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Simulating a two-component Bose-Hubbard model with imbalanced
hopping in a Rydberg tweezer array
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Optical tweezer arrays of neutral atoms provide a versatile platform for quantum simulation due to the range
of interactions and Hamiltonians that can be realized and explored. We propose to simulate a two-component
Bose-Hubbard model with power-law hopping using arrays of multilevel Rydberg atoms featuring resonant
dipolar interactions. The diversity of states that can be used to encode the local Hilbert space of the Bose-
Hubbard model enables control of the relative hopping rate of each component and even the realization of spin-
flip hopping. We use numerical simulations to show how multilevel Rydberg atoms provide an opportunity to
explore the diverse nonequilibrium quench dynamics of the model. For example, we demonstrate a separation of
the relaxation time scales of effective spin and charge degrees of freedom, and observe regimes of slow relaxation
when the effective hopping rates of the two components are vastly different due to dynamical constraints arising
from hardcore boson interactions. We discuss prospects for studying these effects in state-of-the-art Rydberg
tweezer arrays.
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I. INTRODUCTION

Programmable tweezer arrays of Rydberg atoms provide
a versatile platform for quantum simulation of many models
of quantum magnetism in a range of geometries [1–6] and
present exciting prospects for realizing exotic quantum phases
of matter [7–9]. By encoding a qubit in Rydberg and/or
ground states of an atom, one can selectively realize 1/r6 van
der Waals or anisotropic 1/r3 dipolar interactions that natu-
rally emulate Ising [5,10–14], XY [15,16], or XXZ [17] spin
models. Recent work has demonstrated further versatility with
applied fields that realize local or global driving and energy
shifts, which can be exploited to realize Floquet Hamiltonians
[18–21]. These tools for Hamiltonian engineering are com-
bined with technical capabilities such as site-resolved imaging
and state preparation in the tweezer apparatus.

New opportunities are emerging in these systems by ap-
plying the aforementioned levels of control to multiple (i.e.,
more than two) Rydberg levels within each atom. In general,
multilevel atoms present a promising platform to expand the
frontiers of quantum simulation beyond, e.g., well-established
spin-1/2 models, and controllably enrich the complexity of
many-body dynamics. Recent work involving Rydberg atoms
has demonstrated how internal structure can be exploited to,
e.g., realize synthetic dimensions [22,23]. For example, a set
of neighboring Rydberg states can be coupled by independent
microwaves to study topological physics [24], nonequilibrium
dynamics featuring strong interactions [25], or classical ana-
log of quantum models [26]. In this work, we propose to use
resonant dipolar exchange interactions between three Rydberg
states with alternating parity to simulate the nonequilibrium
dynamics of a two-component (i.e., spin-1/2) Bose-Hubbard
model featuring tunable power-law hopping and hardcore
interactions. Single atoms are trapped in a programmable
tweezer array, realizing the spatial dimension, while the Ry-

dberg levels encode the local Hilbert space of the model,
corresponding to the on-site occupation of each boson com-
ponent. Our mapping explicitly excludes double occupancy
of any site to realize perfect hardcore interactions between the
effective bosons, while the natural variation of exchange inter-
actions between different levels allows us to easily investigate
different hopping rates for each component or even resonant
spin-flip tunneling. We note that multilevel Rydberg atoms
have also similarly been proposed for quantum simulation of
a related Bosonic t-J model in a recent work [27].

The engineered Bose-Hubbard model presents a versatile
playground for studying the role of competing time scales
and dynamical constraints in the relaxation of an interacting
many-body system [28–30]. For example, models featuring
a mixture of slow and fast (i.e., heavy and light) hopping
components on a lattice are of relevance to investigations of
anomalously slow relaxation and quasi-localization without
on-site disorder [31–39]. In this spirit, we investigate the
quench dynamics of the engineered Bose-Hubbard model as
a function of the relative hopping rates and using a variety of
tailored initial states that can be prepared in state-of-the-art
Rydberg quantum simulators. When the hopping rates are
equal, we observe a delineation of the dynamics into effective
spin and charge degrees of freedom that is intrinsically related
to the power-law behavior of the dipolar exchange interaction.
On the other hand, when the tunneling rates are strongly
imbalanced we observe a separation of time scales in the dy-
namics, which includes a regime of extremely slow relaxation,
and we identify the different stages of thermalization for each
component.

The remainder of the manuscript is organized as follows.
In Sec. II, we discuss the details of the two-component Bose-
Hubbard model realized by Rydberg tweezer arrays featuring
resonant dipolar exchange interactions. Sections III and IV
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FIG. 1. (a) Schematic of one-dimensional (1D) optical tweezer
array and example level structure. The uniformly spaced tweezers,
with position index j, each confine a single atom that is prepared
in a ladder of three Rydberg levels defined by single-particle states
|1〉, |2〉, and |3〉. The atoms interact via pairwise dipolar exchange
interactions with characteristic strength J1 and J2 between differ-
ent levels (arrows indicate examples of nearest-neighbor exchange
processes—see text for further details). Microwave fields with Rabi
frequencies �1 and �2 coherently couple the single-particle states
|1〉 ↔ |2〉 and |2〉 ↔ |3〉, respectively, for state preparation and read-
out. (b) Effective mapping to a model of two-component hardcore
bosons. The exchange interaction realizes hopping between sites
(indicated by filled and empty circles for occupied and unoccupied
sites, respectively) at a rate which depends on the boson component.

then present example quench dynamics, focusing on the role
of hopping range and the amplitude for each component.
In Sec. V, we discuss relevant experimental considerations
for the realization of our theoretical predictions, and finally,
in Sec. VI, we summarize our results and discuss future
directions.

II. QUANTUM SIMULATION
WITH MULTILEVEL RYDBERG ATOMS

We consider an array of N atoms [see Fig. 1(a)] individu-
ally confined in optical tweezers. Each atom can be prepared
in one of a ladder of n Rydberg levels, which we denote by
the single-particle states |m〉, where m = 1, 2, ..., n) is the
Rydberg state and j indexes the atom (tweezer) in the array.
The ladder of Rydberg levels is chosen so that they alternate
in parity, i.e., the states m and m + 1 are separated by a unit
increase in orbital angular momentum. We assume that the
dominant interactions between the atoms are then resonant
dipolar exchange interactions between adjacent Rydberg lev-
els (i.e., states m and m + 1) [1]. In addition, a set of resonant
microwave fields {�m} can be applied to uniformly couple the
single-particle Rydberg states m and m + 1 across the array
[see Fig. 1(a)]. Collectively, our system is then described by

the general Hamiltonian

Ĥ =
n−1∑

m=1

N∑

i, j=1
i �= j

Jm
i j (|m + 1〉〈m|)i(|m〉〈m + 1|) j

+
n−1∑

m=1

N∑

i=1

�m

2
[(|m〉〈m + 1|)i + (|m + 1〉〈m|)i]. (1)

Here, Jm
i j = Jm[1 − 3 cos2(θi j )]/r3

i j characterizes the dipolar
interaction between levels m and m + 1 of atoms in tweez-
ers i and j that are separated by a distance ri j (we assume
neighboring tweezers are separated by unit spacing through-
out the manuscript). The angular dependence of the dipolar
interaction is set by θi j , which is the relative angle between
the interatomic axis (i.e., the vector ri j between atoms i and j)
and the quantization axis set by an externally applied magnetic
field. The individual magnitudes Jm of the dipolar interactions
are naturally tunable through the specific choice of the Ryd-
berg levels encoding the ladder of single-particle states.

In this work we focus on the case n = 3, which enables us
to use the Rydberg levels to encode the local Hilbert space of
a two-component (i.e., spin-1/2) Bose-Hubbard model [40],
corresponding to the on-site occupation of a single boson
of either component or an empty site. The dipolar interac-
tions lead to hopping of the bosons, while limiting to three
Rydberg levels engineers a hardcore interaction between the
bosons that prevents doubly occupied sites. There are two
natural ways to encode these states that lead to a pair of
Bose-Hubbard Hamiltonians with features such as different
hopping rates for each component and even spin-flip hopping.

The first encoding of the boson occupancies is via the map-
ping |1〉 j ↔ |↑〉 j , |2〉 j ↔ |0〉 j , and |3〉 j ↔ |↓〉 j , where |↑〉 j
(|↓〉 j) corresponds to the site j being occupied with an ↑ (↓)
boson and |0〉 j encoding an empty site [see Fig. 1(b)]. Then,
Eq. (1) can be written as a two-component Bose-Hubbard
Hamiltonian with component-dependent hopping,

ĤBH =
∑

i �= j

J1
i j b̂

†
↑ib̂↑ j + J2

i j b̂
†
↓ib̂↓ j

+
∑

i

�1

2
(b̂†

↑i + b̂↑i ) + �2

2
(b̂†

↓i + b̂↓i ). (2)

Here, b̂†
σ j (b̂σ j) is the creation (annihilation) operator of a spin

σ boson at site j, with σ =↑ or ↓. The hardcore interaction
enters through the requirement that b̂†

σ j b̂
†
σ ′ j = b̂σ j b̂σ ′ j = 0.

The first line of Eq. (2) describes hopping of each component
between sites i and j with rates J1

i j and J2
i j , respectively, which

can be controlled by the choice of Rydberg levels used in the
simulator. In the absence of the microwave terms in the second
line, which lead to the coherent creation or destruction of
bosons at each site, the Hamiltonian separately conserves the
total number of ↑ and ↓ bosons on the lattice, N↑ = ∑

i b̂†
↑ib̂↑i

and N↓ = ∑
i b̂†

↓ib̂↓i, respectively. This can be understood as a
direct result of the conservation of total population in each Ry-
dberg state under the dipolar exchange interaction. Note that
in the recent work of Ref. [27], it was proposed to similarly
use three Rydberg levels to emulate a bosonic t-J model with
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hardcore constraints. Our Hamiltonian (2) with J1
i j = J2

i j and
�1 = �2 = 0 corresponds to a limiting case of that work.

Alternatively, encoding the boson occupancies using super-
positions of Rydberg levels, |↑〉 ↔ (|1〉 + |3〉)/

√
2, |0〉 ↔ |2〉

and |↓〉 ↔ (|1〉 − |3〉)/
√

2, leads to a distinct Bose-Hubbard
Hamiltonian,

Ĥ ′
BH =

∑

i �= j

Jh
i j (b̂

†
↑ib̂↑ j + b̂†

↓ib̂↓ j ) + J f
i j (b̂

†
↑ib̂↓ j + b̂†

↓ib̂↑ j )

+
∑

i

�↑
2

(b̂†
↑i + b̂↑i ) + �↓

2
(b̂†

↓i + b̂↓i ), (3)

where Jh
i j = (J1

i j + J2
i j )/2, J f

i j = (J1
i j − J2

i j )/2, �↑ = (�1 +
�2)/

√
2, and �↓ = (�1 − �2)/

√
2. The first line of the

Hamiltonian (3) describes a pair of composite hopping pro-
cesses between bosons at sites i and j: (1) hopping of each
component identically at a rate Jh

i j and (2) spin-flip hop-
ping at a rate J f

i j that converts between each component.
The latter can be viewed as a form of spin-orbit coupling
[41,42], where the spin of a hardcore boson repeatedly flips
as it propagates spatially through the array. In the absence of
the microwave driving, the Hamiltonian (3) features differ-
ent conserved quantities depending on the values of J1 and
J2: If they are equal, so that J f

i j = 0, then the total num-
ber of ↑ and ↓ bosons are separately conserved, but if the
interactions are different, so that J f

i j �= 0 and spin-flips ac-
company the hopping, then only the total boson number is
conserved.

In the following sections, we numerically investigate the
quench dynamics of each model, with a particular focus on the
relaxation dynamics at long times. We show that dynamical
constraints on the hopping dynamics in one dimension due
to the hardcore interactions, in combination with symmetries
and associated conserved quantities of each model, present
key ingredients for slow and multistep relaxation that can be
characterized with both local observables and the growth of
entanglement.

III. QUENCH DYNAMICS OF ĤBH

We first study the quench dynamics of the Hamiltonian
ĤBH [Eq. (2)]. We limit our investigation to one dimension
and assume �1 = �2 = 0. This enables both a clear under-
standing of the constraints on the system dynamics due to,
e.g., the hardcore interactions, but also allows us to exploit the
conservation of the total boson number for each component
to reduce the dimension of the Hilbert space and compute
exact dynamics for system sizes N � 16. For generality, we
consider the hopping term in Eq. (2) to be described by a
power law Jm

i j = Jm/rα
i j (note that the angular dependence of

the dipolar interaction is absorbed by the hopping amplitude
Jm in one dimension), where α ∈ [0,∞) controls the hopping
range.

In the following, we show that the relaxation dynamics
can be split into two characteristic regimes. First, when the
hopping rates of each component are equal, the dynamics
is strongly influenced by the power-law dependence of the
hopping. We give an explanation for this by dividing the
system into spin and charge degrees of freedom, which feature

distinct relaxation time scales that depend on the power-law
exponent of the hopping. Second, when the hopping rates are
strongly disparate we identify a regime of slow relaxation
due to competition between the transport of each component
through the array. We investigate each of these regimes sep-
arately and use specifically designed initial states to amplify
the relevant behavior.

A. Power-law hopping and spin-charge dynamics

While a natural basis for the two-component boson sys-
tem is given by the occupancies of each component at a
given site, one can equivalently describe the system us-
ing effective spin and charge (density) degrees of freedom.
Specifically, any state in the accessible Hilbert space can be
uniquely labeled by the spatial ordering of the two compo-
nents over the occupied sites (i.e., spin ordering), combined
with the locations of the occupied sites (i.e., charge). For
example, a state given in the original two-component occu-
pancy basis as |ψ〉 = |↑↓ 0〉, corresponding to an ↑ boson
in site 1, ↓ boson in site 2, and an empty site 3, could be
equivalently written as |ψ〉 ≡ |↑↓〉s ⊗ |12〉c, where the first
ket encodes the spin ordering and the second the charge
configuration.

In the case where hopping is restricted to nearest-neighbor
sites i and j in a 1D lattice, the spin-charge description
becomes particularly powerful: The spin ordering is a con-
served quantity, as the hardcore bosons cannot hop past each
other, and the dynamics is entirely described by the charge
dynamics driven by nearest-neighbor hopping. In the case
where the hopping rates are equal, J1 = J2, this conserva-
tion of spin ordering can be exploited to provide an exact
solution for the model [43–45]. However, power-law hop-
ping, such as that featured in Eq. (2) due to the underlying
dipolar interaction between Rydberg atoms, introduces next-
nearest-neighbor hopping and leads to a breakdown of the spin
ordering in the dynamics. Nevertheless, when the power-law
hopping is sufficiently short-range, the fundamentally differ-
ent dependence of the charge and spin degrees of freedom on
the nearest- and next-nearest-neighbor hopping rates leads to
a separation of the dynamics and associated time scales for
spin and charge. As a comment, we note that the fact that
the power-law dipolar interaction of the underlying multi-
level Rydberg atom system is crucial to the nonequilibrium
dynamics is in contrast to prior discussions of ground-state
physics that fruitfully approximated the interaction as nearest
neighbor [40].

To study the delineation into spin and charge dynamics,
we initiate a quench from an initial charge-density wave with
superimposed Neel ordering of the spin components, |ϕcdw〉 =
|↑↓ 0 ↑↓ 0 · · ·〉. Furthermore, to better understand the role
of interaction range in the spin-charge picture, we consider
power-law hopping with α ∈ [0, 6] and equal amplitudes J1 =
J2 = J . The strength of nearest- and next-nearest-neighbor
hopping is distinguished by a factor of 1/2α . To minimize
trivial effects from the edges of the 1D chain, we use periodic
boundary conditions [46]. All results in the following are
obtained by numerically integrating the Schrödinger equa-
tion with the Krylov subspace method [47].
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FIG. 2. Quench dynamics for initial charge-density-wave state
|ϕcdw〉 = |↑↓ 0 ↑↓ 0 · · ·〉 with periodic boundary conditions and
N = 15. (a) Illustration of the definition of the number of charge
domains Dcharge [Eq. (5), left] and spin domains Dspin [Eq. (4), right].
(b) and (c) Evolution of Dcharge and Dspin as a function of Jt . The
plotted results indicate different hopping exponents α [see legend in
(b)]. Horizontal dashed lines in both panels indicate the long-time
average value of Dcharge,f and Dspin,f at Jt > 104 (see main text). (d)
and (e) Characteristic time τcharge and τspin (see main text) extracted
from data shown in (c) and (d), respectively. The dashed line in
(d) indicates τcharge = 0.92, which is the value for α = 4, to guide
the eye. The dashed line in (e) is τspin = (1.99)α , which is obtained
via a power-law fit to the α � 4 data. Insets in (d) and (e) indicate
the nearest-neighbor and next-nearest-neighhbor hopping processes
that are expected to dominate the charge and spin time scales, respec-
tively, for large α.

The dynamics of the spin ordering can be captured by the
observable,

D̂spin = 1

2

∑

j∈squeezed

(
1 − Ŝz

j Ŝ
z
j+1

)
, (4)

where the summation j runs through the “squeezed space”
[48,49] of only sites that are occupied by a boson, and Ŝz

j | ↑
〉 j = | ↑〉 j (Ŝz

j | ↓〉 j = −| ↓〉 j). This quantity corresponds to
counting the number of spin domain walls (e.g., boundaries
between ↑ and ↓ spins) after removing the empty sites of the
1D chain [see Fig. 2(a), right]. When spin ordering is con-
served, the number of spin domain walls will remain constant.
To track the charge dynamics we similarly define

D̂charge = 1

2

∑

j

[1 − (2n̂ j − 1)(2n̂ j+1 − 1)] , (5)

where n̂ j = b̂†
↑ j b̂↑ j + b̂†

↓ j b̂↓ j . This quantity tracks the number
of charge domain walls, which are defined as the boundary
between an empty and occupied site, regardless of the spin
state of the latter [see Fig. 2(a), left].

In Figs. 2(b) and 2(c), we plot the evolution of Dcharge and
Dspin for α = 0.5 (solid lines), 1.5 (dashed lines), 3 (dashed
dotted lines), and 6 (dotted lines). For the initial state |ϕcdw〉,
we identically have Dspin = Dcharge = 2N /3 at t = 0. Just
after the quench, we generically observe a decrease of Dcharge

away from its initial value over time scales Jt ∼ 1. Notably,
the initial dynamics for α = 3 and α = 6 are virtually in-
distinguishable, which is consistent with the expectation that
the charge dynamics is dominated by nearest-neighbor hop-
ping. The decay of the charge domains is slightly accelerated
for α = 0.5 and 1.5, which we attribute to corrections from
long-range hopping processes. At intermediate times Jt � 1,
Dcharge shows distinct behavior depending on the hopping ex-
ponent α. For instance, when considering larger values (e.g.,
α = 6), we often observe significant oscillations of Dcharge

around its long-term average. This can be understood by
noting that the model is integrable in the extreme case of
α → ∞. For α = 0.5 we also observe a regime of compar-
atively slow relaxation over multiple decades in time. In all
cases, the duration of this intermediate regime appears to be
correlated with the relaxation of the spin degree of freedom
(see below), demonstrating that the detailed relaxation of the
charge degree of freedom cannot be completely disentangled
from the spin dynamics. At long times, Dcharge relaxes to a
nearly common value regardless of α that is consistent with
expectations based on a diagonal ensemble calculation (see
Appendix A). This value is also close to the one predicted
from an infinite temperature canonical ensemble, Dcharge →
(N↑ + N↓)2/(N − 1) � 7.14, to which expectation values of
local observables should thermalize at long times in the limit
of large system size.

On the other hand, the decay of Dspin in Fig. 2(c) shows an
initial delay that grows with α, which is consistent with the
importance of beyond-nearest-neighbor hopping for changes
to the spin ordering. To quantify this we investigate the re-
laxation time scales τspin and τcharge for the spin and charge
degrees of freedom, which are defined as the time over which
the number of domain walls has relaxed halfway to its long
time limit. For the spin degree of freedom this is given
by Dspin(τspin ) = [Dspin(0) + Dspin,f ]/2. Ideally, Dspin,f is ob-
tained by an exact computation of the diagonal ensemble,
but for our system size it is more efficient to estimate this
value using a long-time average Dspin,f = 1

T

∫ 2T
T Dspin(t )dt

with T = 104J−1. The relaxation of the number of charge
domain walls is analyzed identically.

We plot τcharge and τspin as a function of the interaction
exponent α in Figs. 2(d) and 2(e). For both time scales, we
observe a delineation into approximately short- and long-
range regimes, characterized by the magnitude of the hopping
exponent α. For α � 2 the dynamics is dominated by the
shortest-range hopping process relevant for the specific degree
of freedom, evidenced by the fact that the spin relaxation
time scale grows exponentially as Jτspin ≈ 2α while the charge
relaxation is characterized by a constant Jτcharge ≈ 0.92. The
former result demonstrates that the breakdown of spin order-
ing in the initial state |ϕcdw〉 is dominated by the α-dependent
next-nearest-neighbor hopping rate J/2α , while the charge
dynamics occurs at a fixed nearest-neighbor rate J . On the
other hand, for α � 2 the hopping becomes long-range and
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FIG. 3. Growth of entanglement starting from initial charge-
density-wave state |ϕcdw〉 = |↑↓ 0 ↑↓ 0 · · ·〉 with periodic boundary
conditions and N = 15. We plot (a) spatial entanglement entropy
SvN, (b) spin-charge entropy Ssc, (c) charge number entropy S(c)

num.,
and (d) spin number S(s)

num.. See main text for definitions and choice
of bipartitions. All panels show data for hopping exponents α = 0.5
(solid line), 3 (dashed line), 6 (dashed dotted line), as well as α = ∞
(corresponding to nearest-neighbor hopping, dotted line).

the delineation of the spin and charge dynamics vanishes with
τspin/τcharge ≈ 1 as α → 0.

Interestingly, the disparate relaxation of the spin and
charge is also observable in the growth of bipartite entan-
glement after the quench. We quantify this using the von
Neumann entanglement entropy,

S = −TrρA ln(ρA) , (6)

where ρA = TrĀρ [ρ = |ϕ(t )〉〈ϕ(t )|] is the reduced density
matrix obtained by carrying out a partial trace of the system
split into a bipartition of A and Ā that we construct in different
ways. One is a spatial bipartition, with associated entangle-
ment entropy SvN, where the Hubbard lattice is separated into
equal pieces such that A includes sites 1 to �N /2� and Ā con-
tains the remainder. Alternatively, we consider a bipartition in
terms of the spin and charge degrees of freedom [50], which
we denote by the spin-charge entanglement entropy Ssc. While
SvN captures the spread of entanglement across the lattice,
Ssc instead captures the buildup of entanglement between the
charge and spin degrees of freedom across the whole chain.

In Fig. 3(a), we plot SvN for α = 0.5 (solid line), 3 (dashed
line), and 6 (dashed dotted line), respectively, along with
nearest-neighbor hopping (α = ∞, dotted line) as a reference
case. We observe a separation of the entanglement dynamics
into two time scales for sufficiently short-range hopping. At
short times Jt � 1, the entanglement entropy grows nearly
identically for the cases with α � 3, reflecting that over these
time scales the growth of entropy is dominated by the de-
cay of the initial charge-density wave throughout the chain
(recall Fig. 2). The subsequent behavior of SvN depends on
the specific value of α and the effective dimension of the
Hilbert space that the system is able to access. For example,

for nearest-neighbor hopping the entanglement has effectively
saturated, albeit with large fluctuations at late times due to
the integrability of the model. For α = 6 we observe a similar
transient period where SvN weakly oscillates around a fixed
value identical to α = ∞, but a second period of growth
starts at Jt � 50 (∼26), after which the entanglement finally
saturates. This second stage is associated with the breakdown
of the Neel order of the spins: initially, the quasi-saturation
of the entanglement is due to the system being constrained
to a small sector of the Hilbert space defined by the fixed
spin order, but at late times the entanglement grows again as
the spin ordering is broken by next-nearest-neighbor hopping
and the system probes the full Hilbert space. Signatures of
the separation of spin and charge time scales can also still
be seen in the dipolar case, α = 3, although they are less
striking. On the other hand, for long-range hopping, α = 0.5,
the entanglement grows to near the maximum value without
any apparent distinction between spin or charge regimes, as
the system is able to access the full Hilbert space even at short
times.

Further support for this understanding of the spatial en-
tanglement growth is shown in Fig. 3(b), wherein we plot
the corresponding results for the spin-charge entanglement
Ssc [Eq. (6)]. For short-range hopping (α = 3, 6, and ∞) Ssc

remains zero for a transient period, before an increase that
commences in tandem with the second rise of SvN seen in
Fig. 3(a). This is consistent with the fact that at short times,
when the spin ordering is fixed, there can be no appreciable
growth of the spin-charge entanglement as the wave function
factorizes in the spin and charge basis. Conversely, this cannot
be true when the spin and charge dynamics are mixed together,
such as the case for long-range hopping α = 0.5.

In general, obtaining the entanglement entropy is a chal-
lenging task in any quantum simulation platform. For this
reason, we also study the behavior of the closely related num-
ber entropy associated with the charge and spin. We define the
charge number entropy as [51–53]

S(c)
num. = −

∑

n

p(A)
n ln p(A)

n , (7)

where p(A)
n is the probability of finding a total of n = n↑ + n↓

atoms in subregion A of the lattice. Similarly, the spin number
entropy is given by

S(s)
num. = −

∑

n↑

p(A)
n↑ ln p(A)

n↑ . (8)

Here, p(A)
n↑ is the probability of finding n↑ bosons in a

subregion A, where we define a bipartition of the sys-
tem in squeezed space into regions A and Ā. We al-
ways choose this bipartition so that A encompasses sites
1 to �(N↑ + N↓)/2� [54].

We show the results for S(c)
num. and S(s)

num. in Figs. 3(c) and
3(d). The charge-number entropy grows identically for short-
range hopping, α = 3, 6,∞, before saturating toward a nearly
common value. This is consistent with the interpretation of
the first rise of SvN being dominated by charge dynamics. The
nearest-neighbor data shows large oscillations at longer times
due to the integrability of the model in that case. The dynam-
ics of S(s)

num. requires a more careful discussion. The short time
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growth of S(s)
num. for Jt � 1 is an artifact of the ambiguity of

defining a bipartition in the squeezed space, as a result of
the periodic boundary conditions and the discrete translational
symmetry of our initial state. However, the growth at longer
times is a direct consequence of the breakdown in spin order-
ing, and sets in at approximately the same time as the period
of second growth in the full calculation of SvN.

B. Effects of imbalanced hopping

In Rydberg atoms, there are a plethora of states that can
be used to encode the boson occupancies, and thus an intrin-
sically large variation in the associated dipolar interactions.
Motivated by this, in this section we turn our attention to
quench dynamics featuring distinct hopping amplitudes J1 �=
J2. We find that the delineation of the dynamics into charge-
and spin-dominated regimes quickly vanishes upon breaking
the symmetry between the components, and in the extreme
limit J1 � J2 leads to a new regime featuring a dramatic
slowdown in relaxation. The latter effect arises due to a
combination of the imbalanced hopping rates, hardcore in-
teractions, and power-law hopping range, and overlaps with
recent studies of slow relaxation due to dynamical constraints
[29,33,35,36,38]. Without loss of generality, we will assume
in the following that J1/J2 � 1 and therefore refer to |↓〉 (|↑〉)
as the fast (slow) hopping component. In contrast to the prior
section, we primarily focus our discussion and analysis on
the experimentally relevant case of dipolar interactions with
α = 3.

We begin by investigating the dynamic of spin and charge
observables for moderately imbalanced hopping amplitudes
in the range 0.1 � J1/J2 < 1 (we fix the value of J2 and vary
J1 throughout). Figures 4(a) and 4(b) show the dynamics of
Dcharge and Dspin starting from the same charge-density-wave
state |ϕCDW〉. When the hopping amplitudes are compara-
ble (e.g., dashed lines with J1/J2 = 0.5), the delineation of
the spin and charge dynamics is preserved and qualitatively
matches the prior results shown in Fig. 2. However, as J1/J2

is decreased, the initial dynamics of Dspin are accelerated
and the characteristic delay relative to the charge relaxation
vanishes. This is understood by noting that when J1/J2 � 2−3,
the nearest-neighbor hopping rate of the slow component be-
comes comparable to the next-nearest-neighbor hopping rate
of the fast component, and thus there is no longer any funda-
mental distinction between the spin and charge time scales.
Separately, we note that for the smallest J1/J2 = 0.1, both
Dcharge and Dspin relax noticeably slower than for other J1/J2

values (note the rescaling of the time axis in both panels). We
discuss this regime in more detail below.

Figures 4(c) and 4(d) additionally show that imbalanced
hopping amplitudes naturally lead to a dependence of the
charge relaxation dynamics on the initial spin ordering. We
illustrate this by using a pair of initial states composed of sep-
arated charge domains at the boundaries of the lattice, but with
mirroring arrangements of the initial spin order (see panel
insets). Depending on whether the slow hopping components
initially occupy the exterior [Fig. 4(c)] or interior [Fig. 4(d)]
sites of the domains, the initial dynamics of Dcharge is set
by either 1/J2 or 1/J1, respectively. For the latter case, the
apparent slowdown in the initial growth of Dcharge is due to

FIG. 4. Quench dynamics with imbalanced hopping. All panels
use fixed J2 = 1 and vary J1 [see legend of (c)]. (a and b) Relaxation
of Dcharge and Dspin as a function of rescaled time J1t . Calculations
are for an initial charge-density-wave state |ϕCDW〉 (indicated above
panels) with periodic boundary conditions and N = 15. (c) and
(d) Relaxation of Dcharge as a function of time J2t for different initial
charge domain states (indicated above panels) with N = 16 sites and
open boundary conditions. In the inset of (d) we plot Dcharge as a
function of rescaled time J1t .

blocking of the transport of the fast hopping component due
to the hardcore intercomponent interaction. In addition, the
late-time relaxation of Dcharge can also show sharply distinct
time scales depending on the initial spin ordering [compare,
e.g., J1 = 0.2, dashed dotted lines in Figs. 4(c) and 4(d)].

The interplay of the two components in the long-time
relaxation dynamics is particularly magnified in the extreme
case J1/J2 � 1. Figure 5 shows quench dynamics for the
initial domain state |↑↑↓↓ 0 · · · 0 ↓↓↑↑〉 wherein the slow
hopping component initially occupies the edges of the lattice.
Figure 5(a) shows the entanglement entropy SvN of a spa-
tial bipartition of the lattice and features a striking two-step
evolution that depends on the ratio J1/J2. In the extreme
limit J1/J2 = 0 (magenta dotted line), the system reduces
to a single-component Bose-Hubbard model that exists on a
sublattice of N -N↑ sites. Entanglement entropy grows linearly
on a time scale ∝ 1/J2 and saturates at a nominal value set
by the smaller Hilbert space of the single-component system.
For small J1/J2 �= 0 the initial dynamics remains identical, as
the fast component in the interior of the chain quickly equili-
brates on the same time scale ∝ 1/J2 with the entanglement
entropy approaching the single-component value. However,
a second stage of dynamics commences at J2t � 10 that in-
volves the hopping of the slow component. This second stage
is characterized by slow growth of the entanglement entropy
over multiple decades in time before eventual saturation to
a larger value reflective of the increased dimension of the
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FIG. 5. Quench dynamics for strongly imbalanced hopping with
initial state |↑↑↓↓ 0 · · · 0 ↓↓↑↑〉 and N = 16. All panels use fixed
J2 = 1 and vary J1 [see legend of panel (c)]. (a) and (b) Evolution
of spatial and spin-charge entanglement entropy, SvN and Ssc, re-
spectively, as a function of time J2t . We also plot SvN as a function
of rescaled time J1t in the inset of panel (a). (c) The local charge
density n̄ = 1

(N /2)

∑3N /4
j=N /4 n̂ j averaged over the initially empty cen-

tral sites. Horizontal dashed lines indicate n̄ = N↓/(N − N↑) = 1/3
and n̄ = (N↓ + N↑)/N = 1/2, respectively. The system size is set as
N = 16 with open boundary conditions.

two-component Hilbert space. The time scales for the second
stage are not set simply by 1/J1 [see rescaled data in inset
of Fig. 5(a)], nor does the data collapse for a more general
rescaling of time by Jβ

1 t with β an arbitrary power. Simi-
lar two-step behavior is observed in the spin-charge entropy
[Fig. 5(b)] and more readily accessible observables such as
the local charge density [Fig. 5(c)]. The former remains near
zero until J2t ∼ 10, reflecting the initial preservation of the
spin order, before a period of slow growth similar to SvN. On
the other hand, the local charge density n̄ = 1

(N /2)

∑3N /4
j=N /4 n̂ j

averaged over the initially empty central sites quickly grows
to n̄ ≈ N↓/(N − N↑)—which is the expected homogeneous
density of a single component across the subset of available
sites—on time scales 1/J2 before slowly increasing toward
n̄ ≈ (N↓ + N↑)/N as the charge density becomes uniform
across the lattice.

The second stage of slow dynamics that we observe arises
not simply due to the disparity of the hopping rates, but as
a result of a dynamical constraint on the hopping dynamics
due to the hardcore interaction, combined with the power-
law dependence of the hopping that plays a crucial role in
relaxation at long times (which includes rearrangements of
the spin ordering). To understand this, we first point out that
if the hopping process is all-to-all (α = 0), the geometry of

the lattice is irrelevant to the dynamics and the hopping of
each component is effectively independent of the spin con-
figuration. This leads to relaxation that depends only on the
slow hopping rate J1, which we demonstrate in Appendix B
by showing that the entanglement dynamics collapses when
rescaled with J1t . On the other hand, with finite-range hop-
ping, changes to the spin ordering are fundamentally slower
than 1/J1 or 1/J2, consistent with the fact that our entangle-
ment dynamics at long times does not collapse upon rescaling
with either hopping rate (we show the entanglement dynamics
do not collapse with a rescaling of time for α = 0.5 and 6 in
Appendix B). Lastly, we emphasize that our observation of
two-stage dynamics and the slow relaxation of the system at
long times is not specific to our initial state. We have observed
a fast period of transient dynamics followed by slow growth of
entanglement across multiple decades for other generic initial
states when J1/J2 � 1, such as, e.g., the change-density-wave
(CDW) state used in Figs. 2 and 3.

We comment briefly on the relation of our observations
to prethermalization, which is characterized by a separation
of time scales involving quick equilibration to a long-lived
prethermal state followed by eventual relaxation to true ther-
mal equilibrium. Many prior studies of prethermal behavior
have focused on systems featuring an integrable limit, i.e.,
possessing an extensive set of conserved quantities, which are
perturbed by an integrability-breaking term [55–57]. At short
times the dynamics is constrained within the reduced Hilbert
space of the integrable part of the Hamiltonian, and local ob-
servables equilibrate to the predictions of a generalized Gibbs
ensemble determined by the associated conserved quantities.
Nevertheless, over extended time scales, the system thermal-
izes completely by leaking into the larger Hilbert space of
the complete model. This process occurs with a relaxation
time scale proportional to 1/g2, in accordance with Fermi’s
golden rule, where g represents the characteristic strength of
the nonintegrable perturbation. Although in the limit J1 = 0
our model is nonintegrable, our understanding of the two-
stage relaxation is clearly analogous to prethermalization. In
fact, recent work has demonstrated that nonintegrable systems
featuring a set of conserved quantities and subject to a weak
perturbation that removes at least one of these quantities can
still feature prethermal behavior [58–60]. For our system in
the limit J1 = 0, the initial configuration of the immobile
species forms a set of conserved quantities, which is broken
for slow hopping J1 �= 0. However, as previously mentioned,
for the relatively modest system sizes that we probe, neither
the entanglement entropy nor local observables such as the
central charge density n̄ exhibit relaxation with the character-
istic scaling J2

1 t .

IV. QUENCH DYNAMICS OF Ĥ ′
BH

The prior study of ĤBH in Sec. III has demonstrated that
strongly imbalanced hopping rates for the two components
can lead to dynamics featuring multiple stages with distinct
time scales. In this section, we show that the alternative map-
ping of the Rydberg Hamiltonian with hardcore bosons that
realizes Ĥ ′

BH [Eq. (3)] can provide a complementary example
of multistage dynamics, even when the hopping rates J1 and
J2 are almost equal.
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FIG. 6. Relaxation dynamics for weak spin-flip hopping Jf �
Jh = 1 and initial state |↑ 0 ↑ 0 · · ·〉 with periodic boundary con-
ditions and N = 14. Values of Jf are indicated in legend of (b).
(a) Relaxation of Dspin (main panel) and Dcharge (inset) as a function of
rescaled time Jht . (b) Spatial entanglement entropy SvN (main panel)
as a function of rescaled time Jht . Inset: Characteristic relaxation
time τ f calculated from SvN (see main text). The dashed line is ob-
tained by fitting τ f ∼ (Jf /Jh )−a to the data for Jf � 10−2 for which
a = 0.97.

Notably for Ĥ ′
BH, breaking the symmetry between the dipo-

lar interactions, J1 �= J2, now explicitly breaks the separate
conservation of N↑ and N↓, although the total boson number
remains fixed. This change is driven by the spin-flip hopping
process in Ĥ ′

BH that occurs with a rate J f
i j = Jf /r3

i j between
sites i and j, where Jf = (J1 − J2)/2. A related consequence
of J1 �= J2 is that the evolution of the spin ordering is no longer
solely driven by beyond-nearest-neighbor contributions to the
hopping of each component, as the spin-flip term in Ĥ ′

BH can
change the spin ordering even via a nearest-neighbor hop
onto an empty site. Throughout this section we will assume
J1, J2 � 0 and thus Jf /Jh ∈ [−1, 1] for simplicity.

Figure 6 presents numerical simulations of the dynamics
generated by Ĥ ′

BH in the limit of Jf � Jh (i.e., J1 ≈ J2). To
emphasize the role of spin-flip hopping, we use an initial
state | ↑ 0 ↑ 0 · · · 〉 with periodic boundary conditions. All
simulations in this section use α = 3. Figure 6(a) shows
the dynamics of spin and charge observables Dspin (main
panel) and Dcharge (inset), respectively. The relaxation of the
spin degree of freedom occurs on a characteristic time scale
t ∼ 1/Jf , and Dspin equilibrates at long times to a value con-
sistent with the diagonal ensemble. The initial relaxation of
the charge degree of freedom, which occurs on the much
faster time scale 1/Jh, is independent of the spin degree of
freedom for Jht < Jh/Jf , as evidenced by the indistinguisha-
bility of Jf �= 0 data with a calculation that explicitly uses

FIG. 7. Relaxation dynamics for Jf ≈ Jh = 1 and initial state
|↑ 0 ↑ 0 · · ·〉 with periodic boundary conditions and N = 14. Values
of Jf are indicated in legend of (b). (a) Relaxation of Dspin (main
panel) and Dcharge (inset) as a function of rescaled time Jht . (b) Spatial
entanglement entropy SvN (main panel) and spin-charge entangle-
ment entropy Ssc (inset) as a function of rescaled time Jht .

Jf = 0 (magenta dashed line). At long times Dcharge oscillates
around a value (consistent with a diagonal ensemble calcu-
lation) that weakly depends on Jf . Collectively, our results
indicate that the relaxation of each degree of freedom effec-
tively proceeds independently and is driven separately by the
spin-independent (∝ Jh) and spin-flip (∝ Jf ) hopping terms of
Ĥ ′

BH, respectively.
Figure 6(b) shows corresponding data for the spatial en-

tanglement entropy SvN. Consistent with the prior discussion
of Fig. 6(a), we observe that the initial dynamics for Jf �=
0 follows the expectations for the single-component model
(Jf = 0), with entanglement building up quickly on a time
scale ∼1/Jh. A second period of slower growth of en-
tanglement occurs for Jht � Jh/Jf and, consistent with the
relaxation of Dspin, the growth is dominated entirely by the
spin-flip hopping. This latter conclusion is supported by ex-
tracting a characteristic relaxation time τ f defined as that
at which Svn reaches [SvN,f − SvN,f (Jf = 0)]/2, i.e., halfway
between the long-time values SvN,f and SvN,f (Jf = 0) with
Jf �= 0 and Jf = 0, respectively. Here, we numerically esti-
mate the long-time value as the time average of SvN over the
interval 104 � Jht � 2 × 104. The inset of Fig. 6(b) shows
τ f as a function of Jf . We fit the results to a power law
τ f ∼ (Jf /Jh)−a and obtain a = 0.97, indicating an approx-
imately inversely proportional relationship, which confirms
that spin-flip hopping drives the growth of entanglement.

We also probe the limit where J1 � J2, corresponding
to Jf ∼ Jh, in Fig. 7. Figure 7(a) shows the evolution of
Dspin (main panel) and Dcharge (inset) for increasing ratios of
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Jf /Jh = 0.2, 0.5, 0.8, and 1. We observe that the delineation
of the characteristic spin and charge time scales is diminished
as Jf /Jh increases, consistent with expectations that the prop-
agation of the bosons through the lattice is almost equally
probable to be accompanied with or without a spin-flip. The
dynamics of the entanglement entropies SvN [Fig. 7(b) main
panel] and Ssc [Fig. 7(b) inset] also reflect this. The former
no longer shows distinct two-step evolution, while the latter
shows that spin-charge entanglement builds up increasingly
quickly commensurate with Jf /Jh. We highlight that the long
time behavior of Jf /Jh = 1 is quite different in all panels of
Fig. 7. In that case, large oscillations are observed in Dspin,
Dcharge, and Ssc about well-defined mean values that signifi-
cantly deviate from the other choices of Jf /Jh that we show.
This distinct behavior can be understood by instead viewing
the dynamics through the lens of the alternative Hamilto-
nian ĤBH. In that frame, one component becomes completely
immobile (J2 = 0) and the configuration of these immobile
bosons introduces a constraint on the hopping dynamics of
the mobile component and the accessible Hilbert space.

V. EXPERIMENTAL CONSIDERATIONS

The physics discussed in the prior sections is within reach
of state-of-the-art quantum simulators based on tweezer ar-
rays of Rydberg atoms. For example, the preparation of
arbitrary product states with site-resolved structure (such as
Neel spin ordering or density waves) can be achieved by
exploiting light shifts of the initially trapped ground state
or Rydberg levels [61], combined with independent coher-
ent driving of each Rydberg-Rydberg transition with tunable
microwave fields [25,40]. This coherent control of each
atom, combined with high-fidelity site-resolved imaging
[62–66], can enable the extraction of many-body correlations
and the construction of, e.g., number entropies. We note that
the extraction of charge observables only requires the mea-
surement of population in a single Rydberg level, which can
be achieved by standard detection techniques that transfer
population of the targeted Rydberg level back to the ground
state for recapture in the tweezers and subsequent imaging
[67]. For spin observables, one can in principle measure the
populations in all three Rydberg levels by selective transfer
and shelving of the population of each Rydberg state into
different ground-state magnetic sublevels [68].

Observing the relaxation dynamics over long time scales
requires the identification of Rydberg levels with sufficiently
strong dipolar exchange interactions compared to relevant
technical and fundamental limitations on the total simulation
time. One such constraint is residual thermal motion of the
atoms that limits recapture of the atoms by the tweezers
for subsequent imaging (the tweezers are turned off during
the quench dynamics to avoid perturbation of the Rydberg
states). For the micro-Kelvin temperatures routinely achieved
in state-of-the-art tweezer experiments, this leads to a first
limit of about t � 20 µs. A second constraint is the finite
lifetime of the chosen Rydberg states. While the effects of
this can in principle be included in numerical simulations
comparing to a specific experimental apparatus, this is beyond
the scope of the current work. Instead, we highlight that any
effects can be suppressed by a combination of state-resolved

single-shot detection (see above) and postselection. In partic-
ular, state-resolved detection of all three Rydberg states in a
single experimental shot enables discrimination of cases
where an atom decays out of the targeted Rydberg levels
during the quench dynamics. This approach is feasible as Ry-
dberg quantum simulators typically have relatively fast duty
cycles and the fraction of experimental shots where no loss
occurs can be sufficiently large for the moderate sized arrays
discussed in this work. The latter is approximately quantified
by the survival probability for N atoms, PN = e−N t/τ , where
t is the quench duration and τ is a characteristic lifetime of
the relevant Rydberg states. As an illustrative example, Ta-
ble I shows relevant parameters for candidate Rydberg levels
in cesium. The states and related parameters are chosen by
requiring that time scales of the relevant physics (motivated
by Figs. 4 and 6) can be reached with a survival probability
of at least PN � 0.1 with N = 10 − 20, as well as other
factors such as feasible tweezer separation, reasonable sim-
ulation time (i.e., sufficient recapture probability as discussed
above), and suppressed additional short-range van der Waals
interactions JvdW/r6

i j neglected in our model [1]. Moreover,
additional off-resonant dipolar interactions to other Rydberg
state magnetic sublevels can be feasibly suppressed with an
appropriately strong quantization field [64,68]. In general, a
far greater diversity of possible level configurations can be
explored, including by consideration of other atomic species,
with an eye to tuning the precise values of J1,2 (and associated
parameters) or optimizing for other regimes (i.e., shorter time
scales such as those probed in Fig. 2).

VI. SUMMARY AND OUTLOOK

Our work demonstrates the opportunities for quantum
simulation and studies of nonequilibrium dynamics with mul-
tilevel Rydberg atoms. In our example using three internal
states, we showed the tunability of the platform can enable
controllable studies of a two-component Bose-Hubbard model
with tunable, power-law hopping, and hardcore interactions,
which features rich relaxation dynamics that depend on the
interplay of these ingredients. Beyond prior work studying
dynamical constraints, localization, and thermalization in this
and similar models [28,29,33,35,36,38,70], we also highlight
potential connections to recent studies of glassy dynamics
in ensembles of Rydberg qubits featuring positional disorder
[17]. For instance, preparing an initial product state where
one component is immobile (i.e., J1/J2 = 0) and is randomly
scattered to populate a variable fraction of the chain while the
remaining sites are in a superposition of empty and occupied
by the mobile component, our model directly maps to typi-
cally studied configurations. An interesting direction would be
to perturb away from this scenario by allowing the previously
immobile component to slowly move (J1/J2 � 1). Note that
the predictions we discuss in this work can also be realized
in other systems featuring multilevel internal structure and
exchange interactions, such as polar molecules [40,71,72].

The versatility and breadth of the Rydberg platform also
suggests a number of interesting extensions for future work.
For example, while we have already demonstrated that the
choice of basis states in the three-level system can be used to
generate distinct spin-flip hopping, working at small tweezer
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TABLE I. Summary of candidate Rydberg states to achieve target values of J1/J2 [69]. For the case of J1/J2 = 0.082 the total survival
probability for the atom array is in the range of about 0.5 < PN < 0.7 for 10 � N � 20 at J2t = 100. Similarly, for J1/J2 = 0.877 we have
0.13 < PN < 0.36 at J2t = 100, and for J1/J2 = 1.004 we have 0.24 < PN < 0.49 at J2t = 30, both using the same range of array sizes.

Configuration State Lifetime (µs) Level C3/h (MHz µm3) Spacing (µm) Ji/2π (MHz)

|1〉 51 51F5/2,m j=1/2 379, (|1〉 ↔ |2〉) J1/2π = 0.74

J1/J2 = 0.082 |2〉 55 53D3/2,m j=3/2 4625, (|2〉 ↔ |3〉) 8 J2/2π = 9.03

|3〉 121 54P1/2,m j=1/2

|1〉 51 51F7/2,m j=3/2 1973, (|1〉 ↔ |2〉) J1/2π = 2.71

J1/J2 = 0.877 |2〉 55 53D5/2,m j=3/2 2246, (|2〉 ↔ |3〉) 9 J2/2π = 3.08

|3〉 118 54P3/2,m j=3/2

|1〉 84 62D5/2,m j=1/2 3244.8, (|1〉 ↔ |2〉) J1/2π = 0.7922

J1/J2 = 1.004 |2〉 169 63P3/2,m j=1/2 3232.3, (|2〉 ↔ |3〉) 16 J2/2π = 0.7891

|3〉 112 64S1/2,m j=1/2

spacings to purposely strengthen the van der Waals inter-
actions between Rydberg atoms can be used to engineer
additional 1/r6 density-density interactions in the Bose-
Hubbard model that can compete with the 1/r3 hopping.
Microwave driving of the different Rydberg transitions can
also enable studies of Floquet-engineered Hamiltonians in the
spirit of recent work with Rydberg qubits and polar molecules
[18–21,27]. Lastly, all of these tools can similarly be applied
to study nonequilibrium dynamics in higher-dimensional ar-
rays and ladders of more than three Rydberg states, although
for the latter a description in terms of hardcore bosons is no
longer readily applicable.
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APPENDIX A: LONG-TIME RELAXATION OF SPIN
AND CHARGE OBSERVABLES

As the model ĤBH [Eq. (2)] is nonintegrable, it is expected
that for a sufficiently large system the long-time values of
local observables should be consistent with the predictions of
an infinite temperature canonical ensemble (as our initial state
has zero mean energy). In particular, the canonical ensemble
predicts equilibrium values for number of charge and spin

domains, Dcharge = (N↑+N↓ )2

N−1 and Dspin = (N↑+N↓ )2

2(N↑+N↓−1) , respec-
tively. However, due to our limited system size (N = 15 in
Fig. 2), we expect deviations due to finite size effects. Instead,
our system should relax to the diagonal ensemble prediction
[73] (which is expected to coincide with the canonical en-
semble as N → ∞ if the system thermalizes, see below).
Exact calculation of the diagonal ensemble is computationally
expensive for N � 15. Thus, to confirm that at long times
our results match the predictions of the diagonal ensemble, in
Fig. 8 we plot the quench dynamics for Dspin and Dcharge from
the same initial state |ϕcdw〉 = |↑↓ 0 ↑↓ 0 · · ·〉 as in the main
text, but for the smaller system size N = 12. Examination of
the data in Fig. 8 shows agreement between the predictions

of the diagonal ensemble (horizontal dashed lines) and the
saturated values of Dcharge and Dspin at sufficiently long times
(set by the hopping range).

To systematically assess the role of finite size effects in the
long-time equilibration of our system, we also compare the
predictions of the diagonal ensemble and the infinite temper-
ature canonical ensemble as a function of N . We study the
same quench dynamics from the density wave initial state and
show results for system sizes N = 9, 12, and 15 in Fig. 9. To
appropriately compare the ensembles, we define the rescaled
quantity,

D̃spin,f = Dspin,f − Dspin(∞)

Dspin(0) − Dspin(∞)
, (A1)

where Dspin(0) is the initial (t = 0) value of Dspin and
Dspin(∞) is the prediction of the infinite temperature canon-
ical ensemble. We obtain the relaxed value Dspin,f via

the long-time average Dspin,f = 1
T

∫ 2T
T Dspin(t )dt with T =

104J−1, consistent with our analysis in Fig. 2 of the main text.
We similarly define the rescaled charge observable D̃charge,f .
The definition of D̃spin,f (D̃charge,f ) is chosen such that it ap-

FIG. 8. Long-time quench dynamics for ĤBH [Eq. (2)] with
J1 = J2 = J and starting from the charge-density-wave initial state
|ϕcdw〉 = |↑↓ 0 ↑↓ 0 · · ·〉 with periodic boundary conditions and
N = 12. (a) and (b) Evolution of Dspin and Dcharge for a range of
hopping exponents α [see legend in (b)]. Horizontal dashed lines
[colors according to the legend in (b)] indicate the predictions for
the associated diagonal ensemble.
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FIG. 9. (a) D̃spin,f [see Eq. (A1)] and (b) D̃charge,f as a function of
hopping exponent α. Initial state is |ϕcdw〉 as per Fig. 8 but we show
data for system sizes N=9, 12, and 15 [see legend in (b)].

proaches unity if the number of spin (charge) domains is
conserved (as is the case for α → ∞) and vanishes if the
diagonal and canonical ensemble predictions coincide (i.e., as
expected for N → ∞). For both spin and charge dynamics,
Dspin,f and Dcharge,f become closer to the canonical ensemble
prediction as N increases. We note that as the hopping range
is decreased, we find larger discrepancies between Dspin,f and
Dspin(∞) at a given N , consistent with the fact that we expect
a discontinuity between nearest-neighbor hopping and finite α

in the limit of large system size. On the other hand, the predic-
tions for the number of charge domains does not significantly
depend on α.

We conclude this Appendix with a brief discussion of the
spin and charge time scales, τspin and τcharge, that are plotted in
Fig. 2 of the main text. Further insight into their behavior with
hopping range is obtained by plotting the ratio of τspin/τcharge

in Fig. 10. Deep inside the short-range regime where
α � 2, the ratio follows an exponential form, τspin/τcharge ∼
2α (dashed line). Gradual deviation from this exponential form
is observed as the boundary between short- and long-range
regimes (α ∼ 2) is approached. For very long-range hopping
α � 1 we find τspin/τcharge ∼ 1 as the spin and charge scales
are no longer well separated by nearest- and next-nearest-
neighbor hopping rates.

FIG. 10. Ratio of relaxation time scales τspin/τcharge as a function
of hopping exponent α. The time scales are obtained from the data of
Figs. 2(d) and 2(e) in the main text. Dashed line plots τspin/τcharge ∼
2α to guide the eye.

FIG. 11. Growth of entanglement SvN in the regime of strongly
imbalanced hopping for exponents (a) α = 0, (b) α = 0.5, (c) α = 6,
and (d) α = ∞ (nearest-neighbor hopping). Values of J1 are indi-
cated in legend of (a) and J2 = 1 is fixed for all data. Note that we
plot all data as a function of rescaled time J1t .

APPENDIX B: INFLUENCE OF HOPPING RANGE
ON OBSERVATION OF SLOW RELAXATION

In Sec. III B of the main text, we observe that when the
hopping amplitudes of the two components are very different,
i.e., J1 << J2, the relaxation can be decomposed into a period
of rapid transient dynamics on time scales 1/J2 and a sec-
ond, slower stage involving the transport of both components.
The slow dynamics is driven by an interplay of the disparate
hopping rates, hardcore interactions, and power-law tail of
the interactions. To demonstrate the latter, here we study the
relaxation dynamics for a range of different hopping expo-
nents α. The different panels of Fig. 11 show results for the
entanglement entropy SvN as a function of rescaled time J1t ,
analogous to the inset of main text Fig. 5(a), for α = 0, 0.5, 6,
and ∞. In the case of all-to-all hopping (α = 0) the geometry
of the 1D chain and the initial spin configuration become ef-
fectively irrelevant, evidenced by the fact that the dynamics at
long times (>1/J2) collapses for different hopping rates when
time is rescaled as J1t . On the other hand, for any value of
α �= 0, we observe that the dynamics does not collapse upon
rescaling with J1. Moreover, the slowdown of the relaxation
becomes increasingly pronounced as α is increased.

APPENDIX C: ROLE OF SIGN OF HOPPING IN Ĥ ′
BH

In the main text Sec. IV, we studied the role of the hop-
ping imbalance in the dynamics of Ĥ ′

BH but fixed the sign
J1, J2 > 0 such that Jf/Jh = (J1 − J2)/(J1 + J2) ∈ (−1, 1).
However, the dipolar interactions J1 and J2 do not have a fixed
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relative sign, and thus a broader range of Jh and Jf can
in principle be accessed. For example, when J1 > 0 and
J2 < 0, the denominator |J1 + J2| is smaller than |J1 − J2|,
such that |Jf/Jh| ∈ (1,∞). By controlling the relative sign

of the dipolar interactions, we can thus experimentally access
any value of Jf/Jh, including Jh = 0 (J1 = −J2). However, we
choose to not explore values outside the range Jf/Jh ∈ (−1, 1)
in this work.
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