distribution and autofocusing property of the ECBVB. Then,

the inversion of the sidelobes is revealed by the variation
of the probability density flow. After introducing a Gaussian
absorption obstacle, we discuss how the ECBVB achieves
self-healing, the influence of the radius of the Gaussian ab-
sorption obstacle on its self-healing performance, and the
generation of the EB. In a constant magnetic field, the rotation
behavior of the ECBVB is investigated, and we find that the
initial transverse velocity determines the monolithic rotation
radius of the ECBVB. The focusing intensity of the ECBVB
in a magnetic field is two orders of magnitude higher than
that in free space. Moreover, the autofocusing property of
the ECBVB exhibits flexible tunability. The focal length, the
focal depth, and the focusing intensity of the ECBVB can be
adjusted by altering the distribution factor, the magnetic flux
density, and the second-order chirp factor. These properties
have potential application prospects in the microetch process
and particle capture.
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