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Feasibility of a trapped atom interferometer with accelerating optical traps
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To increase the measured phase of an atom interferometer and improve its sensitivity, researchers attempt to
increase the enclosed space-time area using two methods: creating larger separations between the interferometer
arms and having longer evolution times. However, increasing the evolution time reduces the bandwidth that can
be sampled, whereas decreasing the evolution time worsens the sensitivity. In this paper, we attempt to address
this by proposing a setup for high-bandwidth applications, with improved overall sensitivity. This is realized by
accelerating and holding the atoms using optical dipole traps. We find that accelerations of up to 103–105 m/s2

can be achieved using acousto-optic deflectors to move the traps. By comparing the sensitivity of our approach to
acceleration as a baseline to traditional atom interferometry, we find a substantial improvement to the state of the
art. In the limit of appropriate beam and optics stabilization, sensitivities approaching 10−14 (m/s2)/

√
Hz may

be achievable at 1 Hz, while detection at 1 kHz with a sensitivity an order of magnitude better than traditional
free-fall atom interferometers is possible with today’s systems.

DOI: 10.1103/PhysRevA.109.053316

I. INTRODUCTION

Atom interferometers can be used for diverse applica-
tions, ranging from the exploration of fundamental aspects of
physics, such as verifying theoretical predictions, to employ-
ment as a measurement device, for instance, an accelerometer
or in rotation sensing [1–4]. More concretely, they can be used
to extract the values of field parameters, such as the accelera-
tion of free fall g [5], detect dark matter [6] and gravitational
waves [7], and test theories of gravity [8]. Signals can be ob-
tained from volcanoes and earthquakes [9,10], and variations
in the Earth’s gravitational field, resulting from melting ice,
can be measured in order to understand climate change [11].
The structures of planetary bodies can be investigated and
spacecraft navigation improved [12–15].

Since the measured phase of an atom interferometer is
proportional—and the sensitivity of the interferometer in-
versely proportional—to the total space-time area enclosed
by the interferometry arms, longer free evolution periods and
further distance between the arms is beneficial. However, for
high-bandwidth applications, such as in inertial platforms,
the total time evolution has to be limited due to the need to
observe rapid changes. Thus, there is a necessity to rapidly
accelerate atoms in order to create a large distance in a short
fixed time. Techniques making use of laser pulses to achieve
such accelerations have been developed by the community
[16–18].

Rather than using pulses, in this paper we propose achiev-
ing such high accelerations by employing highly accelerating
optical traps in the middle of the interferometer sequence.
This is an extension to existing proposals and/or experiments
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where interferometry includes translating atoms in a trapping
potential [2,19–22]. As a particular subset of optical traps,
tweezer traps, first proposed by Ashkin [23,24], have been
used in various experiments and their capabilities are well un-
derstood. For instance, Kaufman et al. employed manipulable
tweezers, a characteristic that would be practically important
to us, in their investigation of the interference between atoms
placed in two optical tweezers [25]. Using tweezers to extract
and transport various states of one or more atoms have been
explored, both theoretically, such as by Diener et al., who
provide a proposal for a single atom [26], and experimentally
[27–29]. Experiments have been conducted with an assort-
ment of multitweezer setups [29–33], and cooling atoms in
tweezers [31,34] and loading atoms into tweezers have been
given detailed attention [35].

We find that advances in optical trapping, largely driven by
the creation of programmable neutral atom arrays [36], trans-
late to rapid atomic acceleration capabilities. In particular, we
propose an interferometer sequence where, mid-sequence, the
atoms are trapped in two optical dipole traps, one located at
each of the two interferometer arms. The traps are then given
a constant acceleration and translated a particular distance
before being accelerated back to their original locations. We
suggest the traps be accelerated using acousto-optic deflec-
tors (AODs), for which we find that accelerations of up to
103–105 m/s2 can be achieved. However, the combination of
an AOD with lenses dictates that only a relatively small field
of view (FOV) can be covered because diffraction-limited per-
formance is achievable only within a lens’s FOV. In this case,
we find that at 1 Hz, for a trap waist of 38 µm (106 atoms),
a sensitivity of nearly 10−10 (m/s2)/

√
Hz can be achieved,

approximately an order of magnitude better than a purely
free-fall interferometer using the same number of atoms. For
unrestricted maximum distance, the sensitivity at 1 Hz can be
improved up to 10−14 (m/s2)/

√
Hz for a waist of 38 µm.
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In terms of noise, we expect that due to uncorrelated traps
to be the most significant. Recently, researchers have been
achieving increased interrogation times for atom interferome-
ters by holding the atoms in a trap, such as an optical lattice,
as an alternative to increasing their free fall time [5]. Our
approach, in which each trap is controlled separately in con-
trast with using a single optical lattice, is unlikely to achieve
those long hold times when the trapping beams are not highly
correlated due to intensity noise-induced dephasing of the
atomic interferometer signal. In particular, the variance in the
measured phase due to noise from uncorrelated traps is of
the order 10–100 s−1, potentially limiting trapping times to
as short as 0.01 s. Nevertheless, if the traps are made to be
highly correlated, much longer coherence times are possible,
enabling compact devices with long hold times.

We can now try to understand where our proposal stands
when applied to certain investigations of fundamental physics.
We first look at weak equivalence principle tests, such as that
by Geiger et al. [37] and the Q-WEP team [38] which both
involve two atom interferometers, each employing a different
rubidium isotope. Specifically, Geiger et al. [37] entangle
the two interferometers together. For the case where each
interferometer’s arms reaches largest separation after 50 ms,
the achieved vertical separation (comparing the same inter-
ferometric path of the different interferometers) between the
different isotopes is 5 µm. Our accelerating traps may be
used to increase the distance between the different isotopes
in a much shorter period of time, since even with an AOD
configuration, a tweezer can be moved up to 200 µm. If the
atoms were additionally held stationary in the midst of the se-
quence, it may be possible for our proposed accelerating trap
interferometer to achieve better sensitivities than the stated
5 × 10−7 m/s2 in the reference. However, looking at another
application, such as in the search for gravitational redshift
violations as in the paper by Di Pumpo et al. [19], it is unlikely
our proposal reaches the stated sensitivities of the described
free-fall and guided interferometers. This is because for find-
ing gravitational redshift violations, there is no requirement
for a relatively large space-time area to be achieved in a very
short period of time, as is the focus of the scheme in this paper;
hence, the space-time areas stated in the reference are orders
of magnitude larger than those achievable by our proposal
because the free-fall and guided interferometers are allowed
to have prolonged interferometer times.

In this paper, we characterize the feasibility of this
accelerating-trap-interferometer setup. The layout is as fol-
lows. Section II details the experimental procedure and
mathematical description of the interferometer sequence for
stationary traps. This is adapted to moving traps in Sec. III,
where we also explore the limits of trap acceleration in terms
of atom loss, capabilities of existing technology, and the
achievable sensitivities. In Sec. IV, we investigate the effects
of various sources of noise, such as that due to laser intensity
and trap center fluctuations.

II. EXPERIMENTAL SETUP FOR STATIONARY TRAPS

In this section, we present a compact understanding of
a typical interferometer sequence, using a mathematical de-
scription that leverages the language of quantum circuits

TABLE I. List of notation.

Symbol Description

t0 Atom free fall duration
tru Trap potential ramp up duration
trd Trap potential ramp down duration
tt “Steady” trap potential duration
tm Duration of traps moving
τ Total duration trap is on, e.g., τ = tru + tm + trd

b, t Subscript indicating either bottom or top trap
w0,b, w0,t Trap waist
ωb, ωt Frequency of potential
ω0,b, ω0,t Unperturbed frequency of potential
kb, kt Trap spring constant
k0,b, k0,t Unperturbed trap spring constant
δkb, δkt Noise perturbation of spring constant
νb, νt Frequency of trap light
κ Inverse coherence time of light in cavity

rather than path integrals. Due to the generality of definitions,
the formulas in this section apply to both stationary and mov-
ing traps. Nevertheless, for conceptual simplicity, we illustrate
here the case of a stationary trap and elaborate on the com-
plexities of moving traps in later sections. For convenience, a
list of notation used throughout this paper is given in Table I.

The basic experimental sequence is shown in Fig. 1(a) and
follows that proposed by Xu et al. [5]. The key differences
between the two setups are that we include optical dipole
traps instead of an optical lattice in the midst of the sequence,
and we employ two pairs of π/2 and π pulses instead of
pairs of two π/2 pulses as done by Xu et al. As such, our
interferometer sequence is as follows: A launched cloud of
atoms is split into a superposition of two paths (arms) by a
π/2 laser pulse, which provides an h̄q momentum kick, along
with a transition to a higher internal state, to the atoms in one
path. After time t0, a π pulse acting on only the top arm places
these atoms in a zero momentum and lower internal state, such
that the atoms in both arms now have zero momentum and the
same internal state (for details about how the pulses act, see
Appendix A). This path-dependent π pulse can be achieved
using two methods. The first is by adopting a technique ex-
perimentally implemented by Xu et al. [5], which is to act
with a global π/2 pulse and discard the atoms of the unneeded
state in both arms. The second is to switch on the trap of the
bottom arm before that of the top and use the trap laser to AC
Stark shift the bottom atoms such that they are unaffected by
a global π pulse. After this effective π pulse the two arms
are separated by length L = h̄qt0/m. Next, two optical dipole
traps, their centers also separated by L, are turned on, trapping
the atoms in the corresponding arms. The atoms remain in
the traps for time τ , after which the traps are turned off. The
atoms will once again free fall for time t0, during which the
atomic paths are recombined by a path-dependent π pulse and
a final π/2 pulse. The coherence, a quantity that measures
the difference in phase, is finally estimated by counting the
number of atoms at each of the two output ports at the end.

For a two-level atom with states |g〉 and |e〉 (these can be
Raman-separated hyperfine states, or other combinations), the
probability of measuring state |g〉 of the atoms at the end of the
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FIG. 1. The interferometer sequence including stationary and accelerating traps [5]. U F and U T are the free fall and atom trap unitaries. A
cloud of atoms is launched at t < 0. The π/2 pulse results in two arms, with the top arm having a higher momentum and a different internal
state. At t = t0, the bottom arm reaches zero momentum. The π pulse acts on the top arm to place it in zero momentum and the same internal
state as the bottom arm. The atoms spend a total time τ in the traps, after which they free fall for time t0 and are recombined by another set of
π and π/2 pulses. Note that the direction of gravity is along the direction of positive x. Hence, the gravitational potential with reference to this
diagram will be given by −mgx. The diagrams are not to scale. (a) The traps are held stationary for time τ . (b) The traps are given a constant
acceleration for some time in the middle of the sequence.

interferometer sequence is given by Pg = 1
2 + 1

2 Re[C] [39],
where

C = 〈ψt=0|Û †
botÛtop|ψt=0〉 (1)

is the coherence, Re symbolizes the real part, and |ψt=0〉
is the initial spatial component. Here, Ûbot and Ûtop contain
information about the operations experienced by the atoms in
the two corresponding paths and the order in which they occur
(see Appendix A and Refs. [39–41] for a longer discussion of
this formalism). Namely,

Ûtop = Û F
(t0+τ,2t0+τ )Û

T
(t0,t0+τ )e

iqx̂Û F
(0,t0 )e

−iqx̂, (2)

Ûbot = eiqx̂Û F
(t0+τ,2t0+τ )e

−iqx̂Û T
(t0,t0+τ )Û

F
(0,t0 ), (3)

where Û F is the spatial free fall unitary and Û T is the spatial
unitary of the optical dipole trap. Û T includes the process of
turning the trap on and off, also termed the “ramping up” and
“ramping down,” respectively, of the trap, in addition to the
holding of the atom in the trap.

In our case, the coherence can be evaluated to show that

C = exp

[
− i

h̄
mgLt0

]
〈ψ̃ |Û T †

(t0,t0+τ )e
− i

h̄ p̂LÛ T
(t0,t0+τ )e

i
h̄ p̂L|ψ̃〉

= exp

[
− i

h̄
mgLt0

]
〈ψ̃ |Û T †

(t0,t0+τ )Û
T
(t0,t0+τ )|	x̂=−L|ψ̃〉, (4)

where |ψ̃〉 = Û F |ψt=0〉. h̄q is the momentum kick for both
the first two pulses. Note that one of the operators Û T in
Eq. (4) has been shifted by L with respect to the other, re-
flecting the expected location of the atoms in the other path.
We note that a typical (nontrapped) atom interferometer has
Û T = I and the interferometer phase is just the prefactor in
Eq. (4).

Experimentally, the coherence C is measured by obtaining
the population of atoms of a particular state at the end of
the interferometer sequence [5]. From Eq. (4), it can be seen

that C can be observed as long as gL �= 0; if there were no
path difference, then C = 1. It must be noted that L is not
a fundamental experimental quantity; that is, it depends on
experimentally controllable quantities q and t0. If L is to be
varied, we can either manipulate the pulse for a different value
of q, or vary t0 by changing the launch velocity of the atom
cloud [5]. It is also important to recognize that q is related to
the wavelength of the laser light, which in turn is determined
by the choice of atom [42].

To fully evaluate Eq. (4) in the presence of trapping, the
form of the atom trap unitary Û T has to be established. A
diagram of the type of potential that we focus on is given in
Fig. 2, but our formalism works for any trapping potential in
principle. For each trap, a laser beam propagates perpendicu-
lar to the direction of gravity and the atom trap is formed at the
beam waist. Thus the potential is tighter along the direction of
gravity. The direction of the focal plane of the trap (i.e., the
direction of the beam waist cross section) is perpendicular to
the direction of gravity. Henceforth, we refer to the direction
along that of gravity as co-gravity and that along the axis of
laser propagation as axial.

FIG. 2. The trap potential, with w0 as the beam waist [25]. The
diagram is not to scale. Note that the direction of the focal plane
of the trap (i.e., the direction of the beam waist cross-section) is
perpendicular to the direction of gravity.
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The most general form of Û T is

Û T = T̂ exp

[−i

h̄

∫ t0+τ

t0

dt (Ĥ0 + V̂ (t ))

]
. (5)

Here, V̂ (t ) is the complete potential, i.e., it includes the po-
tential due to both traps, and T̂ is the time-ordering operator.
The shift in L means that if we expand the potential in each of
Û T † and Û T |	x̂=−L about x = 0, the net effect is that of two
Taylor expansions about the bottom and top well (initially at
x = −L, but now shifted to x = 0), respectively. For a trap
that is formed by laser(s) with a Gaussian intensity profile,
approximating the single-well potential in the plane of the
beam cross section is a well-established approach [43,44].
Explicitly, we can take the potentials to be [43]

V (x) = −Vt,d exp

[
−2(x + L)2

w2
0,t

]

− Vb,d exp

[
−2x2

w2
0,b

]
− mgx, (6)

and

V (x − L) = −Vt,d exp

[
−2x2

w2
0,t

]

− Vb,d exp

[
−2(x − L)2

w2
0,b

]
− mg(x − L), (7)

where Vb,d and Vt,d are the trap depths of the bottom and top
traps, respectively, and w0,b and w0,t are the waists. In the
limit L � w0,b and L � w0,t , the potentials Taylor expanded
about x = 0 would be

V (x) = 1
2 kbx2 − mgx − Vb,d , (8)

V (x − L) = 1
2 kt x

2 − mgx + mgL − Vt,d , (9)

with kb and kt as the corresponding spring constants. We
can see how a phase arises due to the terms mgL, Vb,d , and
Vt,d . This will be explored in detail in the next section. To
reiterate, the gravitational potential is given by −mgx due to
our choice of axis direction (see Fig. 1). Furthermore, due
to the approximations made in this section, the succeeding
sections are for the case where the condition L � w0,b and
L � w0,t are experimentally met.

It must be emphasized that in Eq. (4), Û T is unspecified,
and, as such, the expression is also applicable to moving
traps, since any information about movement will be included
in Û T .

III. CONCEPT FOR ACCELERATING TRAPS

We now show how moving traps allows us to cover a
larger space-time area, enabling measurements that can ob-
serve more spatial and temporal information and/or achieve
better imprecision or sensitivity. Specifically accelerations,
gradients of acceleration, and rotations will add to the interfer-
ometer phase, depending on the trap motion. While we focus
on the setup with two traps, this approach is extensible to an
array of traps, with varieties of conceivable paths. Here, we

restrict ourselves to the simplest iteration of such a setup as
shown in Fig. 1(b), which is a modified version of Fig. 1(a):
the traps undergo a constant artificial co-gravity acceleration,
are subsequently held for some time at their new positions,
and afterwards returned to their initial positions. In this sec-
tion, we investigate in detail the basic strengths and limitations
of the concept, including the signals that can be obtained,
limits of trap acceleration, possible experimental setups, and
comparison to existing technology.

A. The coherence of moving traps

It is instructive to understand the signal one can expect
from an interferometer sequence with the inclusion of mov-
ing traps. Here, we work with time evolution operators to
determine the final state of an atom in the trap after trap
movement. The result is expressed as the product of a phase,
a displacement operator, and the initial state of the atom in the
trap. There is a difference in phase between the two arms, both
due to trap separation and because the path taken by the two
traps may not be identical. When the trap trajectories enable a
good overlap at the interferometer output, it is this difference
which constitutes a signal that can be measured.

Starting after launch, the process of an atom entering and
remaining in the trap is as follows. As the wave packet free
falls for time t0, it spatially disperses due to the distribution of
momentum states. After it reaches the trap, the trap potential
is ramped up—its spring constant is increased such that the
potential becomes spatially narrower. The atom is then held in
a moving trap for some time, after which it is released once
more. These processes can be mathematically expressed by
decomposing the unitary in Eq. (5) as

Û T = Û T
rdÛ T

moveÛ
T
ru , (10)

where Û T has been separated into “ramp up” (ru), moving trap
(move), and “ramp down” (rd) components. For now, we con-
sider the approximate scenario where ramp up results in the
atom reaching the state |0〉 of a conventional simple harmonic
oscillator, such that Û T

ru |ψ̃〉 = |0〉 for both arms. We later
adapt the calculations for a thermal state. If |ψb, f 〉 = Û T

move |0〉
denotes the spatial state of the atom in the bottom arm after the
movement of the trap, in a harmonic-oscillator approximation
of the trap potential, |ψb, f 〉 after time tm is explicitly given by

|ψb, f 〉 = T̂ exp

(
− i

h̄

∫ tm

0
dt

{
p̂2

2m
+ 1

2
mω2

0[x̂ − sb(t )]2

− mgx̂ − Vb,d

})
|0〉 , (11)

where sb(t ) is the displacement of the trap in the x direction
and ω0 is the constant trap frequency. This is simply the time
evolution operator applied to the initial state for the case of
a Hamiltonian composed of the potential due to gravity and
that of a harmonic oscillator with a moving trap center. The
calculations are done in the laser frame, in which the proper
time is the coordinate time. This can be solved exactly in
this approximation as detailed in Appendix B. We obtain the
final state expressed in terms of the displacement operator,
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D(β ) = exp[βâ† − β∗â] [45], to be

|ψb, f 〉 = �sc,b exp

[
i

(
φb,1 + φb,2 − ω0tm

2
+ Vb,dtm

h̄

)]

× D(αbot) |0〉 , (12)

where

αbot =
√

mω0

2h̄
s̃b(tm) −

√
mω0

2h̄

∫ tm

0
dt ˙̃sb(t )eiω0(t−tm ), (13)

φb,1 = mω0

2h̄
s̃b(tm)

∫ tm

0
dt ˙̃sb(t ) sin [ω0(t − tm)], (14)

and

φb,2 = mω0

2h̄

∫ tm

0

∫ t2

0
dt1dt2 ˙̃sb(t1)˙̃sb(t2) sin [ω0(t1 − t2)].

(15)

Here s̃b(t ) = sb(t ) + g/ω2
0 (see Appendix B for the purpose

and physical meaning of this shift). The movement of the
atom is captured by the displacement term D(αbot), which
is comprised of the final displacement of the trap sb(tm) and
an integral that includes the velocity of trap movement ṡb(t )
multiplied by an oscillating term. Additionally, we see the
appearance of the nontrivial phase terms φb,1 and φb,2, due
to the phase-space area that the coherent state covers over the
trapping time. While there is an adiabatic limit where �sc,b

dominates the signal, we focus on large accelerations in the
succeeding sections.

D(αbot) is the term most important for the semiclassical
atom dynamics in a moving trap. We can look at a simple
example where ṡb(t ) = (s0/2)ωm sin(ωmt ), where s0 is the
maximum displacement of the trap and ωm characterizes how
fast ṡb(t ) changes over time. In this case, the integral Iαbot =∫ tm

0 dt ˙̃sb(t )eiω0(t−tm ) in Eq. (13) evaluates to

Iαbot = s0ω
2
m(1 − e− 2iπω0

ωm )

2
(
ω2

0 − ω2
m

) (16)

when tm = 2π/ωm. In the limit where ω0 � ωm, that is, in the
limit where ω0t � 1 and ṡb(t ) is slowly varying, the integrand
evaluates to zero. The remaining term within the displacement
operator signifies that the atom has been displaced with the
trap. Experimentally, it is recommended to be in the limit
ω0 � ωm. Physically, this limit means that the time period for
which we move the trap must be much greater than the time
period of atom oscillations in the trap.

We now evaluate |ψt, f 〉 = Û T
move|	x̂=−L |0〉 in order to un-

derstand the resulting phase due to interference of the two
arms. The calculation is essentially identical to the previous
one, with the exception of an additional phase term, because,
as we saw in Eq. (9), after Taylor expansion, a shifted potential
is of the same form as an unshifted one, up to a constant. In
this section, for simplicity, we consider the top and bottom
traps to be identical; then, the trap frequency ω0 is the same
for both traps. We thus have

|ψt, f 〉 = exp

[
i

(
φt,1 + φt,2 − ω0tm

2
+ (−mgL + Vt,d )tm

h̄

)]

× �sc,t D(αtop) |0〉 , (17)

where D(αtop), �sc,t , φt,1, and φt,2 have the exact same form
as D(αbot), φb,1, and φb,2, except with the subscript b now
being replaced by t . Note that we also take s̃t (0) = 0 and
st (0) = −g/ω2

0. The additional phase term −mgLtm/h̄ arises
from the initial trap separation. Since we consider identical
traps, Vt,d = Vb,d .

With |ψb, f 〉 and |ψt, f 〉 in hand, under the assumption that
the ramp up and down of the traps is identical for both traps
(i.e., that the time-dependent spring constant is identical), the
coherence can be expressed as

C = eiφTOT | 〈αbot| αtop〉|, (18)

with

ln[| 〈αbot| αtop〉|] = −|αtop − αbot|2/2, (19)

and

φTOT = φt,1 − φb,1 + φt,2 − φb,2 − mgL(τ + t0)

h̄

+ 1

h̄

∫ tm

0
dtmg[st (t ) − sb(t )] + Im[α∗

botαtop], (20)

where τ = tru + tm + trd, the phases from ramp up and down
arising in an analogous manner to −mgLtm/h̄. If the top
and bottom traps were nonidentical, we would have addi-
tional phase terms; in particular, we would have the phase
(Vt,d − Vb,d )tm/h̄, which shows that relative intensity (trap
depth) fluctuations will lead to a reduction of coherence. We
address nonidentical traps in Sec. IV C.

Now it can be seen clearly that the total phase measured
at the end is composed of (a) the difference between phases
of the two arms, such as φt,1 − φb,1; (b) a phase due to the
initial trap separation as in −mgL(τ + t0)/h̄; (c) the difference
between the paths taken by the traps as in the integrand st (t ) −
sb(t ); and (d) the phase from the overlap of the coherent states.
The term with st (t ) − sb(t ) constitutes the space-time area
enclosed by the two arms when the trap is moving.

In the limit of ω0t � 1, we expect the φ terms to average
to zero, such that we have

φTOT = −mgL(τ + t0)

h̄
+ 1

h̄

∫ tm

0
dtmg[st (t ) − sb(t )]. (21)

Furthermore, we obtain explicit expressions for the exponents
of the second exponential,

ln[| 〈αbot| αtop〉|] = −mω0

4h̄
[sb(tm) − st (tm)]2. (22)

As such, in this limit, the coherence only depends on the initial
trap separation L and the moving trap paths (or final positions)
sb(t ) [sb(tm)] and st (t ) [st (tm)]. If the moving traps are returned
to their starting points at tm, then the decay term of Eq. (22) is
zero.

In practice, the initial state in the trap will not be |0〉, so it
is instructive to understand the effects of starting in a thermal
state. For the case where the density matrix of the starting state
is given by [46]

ρtherm =
∫

d2β
e−|β|2/n̄

π n̄
|β〉 〈β| , (23)
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FIG. 3. (a) Plot of Vvert(x) [Eq. (26)], in units of recoil energy ER, against x, in units of λ. a = 2000 m/s2, Vd/kB = 5 mK, and ER/kB =
0.083 µK. xa is the location of the minimum and xb is the endpoint of the finite barrier. (b) The trap initially has Natom atoms at temperature
Tatom. If the traps are accelerated for time tm < τE (x0), where x0 is a specific location, then atoms at x0 will not have time to escape the trap. If
certain atoms (at other values of x, with faster speeds) do escape, once acceleration stops, there will now be N ′

atom atoms in the well with new
temperature T ′

atom. Due to the nonzero effusivity time, even if the trap is accelerated such that the well completely disappears, it is possible to
stop acceleration before all the atoms escape.

we find that the coherence is of the form (see Appendix B)

Ctherm = eiφTOT | 〈αbot| αtop〉|( n̄
2 +1), (24)

where φTOT, αbot, and αtop are as given previously, and n̄ is the
thermal occupancy. In the limit ω0t � 1, Eqs. (22) and (24)
suggest that noise arises from an initial thermal state only in
the case where there is insufficient control over the tweezers
such that at the end of trap movement sb(tm) �= st (tm). In such
a situation, there is additional decay of the coherence, which
increases with temperature.

Note that the equations in this section, with the exception
of Eqs. (21) and (22), are exact and without approximation.
All effects of any kind of motion, whether adiabatic or nona-
diabatic, are contained in Eqs. (14), (15), and (20). In the
succeeding sections we are in a regime where ω0 ∼ ωm, and
as such, not in the adiabatic limit discussed here for which
Eqs. (21) and (22) apply (we find this nonadiabatic regime to
be acceptable in the context of atom loss prevention, although
we work with the adiabatically simplified results in our sensi-
tivity analysis). Therefore, we expect to see additional phases
and decays as given by the integral terms of Eqs. (13)–(15).

B. Physical limits of trap motion: Keeping the atoms trapped

A key question is how fast the trap can be moved while
maintaining an interferometer signal. This question has two
parts: the physical constraints due to the shape of the potential
and the limitations of experimental apparatus. In this section,
we address the first, specifically, by identifying a maximum
acceleration amax before atom loss.

As shown in Fig. 3(a), for a potential with a Gaussian
profile, a constant acceleration appears as a constant force on
the atom, thereby tilting the potential well. The higher the ac-
celeration, the greater the tilt and the lower the resultant height
of the barrier between the trap center and the continuum. In
this scenario, loss of atoms can occur due to two main reasons;
there is atom loss that can be described by classical physics,
due to atoms escaping from the well as shown in Fig. 3(b)

[more elaboration on Fig. 3(b) is at the end of this section];
then, there is the quantum effect of tunneling which can occur
due to the reduction of the barrier height and width when the
potential is tilted. The aim is to understand how pervasive each
of these effects are. We find that only the first is appreciable
for typical parameters as we now show.

Unless otherwise mentioned, the values of parameters used
in this section are as in Table II.

A simple approximation for amax is

amax ≈ Vd

w0m
, (25)

where Vd is the trap depth, w0 the trap waist, and m the
mass of the atom. amax represents the work mamaxw0 neces-
sary to match the trap depth Vd . Practically, this is the order
of magnitude when the barrier becomes close to zero. For
(Vd/kB) = 1 mK [49], we obtain amax to be of order 103 m/s2.
Comparing this value to those obtained with the upcoming
more rigorous calculations, we find that this simple estimate
provides an accurate order of magnitude.

For a single trap, the co-gravity potential can be considered
to be [43]

Vvert(x) = −Vd exp

[−2x2

w2
0

]
− m(a + g)x − Vvert,min, (26)

where for convenience we subtract off the local poten-
tial minimum, Vvert,min. It is depicted in Fig. 3(a) for

TABLE II. Unless otherwise mentioned, the values of parameters
used in Sec. III B are as in this table.

Parameter Symbol Value

Acceleration of free fall g 9.81 m/s2

Mass of cesium m 2.2 × 10−25 kg [47]
Trap wavelength λ 935.6 nm [48]
Trap beam waist w0 38 µm
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FIG. 4. (a) Plot of a (m/s2) against Vd/kB for the classical limit of the well (dis)appearing. Black is for Vvert(x) [Eq. (26)] and blue (dashed)
is for Vhoriz(z) [Eq. (27)], with amax as given by Eqs. (28) and (29). It can be seen that co-gravity accelerations of up to order 105 can be
achieved at Vd/kB ≈ 50 mK. However, the achievable axial acceleration is much smaller for the same Vd . (b) Plot of Plost against Vd/kB for
a = 3700 m/s2 around the limit of the well’s appearance for Vvert (x). Here, Plost is the probability of losing an atom over a time duration of 0.6
ms. The data points have been obtained by varying Vd/kB in steps of order 0.01 µK and C0 has been set to one. The WKB approximation is
expected to break down going towards the lower trap depths. Note the small range of the axes; there is a significant change in Plost over just
0.6 µK. This highlights the fact that tunneling effects are not expected to be of concern. For comparison, using Eq. (28), the classical limit at
which the well (dis)appears is Vd/kB = 1.85179 mK.

a = 2000 m/s2 and Vd/kB = 5 mK. Perpendicular to gravity,
the axial potential of a single trap due to only the intensity
gradient and an artificial acceleration is [43,50,51]

Vhoriz(z) = −Vd
1[

1 + (
λz

πw2
0

)2] + maz, (27)

where λ is the trap wavelength. This potential is relevant for
the case where we achieve axial acceleration by changing the
focal plane of the trap (which is not the only possible method).

We can calculate the critical accelerations amax for which
the stable minimum disappears for both potentials Vvert(x)
and Vhoriz(z), that is, find the classical limits of the well’s
(dis)appearance. We obtain that

a max,vert = 2√
e

Vd

mw0
− g, (28)

and

|amax,horiz| = 3
√

3

8π

Vdλ

mw2
0

. (29)

Figure 4(a) shows a plot of these equations against Vd/kB.
It can be seen that co-gravity accelerations of up to order
105 m/s2 can be achieved at Vd/kB ≈ 50 mK. However, the
achievable axial acceleration is much smaller for the same
Vd . This is most simply explained by the fact that the trap
potential is less tight in the axial direction, thereby necessi-
tating alternative methods to be employed, as discussed in the
next section. There could also be some effect owing to the
exclusion of the radiation pressure term in Vhoriz [43]. It must
be noted that the limits are for atoms located at the waist of
the Gaussian beam; the potential is less tight moving away
from the waist, and, hence, the atoms will have lower limits of
acceleration.

To understand the prevalence of tunneling, for a potential
V (x) as shown in Fig. 3(a), we can work with the WKB ap-
proximation around the area of the potential well to determine
the limits of acceleration. The probability per unit time � that
a trapped particle of low energy passes through the barrier is
given by [52]

� = A0 exp

[
−B0

h̄

]
, A0 = C0ωp

√
B0

2π h̄
, (30)

with

B0 = 2
∫ xb

xa

dx
√

2mV (x), (31)

and

ωp =
√

1

m

(
d2V (x)

dx2

)
x=xa

. (32)

Here, C0 is an order unity geometric prefactor that we do not
explicitly calculate. xa is the location of the minimum and xb

is the point at which the barrier ends. The total probability of
losing atoms over time t is then given by

Plost = 1 − e−�t . (33)

Tunneling effects can be considered for co-gravity and ax-
ial accelerations. Vvert(x) can be substituted into Eq. (31) and
integrated between xa and xb to obtain tunneling probabilities,
which can then be used to understand the pervasiveness of
tunneling. Figure 4(b) shows the variation of Plost with Vd/kB

around the limit of the well’s appearance for a = 3700 m/s2.
Note the small range of the axes; there is a significant drop
in Plost over just 0.6 µK. This highlights the fact that tun-
neling effects are essentially negligible, because they can be
drastically reduced within only a 0.6 µK variation in Vd/kB.
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The WKB approximation is expected to start becoming inap-
plicable towards the lowest trap depths of the plot, because
the simple harmonicity that Eq. (32) depends on starts to
disappear. With the small probability values found, we will
not consider tunneling effects further.

As verified with these numerical results, trap depths for
which the tunneling is negligible can be conveniently found
for the case of co-gravity acceleration. For axial acceleration,
however, it appears as though alternative methods have to be
employed, as will be discussed in the next section.

Atom loss is also dependent on the temperature of the
atoms. In particular, we can define the effusivity time τE to
be

τE (x) ≡ w0[
2
m {kBTatom − [V (x) − Vmin]}]1/2 . (34)

τE is an estimate of the time it takes for atoms of temperature
Tatom to escape past the well, given the potential-energy cost
V (x) − Vmin associated with being away from the bottom of
the potential well, where Vmin is the value of the potential
well minimum. The difference between the atom temper-
ature and the potential-energy cost gives the characteristic
excess kinetic energy and, hence, the characteristic velocity
for atoms at different locations in the trap. This velocity sets
the timescale on which they escape. Atoms are expected to
be at their highest speed at xmin, where the potential has a
local minimum, and lowest at xbarrier, where there is a local
potential maximum. As such, τE (xmin) and τE (xbarrier ) give
us a lower and upper bound for the time taken by atoms of
temperature Tatom to leave the trap. These times also bound
the duration for which the trap can be accelerated; if the trap
is accelerated (i.e., tilted) for times less than these bounds, the
atoms will not have time to escape from the trap, and ther-
mal atom loss can be prevented. Figure 3(b) illustrates these
concepts, while Fig. 5 is a plot of τε (x) for different values of
[V (x) − Vmin]/kB. It can be seen that τε (x) is on the order of
μs. Of course, τε (x) is only well-defined with the assumption
that Tatom > [V (xbarrier ) − Vmin]/kB; for Tatom < [V (xbarrier ) −
Vmin]/kB, tunneling effects were investigated previously.

Note that the evaluations in this section, including that of
amax, only analyze classical limits. We may also attempt to
understand a quantum limit of amax, specifically in relation to
the quantum speed limit as in the paper by Lam et al. [53]. For
our work, the quantum speed limit characterizes the fidelity
of the final state after trap movement; that is, whether at the
end of trap acceleration, the state is that which we intended to
achieve. A simple adaptation of the results in Fig. 3 of Lam
et al. implies that we can expect the fidelity of our final trap
state and the interferometry contrast to be maximized for a
single-direction time tm/2 � 1.5(2π/ω0), which is satisfied
for most trap depths (unlike in Lam et al., our maximum
achievable fidelity may be less than one since we do not
optimize trap paths as they do).

C. Experimental considerations of trap acceleration

As just discussed, typical trap parameters suggest accelera-
tions of order 105 m/s2 are likely to still lead to an appreciable
interferometer signal. We now investigate the feasibility
of reaching such high accelerations for extended times by

FIG. 5. A plot of the effusivity time τε (x) against the temperature
of the atom Tatom for different values of [V (x) − Vmin]/kB. It can be
seen that τε (x) is on the order of μs. A graph such as this can be used
to either estimate the effusivity time over the course of a single well,
or compare the effusivity times between wells with different trap
depths. Asymptotes occur when Tatom approaches [V (x) − Vmin]/kB,
simply encapsulating the fact that the phenomenon does not apply
to cases where Tatom < [V (xbarrier ) − Vmin], the parametric region for
which tunneling effects have been investigated.

leveraging a setup that employs an acousto-optic deflector
(AOD) [54]. We discover that such an apparatus can provide
co-gravity accelerations of up to 103–105 m/s2. However, the
need for a tight focus limits the total distance over which
accelerations can be applied. This distance is set by the field
of view (FOV) of the objective lens used to focus the trap
beam wave front and the quality of the trap beam wave front
itself. For an unaberrated incoming trap beam wave front, this
distance is simply the FOV of the objective.

Light from an infinite source cannot be focused down to
a point by an ideal lens due to the effects of diffraction.
This is antithetical to the prediction from geometrical optics.
This diffraction-limited focused spot size is inversely pro-
portional to the NA of the ideal lens. However, in the case
of a real lens, diffraction-limited performance is achievable
only within the lens’s FOV. Beyond the FOV of real lenses,
lens aberrations dominate the effects due to diffraction. This
results in increased focal spot size (weaker traps for the same
optical trap power and detuning) and the optical system is
said to be aberration-limited. While lenses that simultaneously
possess large FOV (greater space-time area) and large NA
(tighter dipole traps and higher amax) are desirable, these
lens parameters are, unfortunately, inversely related to each
other [55,56].

A typical setup for accelerating an optical tweezer in the
focal plane of an objective lens ( f0) in shown in Fig. 6. To
minimize the relative intensity and pointing noise between
the bottom arm tweezer and top arm tweezer (Sec. IV), both
tweezers must be generated simultaneously using one element
from an intensity-stabilized laser beam source [57–59] and
also share the same optical beam path. This element can either
be electronic or optical. The tweezer beams can be generated
electronically by driving the AOD with an amplitude mod-
ulated waveform [Fig. 6(a)]. To generate the tweezer beams
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)

)

FIG. 6. AOD and lens assembly arranged in a 6 f configuration
in order to move two optical tweezers with minimal common-mode
noise. (a) Electronically generating the tweezers using an ampli-
tude modulated waveform ν(t ) (b) Optically generating the tweezers
using a phase grating, or custom 50 : 50 beam splitter, or a polar-
izing prism like a Rochon, Wollaston, or Sénarmont prism, or a
metasurface.

using an optical element, one may use phase gratings, custom
50 : 50 beam splitters, polarizing prisms of the Rochon, Wol-
laston, or Sénarmont type, or even metasurfaces [Fig. 6(b)].

Arbitrary motion of the tweezer in the focal plane is fa-
cilitated by the electronically engineered radio-frequency (rf)
waveform ν(t ) driving the AOD. When the AOD is driven by
the rf waveform, it deflects the beam by an angle θ (t ) (Fig. 6).
θ (t ) is then mapped to a tweezer position x(t ) by the 6 f op-
tical system constructed out of a three-lens assembly [60,61].
The lenses must be positioned appropriately, as this facilitates
the angle-to-position mapping, which can be quantitatively
expressed via the ABCD matrix analysis [62,63] as follows:

x(t ) = − f0

M
θ (t ), (35)

where M = f1/ f2 is the magnification. θ (t ) and x(t ) are
measured with respect to the optic axis of the 6 f system.
This angle-to-position mapping can be readily extended to the
other axes by using a two-axis AOD allowing for arbitrary
two-dimensional (2D) tweezer motion in the focal plane. We
only treat one axis here for simplicity.

The relation between θ (t ) and the radio-frequency (rf)
drive ν(t ) to an AOD operating in the Bragg regime is θ (t ) =
2 sin−1 λ/2λrf (t − τ ) � λν(t − τ )/vrf , where vrf is the veloc-
ity of sound in the AOD crystal, λ is the wavelength of light
in the AOD crystal, ν(t ) is the rf frequency waveform, and
τ is the access time of the AOD i.e., the finite time (set by
the speed of sound in the AOD crystal) for a change in the rf
frequency ν(t ) to traverse the entirety of the input laser beam
spot size [64]. τ is typically ∼1 µs for an input beam with

a diameter of 1 mm. Substituting this expression for θ (t ) in
Eq. (35), we get the following important relation between x(t )
and ν(t ):

x(t ) = − λ f0

Mvrf
ν(t − τ ). (36)

This governing equation (36) is what maps the motion of
the tweezer in the focal plane of the objective lens to an
electronically engineered rf waveform ν(t ). For instance, if
the functional form of ν(t ) is parabolic in time [ν(t ) ∝
t2], then the tweezer moves at a constant acceleration. Of
course, the motion of the tweezer is limited to within the FOV
of the objective lens [|x(t )| � dFOV] in order to guarantee to
diffraction-limited performance from the objective.

We can program either an arbitrary waveform generator
(AWG) [65] or a direct digital synthesizer (DDS) [66,67] to
digitally generate the desired frequency chirp ν(t ). AWGs
have faster update rates than DDS sources and have more flex-
ibility over DDS sources in engineering waveforms. AWGs
are therefore typically more expensive than DDS sources.
If one decides to use a DDS source to engineer the ν(t )
waveform, the waveform will be discretized in units of time
of duration η (η must be longer than the frequency switching
time of the DDS). During the time step of duration η, the DDS
outputs a single frequency tone. It is therefore important to set
a bound on the maximum tolerable η for a particular tweezer
motion application.

Let us consider the case of a tweezer accelerating at a rate
a. For each time step (of duration η) in the chirp waveform,
ν(t ) is a constant frequency tone. A constant frequency tone
maps to a specific tweezer position via Eq. (36). Therefore,
a change in ν(t ) to a different constant frequency tone leads
to a change in the tweezer position. For the atoms to follow
these jumps in tweezer positions and avoid trap loss, it is
imperative that the overlap integral between the ground-state
wave functions of the atoms in the tweezer for two consecutive
tweezer positions is close to one.

The ground-state wave function of an atom with mass m in
a harmonic potential well with trap frequency ω at y = 0 is
given by

u0(y) =
(mω

π h̄

) 1
4
e−mω(y)2/2h̄.

When the harmonic potential well is suddenly displaced by
	y, the probability that the atom will follow this sudden
displacement should be close to one, i.e.,∫ ∞

−∞
u0(y)u0(y − 	y)dy = e− 	y2mω

4h̄ ≈ 1.

For y(nη) = a(nη)2/2, this implies n � 2
aτ 2

√
h̄/mω for n �

1. Using n = 1
τ

√
2dFOV/a as the number of time steps needed

to accelerate the tweezer over the field of view dFOV of the
objective lens, we get a bound on η: η � √

2h̄/(amωdFOV).
For m = 133 amu, ω = 2π × 10 kHz, dFOV = 200 µm, a =
1000 ms−2, we get η � 276 ns. This criterion is satisfied
for most high-end DDS sources, as their frequency switching
times are in the tens of nanoseconds range [68–71]. We would
also like to point to the favorable 1/

√
a scaling for η. With

complete waveform control and faster update rates facilitated
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by AWGs, accelerations in the 105 m/s2 range seem feasible.
Furthermore, the bound on η is relatively strict as it was
derived for the largest jump in tweezer position, which only
occurs at the end of the chirp.

Lastly, we will need to ensure that the maximum frequency
excursion (νchirp) during the chirp is well within the band-
width (BW) of the AOD (vchirp = MdFOVvrf/(λ f0) � BW).
For dFOV = 200 µm, M = 4, λ = λ0/n0 = 409 nm, vrf =
650 m/s, f0 = 30 mm, we get νchirp = 42.4 MHz, which is
within the typical AOD bandwidths (>50 MHz) [54]. Here
λ0 = 900 nm is the wavelength of the light in vacuum and
n0 = 2.2 is the refractive index of the TeO2 AOD crystal.

In spite of the content of the discussions so far, trap move-
ment is not necessarily restricted to being along the focal
plane. Indeed, being able to realize fast movement perpen-
dicular to the focal plane will allow for a greater flexibility
in the spatial region that can be sampled. Varifocal lenses are
well suited for that particular application [54,72]. Varifocal
lenses are lenses with tunable focal lengths and are typically
placed 5 f away from the objective back focal plane in a 6 f
optical system, just like in the optical arrangement illustrated
in Fig. 6. In fact, the varifocal lens takes the place of the
AOD in the 6 f optical system and this placement helps with
preserving magnification when the focus is tuned [72]. One
can therefore pair a two-axis AOD with a varifocal lens for
arbitrary three-dimensional control over the tweezer position.
This can be done by integrating the two-axis AOD and var-
ifocal lens into a 10 f arrangement, which is basically a 4 f
arrangement plus a 6 f arrangement. The Fourier plane of
the AOD is first mapped downstream to the varifocal lens
plane by a 4 f optical arrangement [60,61]. Then the varifocal
lens plane (plus the mapped AOD Fourier plane) is placed
5 f upstream from the back focal plane of the objective in a
6 f optical arrangement (Fig. 6). It may then be possible to
achieve large accelerations perpendicular to the focal plane of
the objective using a state-of-the-art tunable acoustic gradient
(TAG) lens, a type of varifocal lens that can change its fo-
cal length in a few tens of microseconds [72,73]. This is in
addition to the large accelerations already possible in the 2D
focal plane of the objective facilitated by the two-axis AOD.
However, one will need to consider the effects of aberrations
and aperture size when using a varifocal lens for controlling
the tweezer axial focus shift. Large axial focus shifts with
respect to the default front focal plane of the objective will
compromise its diffraction-limited performance and lead to
weaker traps [72].

Another method could involve the use of an optical lat-
tice, rather than a dipole trap, to move atoms perpendicular
to the gravitational field, such as in the paper by Schmid
et al. [74]. Their lattice is created using counterpropagating
Gaussian and Bessel beams. The Bessel beam provides the
vertical force countering gravity. The detuning between the
two beams is varied using an acousto-optic modulator (AOM)
in order to move the atoms perpendicular to gravity. The
velocity of the lattice is given by v = (λ/2)	ν, where λ is the
lattice wavelength and 	ν the detuning. Since 	ν has to be
maintained such that it is within the bandwidth of the AOM,
the maximum velocity that can be achieved is around 6 m/s,

in accordance with an AOM bandwidth of 15 MHz. With a
lattice depth of about 20ER, the authors are able to achieve
a “critical” acceleration of ≈2600 m/s2, where the “critical”
acceleration is defined to be that up to which at most 50% of
atoms are lost after traversing a closed path of total distance
5 mm. They experimentally verify that this critical acceler-
ation is sufficiently described with the classical limit a =
qVd/m, where q is the wave vector. Additionally, they were
able to transport atoms nearly 20 cm in one direction (within
200 ms), before atom loss, due to the decreasing vertical force
of the Bessel beam (which is used to counter gravity) became
significant.

Now that we have identified possible methods by which
moving trap interferometers can be physically realized, it is
informative to understand where our proposal stands with
existing technology. Here, we make a comparison with 100h̄k
atom interferometers. Chiow et al. [16] use 17 6h̄k pulses
to relay a total momentum of 102h̄k to an atom, giving it
a resultant change in velocity of approximately 1 m/s. The
velocity transferred per pulse can be approximated to be
(1/17) m/s ≈ 0.06 m/s (the atom’s velocity loss due to grav-
ity after a single pulse and, hence, that which the succeeding
pulse must additionally account for, is of order 1 mm/s, so it
will be ignored in this approximation). Taking a single pulse
to last approximately 0.1 ms, based on the data given in Fig. 1
of Ref. [16], it can be said that the technology presented in
the paper gives an atom a velocity of 0.06 m/s within 0.1 ms.
During the same period of time, the accelerations that can be
achieved by moving tweezer traps using AODs can result in
velocities ranging from 0.1 to 10 m/s. Compared with this
specific 100h̄k interferometer, AOD technology can result in
higher velocities. However, there is certainly the limitation
that the distance covered during the actual movement of the
trap is restricted to the FOV of the setup. This can possibly be
overcome by releasing the atom(s) at the end of their accelera-
tion, such that their free fall would result in additional distance
being covered. This would essentially be the moving trap
version of having atoms in free fall after a pulse momentum
transfer. With the velocities calculated here, an atom subjected
to a single 6h̄k pulse would travel 180 µm in free fall, while an
atom released from an accelerated trap would travel between
500 µm to 5 m, depending on the acceleration. Nevertheless,
this release method requires the catching of atoms in a trap
after free fall [75].

As investigated in this section, existing technology can
achieve accelerations between 103 and 105 m/s2. Further-
more, while we only focus on two traps in this paper, it may
also be possible to have an array of traps, such that several
pathways can be simultaneously covered.

D. Sensitivity with accelerating traps

We can understand the advantage of the high accelerations
discussed in the previous sections by considering the sensitiv-
ity. In the case of nontrapped interferometers, the sensitivity
to gravitational acceleration is given by [77],

Sfree = h̄√
Natom
tshot

mLt0
. (37)
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For high-bandwidth applications, t0 is required to be shorter,
thereby worsening the value of Sfree. In contrast, the general
sensitivity for our scheme is

Smov = h̄√
Natom
tshot

[−mL(τ + t0) + ∫ tm
0 dtm[st (t ) − sb(t )]

] ,

(38)

which, for constant acceleration and the case where tm =
2π/ωm and tshot = 2π/ωm + 2t0, reduces to

|Smov| = h̄√
Natom

2π
ωm

+2t0

[
mL(τ + t0) + 2πms0

ωm

] . (39)

The number of atoms which are actively used in the in-
terferometer vary at the different steps of the sequence. For
instance, when atoms are released from the magneto-optical
trap (MOT), there is thermal expansion of the atom cloud [78]
and not all of these atoms are trapped when the optical dipole
trap is turned on in the middle of the sequence. Therefore, it is
important to express Natom in Eq. (39) in terms of experimental
parameters that are initially known, namely, the density ρMOT

of atoms in the MOT, and either the radius rMOT of the atom
cloud in the MOT right before release or the initial number
Natom,MOT of atoms in the MOT. It is also useful to express the
time and distance terms in Eq. (39) in terms of the parameters
of accelerating traps. Rewriting Eq. (39) as such means that it
will be expressed more fundamentally in terms of MOT and
dipole trap parameters, such that we can more conveniently
grasp which values they must take in order to have the best
sensitivities. In our analysis, we consider two main regimes:
trapping 103 and 106 atoms.

For the purposes of simplifying the calculation, we ap-
proximate that the atom cloud is a uniform sphere with a
uniform density distribution in the MOT right before release
with radius rMOT, expands as a uniform sphere during free
fall, and that this expansion is purely thermal due to a cloud
temperature of Tfree. We can then express the radius r(t0) of
the atom cloud right before the optical trap is switched on as
follows [78,79]:

r(t0)2 = r2
MOT + kBTfree

m
t2
0 . (40)

Evaluating as in Appendix C, for the case where the optical
dipole trap is turned on abruptly (an approximation made for
mathematical ease), the number Natom,trap of atoms that gets
trapped is given by

Natom,trap ≈ 0.417
π2

λ
ρMOT

(
rMOT

r(t0)

)3

w4
0. (41)

We must next relate the spring constant of the trap to the
laser’s peak intensity Im and the atom’s saturation intensity Isat

as follows [43,47,80]:

k = χ
Im

Isat
, (42)

where

χ = h̄	γ 2

2w2
0

(
γ 2

4 + 	2
) . (43)

Here, 	 = νatom − ν is the detuning, with νatom being the
resonant frequency of the atom and ν the frequency of the
trap’s laser, and γ is the spontaneous emission rate.

With all these parameters in hand, we can now understand
the sensitivity for different cases in the limit amax � g.

The first is where we can achieve arbitrarily large values
of s0 for a fixed power Pm = Imπw2

0; this may require a setup
other than the one proposed with an AOD. Here, we have the
conditions that

cL ≡ L

w0
= constant, cL � 1, (44)

t0 = mL

h̄q
, τ ∼ 2π

ωm
, and s0 = χs

ω2
mw3

0

, (45)

χs = χcPm

π
√

emIsat
, χc = w2

0χ. (46)

cL � 1 is achieved by either realizing an atom cloud launch
velocity or initial laser pulse kick q such that L � w0. The
times of ramp up and ramp down are chosen to be small
enough such that τ ∼ 2πω−1

m . The expression for s0 is de-
termined by amax,vert of Eq. (28) and the maximum gradient
of ṡ(t ) = −(s0/2)ωm sin(ωmt ); as such s0 of Eq. (45) is con-
strained by the classical limit of maximum acceleration.

With these, for the case where we have a fixed power Pm

and can achieve arbitrarily large values of s0, i.e., s0 is not
constrained by the optics, the inverse sensitivity is given by

|Smov,A|−1 = 1

h̄

√
0.417

π2

λ
ρMOT

(
rMOT

r(t0)

)3

w4
0

×
√

1(
2π
ωm

+ 2mL
h̄q

)[
mL

(
2π

ωm
+ mL

h̄q

)
+ 2πmχs

ω3
mw3

0

]
.

(47)

The second case we can look at is where the power Pm is
variable in the setup, but s0 is constrained by the optics. In
particular, we have that

csw ≡ s0

w0
= constant, (48)

L � w0, and τ ∼ 2π

ωm
. (49)

That the ratio s0/w0 is fixed reflects a setup where the accel-
eration is implemented using AOD technology, because both
w0 and s0 are set by the same optics. Since s0 = χs/(ω2

mw3
0 ),

the fixed ratio requires that χs (hence, Pm, and, consequently,
Vd ) be changed with ωm such that χs/ω

2
m = csww−4

0 for a
particular w0. However, this ratio can only be maintained up
to a finite bandwidth ωm; as χs is proportional to Pm and the
achievable power has a maximum value Pm,max, the maximum
bandwidth ωm,max that can be sampled for a particular optics
setup is

ωm,max = 1

w2
0

√
χs(Pm,max)

csw
, (50)

where w0 and csw characterize the optical system.
Therefore, in the case where the power Pm is variable in the

setup, but s0 is constrained by the optics, we have an inverse
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FIG. 7. Plot of sensitivity |S| against ωm/(2π ) for Eqs. (37), (47), and (51). Black lines have been used for |Sfree|, green for |Smov,A|,
pink for |Smov,B| with csw = 5, and blue for |Smov,B| with csw = 50. Dashed lines correspond to the effective use of 103 atoms, while the
nondashed lines to 106 atoms. We have set λ = 935.6 nm [48], ρMOT = 1.1 × 1011 cm−3 [76], q = 2π/λ, and r(t0) → rMOT. For cesium [47],
m = 2.2 × 10−25 kg, νatom = 2106 THz, γ = 28.7 MHz, and Isat = 24.98 W m−2. For |Smov,A| and |Smov,B|, L = 10w0, and Pm = 1 W. For
|Sfree|, tshot = 2t0, and L = 380 µm. Trap depths of 6.7 and 38 µm correspond to approximately 103 and 106 atoms in the trap, respectively.
It can be seen that sensitivity improvements compared with nontrapped interferometers occur at the lower end of the range of ωm/(2π ).
Unrestricted s0, as shown by |Smov,A|, can provide several orders of magnitude of improvement. Here, for the lower end of ωm/(2π ), the lower
the w0, the better the sensitivity, since for low ωm, the accelerating trap term of Eq. (47) takes over. Conversely, for |Smov,B|, sensitivity is better
for higher w0. Furthermore, the square markers indicate that each line is truncated at ωm,max.

sensitivity of

|Smov,B|−1 = 1

h̄

√
0.417

π2

λ
ρMOT

(
rMOT

r(t0)

)3

×
√√√√ w4

0(
2π
ωm

+ 2mL
h̄q

)[
mL

(
2π

ωm
+ mL

h̄q

)

+ 2πmcsww0

ωm

]
. (51)

Plots of Eqs. (37), (47), and (51) are shown in Fig. 7. It
can be seen that sensitivity improvements compared with non-
trapped interferometers occur at the lower end of the range of
ωm/(2π ). Unrestricted s0, as shown by |Smov,A|, can provide
several orders of magnitude improvement. Here, for the lower
end of ωm/(2π ), the lower the w0, the better the sensitivity,
since for low ωm, the accelerating trap term of Eq. (47) takes
over. Conversely, for |Smov,B|, sensitivity is better for higher
w0. Furthermore, the square markers indicate that each line is
truncated at ωm,max.

Note that the calculations in this section are correct up to
factors of order unity corrections to Natom used, since we have
not included the process of creating a superposition of the
initial atom cloud and having two traps in the calculation.

IV. THE NOISY ATOM TRAP

A. Understanding spring constant noise

Fluctuations in the laser intensity can lead to a time-
dependent spring constant. In this paper, for the spring

constant as given by Eqs. (42) and (43), we expect the noise
to be largely due to fluctuations in Im.

Using the forms k(t ) = k0 + δk(t ) and Im(t ) = Im,0 +
δIm(t ) for the noise, where δk(t ) and δIm(t ) are fluctuations
from the ideal value, we can relate the distribution of the
spring constant to that of the intensity as follows:

〈〈δk(t )δk(t + τ̃ )〉〉 =
(

χ

Isat

)2

〈〈δIm(t )δIm(t + τ̃ )〉〉, (52)

with τ̃ = t ′ − t . That is, the autocorrelation function of the
spring constant is proportional to that of the intensity.

We further have the relationship between the spectral den-
sity SIm ( f ) of the intensity noise and the intensity Im of the
laser [81],

SIm ( f ) = 2

〈〈Im〉〉2

∫ ∞

−∞
〈〈δIm(t )δIm(t + τ̃ )〉〉ei2π f τ̃ d τ̃ , (53)

this being the normalized Fourier transform of the autocorre-
lation function of the intensity.

We can see that the relationship between Sk ( f ) and
SIm ( f ) is

Sk ( f ) = SIm ( f ); (54)

the spectral density of the spring constant is identical to that
of the peak intensity.

B. Intrinsic laser noise

Here, we obtain explicit expressions for the spring con-
stant’s noise distribution in the event that laser intensity
fluctuations are caused by fluctuations in the photon number.
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From the fact that the coherent state’s number statistics
follow a Poisson distribution, we take the distribution of the
number of photons in a cavity, given by N , to be

〈〈N (t ′)N (t )〉〉 − 〈〈N (t )〉〉2 ≈ N̄e−κ|t ′−t |, (55)

where N̄ is the average number of photons in the cavity and
κ−1 is the coherence time of the light in that cavity.

We can use Eqs. (D1) (relation between electric-field op-
erator and number-of-photons operator) and (D2) (relation
between intensity and electric field), with refractive index
nr = 1, to express the number N of photons associated with
the peak intensity Im to be N = CI Im, where

CI = πw2
0l

h̄cν
, (56)

with l being the length of the cavity and c the speed of light.
The average is then N̄ = CI Īm. The distribution of Im(t ) can
also be derived as in Appendix D. These expressions can then
be used along with Eq. (42) to show that

〈〈k(t ′)k(t )〉〉 − 〈〈k(t )〉〉2 =
(

χ

Isat

)2 1

κ

1

CI
Īmκe−κ|t ′−t |. (57)

Since k(t ) = k0 + δk(t ), as mentioned previously, we can
find the autocorrelation function of δk(t ) for the case where
〈〈δk(t )〉〉 = 0:

〈〈δk(b/t )(t ′)δk(b/t )(t )〉〉 = �(b/t )
κ

2
e−κ|t ′−t |, (58)

where

�(b/t ) = 2

(
χ

Isat

)2 1

κ

1

CI
Īm. (59)

Here, (b/t ) indicates that the correlation is for either one of
the bottom or top traps.

Between the two traps we have

〈〈kb(t ′)kt (t )〉〉 − 〈〈kb(t )〉〉〈〈kt (t )〉〉 = 〈〈δkb(t ′)δkt (t )〉〉, (60)

and

〈〈Nb(t ′)Nt (t )〉〉 − 〈〈Nb(t )〉〉〈〈Nt (t )〉〉 ≈ N̄bt e
−κbt |t ′−t |. (61)

We can then express the autocorrelation function between the
two traps to be

〈〈δkb(t ′)δkt (t )〉〉 = �bt
κbt

2
e−κbt |t ′−t |, (62)

with

�bt = 2

κbt

χbχt

(Isat )2

1√
CI,bCI,t

√
Īm,bĪm,t . (63)

√
Īm,bĪm,t comes from the fact that we take N̄bt to be the

geometric mean of the respective trap parameters; that is,
N̄bt =

√
N̄bN̄t .

Looking at Eqs. (58) and (62), it can be seen that the right-
hand side is proportional to (κ(b/t )/2)e−κ(b/t )|t ′−t | → δ(t − t ′)
in the limit κ → ∞. That is, the spring constant noise distri-
bution goes to that of white noise [82–85]:

〈〈δk(b/t )(t )〉〉 = 0, (64)

〈〈δkb(t )δkb(t ′)〉〉 = �bδ(t − t ′), (65)

〈〈δkt (t )δkt (t
′)〉〉 = �tδ(t − t ′), (66)

〈〈δkb(t )δkt (t
′)〉〉 = �btδ(t − t ′). (67)

These conditions, and, hence, the coefficients in Eqs. (59) and
(63) will be used in the evaluation of noise-included coherence
terms in the succeeding sections.

Using the quantities calculated in Secs. IV A and IV B, we
can obtain explicit expressions for the resulting coherences
and noise variances for the cases of center of trap fluctuations,
time-dependent spring constants, and trap depth fluctuations.

We further explore harmonic-oscillator transitions which
arise in the trap due to the time-dependent trap frequency, both
during noiseless ramp up of the trap and the subsequent steady
but noisy potential.

C. Center of trap and trap depth noise

In this section, we investigate the center of trap and trap
depth noise. To incorporate these, we can adapt the moving
trap analysis of Sec. III A. With noise, we have |ψb, f 〉noise =
Û T

move |0〉 being

|ψb, f 〉noise = T̂ exp

{
− i

h̄

∫ tm

0
dt

(
p̂2

2m
+ 1

2
mω2

0,b[x̂ − sb(t )

+ ηb(t ) − ηb(0)]2 − mgx̂ − Vb,d (t )

)}
|0〉 .

(68)

Note that we now have a time-dependent trap depth potential
shift of Vb,d (t ). This time-dependency arises from the trap’s
spring constant fluctuations. However, in order to directly
adopt the calculation in Sec. III A, we keep the frequency
ω0,b of the simple harmonic potential term in the Hamilto-
nian time-independent. The fluctuations from the intended
location of the trap center are given by ηb(t ) − ηb(0), which
also states that at t = 0 the location of the trap center is
unperturbed [86]. We also consider the parameters for the top
and bottom trap to be nonidentical. Therefore, it is possible
to reuse the calculations in Sec. III A by simply replacing the
s(b/t )(t ) and s̃(b/t )(t ) with the new location shifts and keeping
track of any new phases that arise due to trap parameter
differences.

Processing as in Appendix E (and under the same as-
sumptions of ramp down as in the Sec. III A), we obtain the
expressions for the coherence, which are of the same form as
Eqs. (18) and (19), with notation φ̃TOT replacing φTOT, and
α̃top and α̃bot replacing αtop and αbot. The new parameters
α̃bot(η̃b(t ), ˙̃ηb(t )), φ̃b,1(η̃b, ˙̃ηb), and φ̃b,2( ˙̃ηb) are functions of
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η̃b(t ) = sb(t ) − ηb(t ) + ηb(0) + g/ω2
0,b. We have

φ̃TOT = φ̃t,1 − φ̃b,1 + φ̃t,2 − φ̃b,2 − (ω0,t − ω0,b)tm
2

− mgL(τ + t0)

h̄
− 1

h̄

∫ tm

0
dtmg[sη,t (t ) − sη,b(t )]

+ 1

h̄

∫ tm

0
dt

1

2
mg2

(
1

ω2
0,t

− 1

ω2
0,b

)
+

∫ tm

0
dt

[Vt,d (t ) − Vb,d (t )]

h̄
+ Im[α̃∗

botα̃top], (69)

where sη,b(t ) = −sb(t ) + ηb(t ) − ηb(0) and similarly for
sη,t (t ). The explicit form of α̃∗

botα̃top for ω0,t = ω0,b is given
in Appendix E.

Again note that in order to proceed with the calcula-
tion, we set sb(0) = −g/ω2

0,b, so that s̃b(0) = 0; similarly, we
have st (0) = −g/ω2

0,t , so that s̃t (0) = 0. However, the nuance
arises that st (0) �= sb(0) due to the different trap frequen-
cies; as such, we are actually describing a diagram where
the top trap starts at x = −L − g/ω2

0,t and the bottom at
x = −g/ω2

0,b. The calculation is exact for this case. However,
for the purposes of visual representation, this means that the
initial trap separation is not exactly L. Nevertheless, in the
limit L � |g/ω2

0,t − g/ω2
0,b|, the initial trap separation can be

approximated to be L. Therefore, we can again approximately
think of the calculation in this section as simply describing
Fig. 1(b) translated by −g/ω2

0,b.
It is instructive to understand how the magnitude of the

different noise terms in Eq. (69) compare. First looking at the
pointing noise, relabeled as

φ̃TOT,A(tm) = −1

h̄

∫ tm

0
dtmg[sη,t (t ) − sη,b(t )], (70)

we evaluate the variance of φ̃TOT,A(tm) in the case of noise
described by Brownian motion. We do this under certain con-
ditions: we take the autocorrelation function of the noise in
terms of its power spectral density to be [81]

〈〈η(t/b)(t )η(t/b)(t + τ )〉〉 =
∫ ∞

−∞
df Sη,(t/b)e

−i2π f τ ; (71)

we consider the noise of the top and bottom traps to be uncor-
related, such that 〈〈ηt (t )ηb(t + τ )〉〉 = 0; we define the mean
of the noise to be zero for both traps, such that 〈〈η(b/t )(t )〉〉 =
0; we label τ = t ′ − t .

We proceed with the calculation in Appendix E to obtain
a general expression for the noise as given by Eq. (E5).
As a concrete example, we evaluate Eq. (E5) for the case
where trap center noise is modeled by Brownian motion,
such that the spectral density has the relation Sη,(t/b)( f ) =
D(t/b)/(π2 f 2) [87–89]—here, the different prefactor com-
pared with that in Ref. [87] is due to the difference in the
Fourier transform convention between Eq. (71) and Ref. [87].
With this, the variance of φ̃TOT,A is

σ 2
φ̃TOT,A

= 4

3

(mg

h̄

)2
(Dt + Db)t3

m, (72)

where Dt and Db are the diffusion coefficients corresponding
to the mathematical relations as given in Ref. [87] for the top
and bottom traps, respectively. It can be seen that σ 2

φ̃TOT,A
varies

linearly with Dt and Db, and cubically with tm.

Next, we look at trap depth noise, specifically the term

φ̃TOT,B(tm) =
∫ tm

0
dt

[Vt,d (t ) − Vb,d (t )]

h̄
. (73)

In order for the trap depth noise to be zero, we want Vt,d (t ) =
Vb,d (t ), which occurs when both the laser correlations and the
optics used are identical. This can be understood explicitly by
considering the more fundamental parameters that make up
the trap depths Vt,d (t ) and Vb,d (t ) or by looking at the variance
of the noise.

In the case where the noise arises from laser intensity
fluctuations due to fluctuations in the photon number, we can
use Eqs. (64)–(67) and the relation Vd (t ) = k(t )w2

0/4 [43] to
arrive at the variance

σ 2
φ̃TOT,B

tm
= 1

16h̄2

(
�tw

4
0,t + �bw

4
0,b − 2�btw

2
0,tw

2
0,b

)
, (74)

with �t , �b, and �bt as defined previously. The variance goes
to zero when two conditions are satisfied: (a) �t = �b = �bt ,
which occurs when κt = κb = κbt , as can be achieved by using
the same beam to create the two traps, and (b) w0,t = w0,b,
which occurs when the optical elements used to create the
trap are identical. This is explicitly shown in Fig. 8, which
shows plots of σ 2

φ̃TOT,B
/tm against w0,t/w0,b for κt = κb = κbt ,

and against log10[κbt/κb] for κt = κb. It can be seen that as
w0,t approaches w0,b and as κbt approaches κb, the variance of
the noise goes to zero, as expected.

D. Trap Hamiltonian with only spring constant noise

Moving on to the time-dependent spring constant, in order
to make certain effects of the phenomenon clear, we can write
the Hamiltonian [86,90]

Ĥ = p̂2

2m
+ 1

2
k(t )x̂2, (75)

in an alternate form. Note that, for mathematical simplicity,
we conduct the upcoming noise calculations for the case of
stationary traps and the −mgx̂ term has been excluded. We
apply a unitary transformation to Eq. (75) to obtain an expres-
sion which consists of the simple harmonic potential with a
modified mass and spring constant, in addition to a term which
drives harmonic-oscillator transitions.

Applying the unitary Û = exp[−iα(t ){x̂, p̂}/2], we get the
effective Hamiltonian Ĥeff for the state Û † |β〉 to be

Ĥeff = e−2h̄α p̂2

2m
+ k(t )

2
e2h̄α x̂2 − h̄α̇

2
{x̂, p̂}. (76)

We can see that there is now an effective mass meff = e2h̄αm
and an effective spring constant keff = k(t )e2h̄α . An additional
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FIG. 8. The parameters used are νb = νt = 2015 THz from λ =
935.6 nm [48], w0,b = 38 µm, κ(b/t ) = (πc)/(l(b/t )F ) as derived in
Appendix D, lb = 200 µm, lt = lb, F = 104, and, for cesium [47],
νatom = 2106 THz, γ = 28.7 MHz, and Isat = 24.98 W m−2. (a) Plot
of σ 2

φ̃TOT,B
/tm against w0,t/w0,b for κb = κt = κbt . (b) Plot of σ 2

φ̃TOT,B
/tm

against log10(κbt/κb). We have set κb = κt . The lines with dots are
for w0,t = 1.1w0,b (dotted black line and straight black line cannot
be distinguished in the plot). Same color indicates same trap depth
(in black and white version, this corresponds to each pair of lines
composed of a dashed line and a line-with-dots which starts deviating
from this dashed line).

time-dependent term involving {x̂, p̂} also appears and will
lead to oscillator transitions.

α can be expressed in terms of both the unperturbed and
time-dependent spring constant, k0 and k(t ). Factoring out
e−2h̄α , we can define e4h̄αk(t ) ≡ k0, with which we can rewrite
Ĥeff to be

Ĥeff = e−2h̄α

(
p̂2

2m
+ k0

2
x̂2

)
− h̄α̇

2
{x̂, p̂}. (77)

Since the first two terms are conveniently in the form of
the conventional simple harmonic-oscillator potential, we can
straightforwardly express Ĥeff in terms of the creation and
annihilation operators [91],

Ĥeff = h̄

√
k(t )

k0
ω0

(
â†â + 1

2

)
− ih̄2α̇

2
(â†2 − â2). (78)

After this unitary transformation, â† and â become time-
independent; for instance, in

â =
√

meffωeff

2h̄

(
x̂ + i p̂

meffωeff

)
, (79)

where ωeff = e−2h̄αω0 [91], we can see that meffωeff = mω0,
and, therefore, time-independent. This is in contrast with the
mω(t ) factors we would have had with the original Hamilto-
nian in Eq. (75).

Note that k(t ) can be any arbitrary function, since we
can always solve for the corresponding α. For our case,
we consider two specific forms, those during ramp up and
hold. When k(t ) details the ramp being turned on, Eq. (78)
describes the conventional harmonic-oscillator ground-state
wave packet being trapped in an increasingly narrowing har-
monic potential. When an atom is trapped in the “steady state”
potential, k(t ) = k0 + δk(t ), where δk(t ) is the noise due to
spring constant fluctuations, which will be explored in detail
later. Technically, the ramp up also includes δk(t ), but we do
not investigate this in the paper.

If we consider k(t ) to be adiabatic, such that the α̇

term is relatively negligible, we can neglect the {x̂, p̂} term,
resulting in

Ĥeff ≈ h̄

√
k(t )

k0
ω0

(
â†â + 1

2

)
. (80)

Equation (80) can be used to calculate the suppression of the
coherence purely due to a time-dependent spring constant, as
will be done in a later section.

The term {x̂, p̂} can lead to transitions between the ground
and second-excited state of the conventional harmonic oscil-
lator, and will be separately considered in the next section.

E. Harmonic-oscillator transitions

The effect of the {x̂, p̂} term can be independently ana-
lyzed. The terms square in â† will drive transitions from the
harmonic-oscillator ground state to the second-excited state. It
is instructive to investigate the prevalence of such transitions
and their effect on observed results.

The transition probabilities can be obtained using time-
dependent perturbation theory. For k(t ), the probability of
transition to the lowest order is [91]

p(1)(t ) =
∣∣∣∣∣∣
√

2

8

∫ tb

ta

k̇

k
exp

⎡
⎣2i

∫ t ′

0

√
k

k0
ω0dt

⎤
⎦dt ′

∣∣∣∣∣∣
2

, (81)

which can be applied to the cases of ramp up and hold sepa-
rately.

If we consider ramp up to be exponential and noiseless,
k(t ) = k0eζ (t−tru ), such that ζ characterizes the rate of the pro-
cess and at t = tru the maximum potential with spring constant
k0 is reached. The transition probability p(1)

ru (t ) will then be

p(1)
ru (t ) =

∣∣∣∣
√

2

8
ζ exp

[−4iω0

ζ
e− ζ

2 tru

] ∫ t0+tru

t0

× exp

[
4iω0

ζ
e

ζ

2 (t ′−tru )

]
dt ′

∣∣∣∣
2

. (82)
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This appears to be a rather complex expression, involving os-
cillating functions with exponential arguments. It can be seen
that the three characteristic parameters ω0, ζ , and tru all appear
in this argument. It is found that the integral evaluates to a sum
of exponential integral functions. If we impose certain limits,
for instance, that the ramp up is adiabatic such that ζ tru � 1,
then we can express p(1)

ru (t ) as a series in ζ tru. Up to fourth
order in tru, the expression straightforwardly evaluates to

p(1)
ru (t ) ≈ ζ 2

32

[
t2
ru + ω2

0(−2 + e
ζ t0
2 )2t4

ru

]
. (83)

We can see that, at this order, tru is raised to the even powers of
two and four. p(1)

ru (t ) also, rather interestingly, depends on t0,
the time for which the atoms free fall after launch; the longer
the free fall, the higher the probability of transition during the
ramp.

During hold, k(t ) = k0 + δk(t ), and Eq. (81) becomes

p(1)
h (t ) =

∣∣∣∣∣
√

2

8

∫ t0+tru+tt

t0+tru

d
dt ′ [δk(t ′)]

k0 + δk(t ′)

× exp

⎡
⎣2iω0

∫ t ′

0

√
1 + δk(t )

k0
dt

⎤
⎦dt ′

∣∣∣∣∣
2

. (84)

Here, tt is the duration of the “steady” trap potential. Again,
we have a rather complicated integrand involving the time
derivative of the noise δk(t ) and an oscillating term with an
integral parameter. The details of evaluating this can be found
in Appendix F, but a summary is given here. First, we consider
the magnitude of the noise to be extremely small, such that
δk(t )/k0 � 1. This allows us to work without the square root
in the integral. Afterwards, integration by parts will remove
the derivative of δk(t ). Next, we make an approximation
where we consider the contribution by exp[ iω0

k0

∫ t ′

0 δk(t )dt] to
be negligible. After Taylor expanding the logarithmic term
and neglecting terms of order (δk(t ′)/k0)2, we have for the
probability of transitions during hold,

p(1)
h (t ) = 1

8mk0

∫∫ t0+tru+tt

t0+tru

dt ′dtδk(t ′)δk(t )e2iω0(t ′−t ). (85)

It can be see that there is a product of the noise term δk(t )
within the integral. As such, a meaningful quantity to calculate
would be the mean of p(1)

h (t ) taken over several experimental
runs,

〈〈
p(1)

h (t )
〉〉 = 1

8mk0

∫∫ t0+tru+tt

t0+tru

dt ′dt[〈〈δk(t ′)δk(t )〉〉e2iω0(t ′−t )].

(86)
For white noise, where 〈〈δk(t ′)δk(t )〉〉 = �δ(t − t ′), for some
�, we get 〈〈

p(1)
h (t )

〉〉 = �tt
8mk0

. (87)

As can be seen, for white noise, we obtain a very simple
form where 〈〈p(1)

h (t )〉〉 is linear in tt . The specific form of the
quantity � depends on the exact source of the intensity noise.

We can now numerically evaluate the probabilities us-
ing the parameters t0 = 0.5 ms [5], tt = 0.6 ms, tru =
100 µs, ζ = 0.1 µs, Vd/kB = 1 mK, ν = 2015 THz from
λ = 935.6 nm [48], w0 = 38 µm, κ = (πc)/(lF ) as derived in

Appendix D, l = 200 µm, F = 104, and, for cesium [47],
m = 2.2 × 10−25 kg, νatom = 2106 THz, γ = 28.7 MHz, and
Isat = 24.98 W m−2. We find that p(1)

ru (t ) ≈ 8.6 × 10−24, in-
dicating that harmonic-oscillator transitions during ramp up
are negligible. � for intrinsic noise due to photon number
fluctuations was calculated in Sec. IV B, and for this case, we
find that 〈〈p(1)

h (t )〉〉 ≈ 1.3 × 10−12, indicating that harmonic-
oscillator transitions during hold are negligible.

Going back to the harmonic-oscillator transitions when
the atoms are trapped, we can rewrite the mean of the hold
transition probability, Eq. (86), using the spectral density of
the spring constant, given by Eq. (54):

〈〈
p(1)

h (t )
〉〉 = 1

32πmk0
〈〈k〉〉2

∫ ∞

−∞
dωSk (ω/2π )

×
[

2 − 2 cos [(ω − 2ω0)tt ]

(ω − 2ω0)2

]
, (88)

where ω = 2π f . It can be seen that the integrand is peaked
about ω = 2ω0, at which point it takes its highest value of
Sk (ω/2π )t2

t .

F. Parametric dephasing

Here, we investigate noise in the case where the effect only
comes from the time-dependent spring constant. To reiterate,
the calculations are for the case of stationary traps with the
exclusion of the −mgx̂ term. Considering Eq. (80) when the
atom is trapped after ramp up; that is, when k(t ) = k0 + δk(t ),
under the assumptions that ramp up and ramp down are iden-
tical, the coherence operator of Eq. (4) is given by

[
Û T †

holdÛ
T
hold|	x̂=−L

]∗ = exp

[
iâ†â	φeff + i

2
	φeff

]
. (89)

Note that here we have also excluded the phase due to uncor-
related trap depths, whose noise effects we already evaluated
and was given by Eq. (74). The ∗ indicates that this is the
coherence operator subject to the assumptions and exclusions
stated here. We have

	φeff =
∫ t0+tr+tt

t0+tr

ω0,b

√
k0,b + δkb(t )

k0,b
dt

−
∫ t0+tr+tt

t0+tr

ω0,t

√
k0,t + δkt (t )

k0,t
dt . (90)

The mean of Eq. (89) is taken between the arbitrary state∑∞
n=0 cn |n〉, where |n〉 is the nth simple harmonic-oscillator

eigenstate. With the number operator N = a†a [91] as per
usual, in the case where 	φeff has a Gaussian distribution, the
mean of the noisy part of the coherence term takes the form〈〈 〈[

Û T †
holdÛ

T
hold|	x̂=−L

]∗〉 〉〉
=

∞∑
n=0

|cn|2 exp

[
−

(
n + 1

2

)2

2
[〈〈(	φeff )

2〉〉 − 〈〈	φeff〉〉2]

]
.

(91)

As previously mentioned, we can consider the case where the
ramp up process takes the wave packet to the ground state of
the harmonic oscillator; that is, Û T

ru |ψ̃〉 = |0〉, where |ψ̃〉 =
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FIG. 9. Plot of φcoh/tt from Eq. (95) against log10[κbt/κb]. m =
2.2 × 10−25 kg, νatom = 2106 THz, γ = 28.7 MHz, and Isat =
24.98 W m−2 for cesium [47]. νb = νt = 2015 THz from λ =
935.6 nm [48], w0,b = 38 µm, w0,t = 1.1w0,b, κ(b/t ) = (πc)/(l(b/t )F )
as derived in Appendix D, lb = 200 µm, lt = lb, F = 104, and
κb = κt .

Û F |ψt=0〉 from Eq. (4). In this instance, only the n = 0 term
of Eq. (91) will remain, giving〈〈 〈[

Û T †
holdÛ

T
hold

∣∣
	x̂=−L

]∗〉 〉〉
= exp

[−1

8
[〈〈(	φeff )

2〉〉 − 〈〈	φeff〉〉2]

]
, (92)

where |c0|2 has been taken to be one to be consistent with the
fact that we consider only the state |0〉 to be produced.

Taking (δk(t )/k0) � 1 and expanding the integrands of
Eq. (90) up to first order, we get

〈〈	φeff〉〉 = (ω0,b − ω0,t )tt , (93)

〈〈(	φeff )
2〉〉 = (ω0,b − ω0,t )

2t2
t + ω2

0,b�btt

4k2
0,b

+ ω2
0,t�t tt
4k2

0,t

− ω0,bω0,t�bt tt
2k0,bk0,t

, (94)

which are unitless quantities. They have been derived under
the white-noise conditions of Eqs. (64)–(67).

Substituting Eqs. (93) and (94) into Eq. (92), under the
condition that ω0,b ≈ ω0,t , we get〈〈 〈[

Û T †
holdÛ

T
hold

∣∣
	x̂=−L

]∗〉 〉〉 = exp [−φcoh]

= exp

[
− (�t + �b − 2�bt )tt

32mk0,b

]
.

(95)

This is then the most general explicit expression for the co-
herence. Its specific form for a particular setup will depend on
the forms that �t , �b, and �bt take.

We evaluate for the case where the intensity noise is caused
by variations in photon number. A plot of the decay rate
φcoh/tt is shown in Fig. 9. Comparing with the plots of trap
depth noise in Fig. 8, the suppression of the coherence during
hold due to only the effects of Eq. (89) is relatively negligible.

V. OUTLOOK

In this work we have considered the potential benefits and
challenges of using optical tweezers to implement a trapped
atom interferometer where the traps can be moved throughout
the interference process. We find that previously unreached
accelerations (and acceleration sensitivities) may be feasible
for such interferometers, opening up the potential for high
bandwidth observations. However, two major technical hur-
dles are in the way of achieving these outcomes. First, the
dephasing due to intensity fluctuations of the trapping light
is a substantial limit to this design and likely requires using
a single beam design to make trap-to-trap variations mini-
mal. Second, the most impressive improvements in sensitivity
require moving well beyond the typical image plane of an
acousto-optic deflector. Thus investigation of alternative beam
steering technologies is in order. Regardless of these technical
hurdles, the ability to control the trap motion means that there
may be opportunities for the use of these devices to trace in-
teresting space-time areas, including for rotation sensing and
higher-order gravity gradients, as well as for time-dependent
signals; future work will be necessary to fully identify the
most important regimes of interest.

Note added. Recently, a similar work was suggested [92].
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APPENDIX A: DERIVATION OF INTERFEROMETER
SEQUENCE FINAL STATE

To obtain Eqs. (1) through (3), a mathematical description
for the setup is first written in terms of unitary operators. Since
our experimental setup makes use of two internal states of the
atom, we follow the effect of the interferometer sequence for a
two-level atom, where the relevant states are labeled as |g〉 and
|e〉. The unitaries for the π/2 and π pulses, including both the
spin and spatial components, with the spatial part consisting
of exponential momentum kicks provided by the pulses, are
given by [39,42]

Û π/2(t ) = 1√
2

I − i√
2

(|e〉 〈g| ⊗ e−iqx̂ + |g〉 〈e| ⊗ eiqx̂ ),

(A1)

Û π (t ) = −i(|e〉 〈g| ⊗ e−iqx̂ + |g〉 〈e| ⊗ eiqx̂ ), (A2)

where I is the identity on both the internal and spatial degrees
of freedom, and h̄q is the magnitude of the momentum kick.
From these unitaries, it can be seen that the π/2 pulse results
in the superposition of the states |g〉 and |e〉 (along with lower
and higher momenta) when acting on either one of |g〉 or |e〉,
while the π pulse takes each of these states to the other.

We can now proceed following a similar method to that in
Ref. [39]. Using the pulse unitaries, we can obtain the final
state |χ f 〉 for the experimental sequence described previously.
If we start with |χt=0〉 = |g〉 ⊗ |ψt=0〉, where |ψt=0〉 is the
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initial spatial component, we find that

|χ f 〉 = Û π/2Û FÛ π
botÛ

T Û π
topÛ

FÛ π/2 |χt=0〉

= |g〉 ⊗ −1

2
[Ûtop + Ûbot] |ψt=0〉

+ |e〉 ⊗ i

2
e−iqx̂[Ûtop − Ûbot] |ψt=0〉 . (A3)

Here, Û π
top/bot is a unitary such that the resulting effect is that of

a π pulse acting only on the top or bottom arm. For example,
after the first Û F , we have the state

|χU F 〉 = 1√
2

|g〉 ⊗ Û F |ψt=0〉 − i√
2

|e〉 ⊗ Û F e−iqx̂ |ψt=0〉 .

(A4)

Applying Û π
top to this gives

|χU π
top

〉 = 1√
2

|g〉 ⊗ Û F |ψt=0〉

− Û π i√
2

|e〉 ⊗ Û F e−iqx̂ |ψt=0〉

= 1√
2

|g〉 ⊗ Û F |ψt=0〉

− 1√
2

|g〉 ⊗ eiqx̂Û F e−iqx̂ |ψt=0〉 . (A5)

Both the first two pulses have a momentum kick of magnitude
h̄q. This is necessary if both arms are to be at zero momentum
at time t0. While the momentum kicks for the last pair of
pulses can be, in principle, arbitrary, choosing them to be h̄q
means that they would be separated in time by t0 as well.

Equations (2) and (3) were obtained by identifying the
spatial unitary sequences corresponding to state |g〉 of the top
and bottom arms, as signified in Eq. (A3). From Eq. (A3), we
obtain the probability of measuring state |g〉 of the atoms at
the end of the interferometer sequence, given by Pg, and the
expression for the coherence, Eq. (1).

Next, we elaborate on the derivation of Eq. (4). Taking Û F

to be

Û F = exp

[
− i

h̄

(
p̂2

2m
− mgx̂

)
t0

]
, (A6)

the last three terms in Eq. (2) give

Ûtop = Û F
(t0+τ,2t0+τ )Û

T
(t0,t0+τ )

× exp

[
− i

h̄

(
( p̂ − h̄q)2

2m
− mgx̂

)
t0

]
, (A7)

and the first three terms in Eq. (3) give

Ûbot = exp

[
− i

h̄

(
( p̂ − h̄q)2

2m
− mgx̂

)
t0

]
Û T

(t0,t0+τ )Û
F
(0,t0 ).

(A8)

Using these, the coherence can then be evaluated to get
Eq. (4).

APPENDIX B: CALCULATION OF FINAL STATE
OF ATOM IN MOVING TRAP

This section elaborates on the calculation in Sec. III.
Starting with Eq. (11), we first conduct a manipulation as

follows:
1

2
mω2

0[x̂ − sb(t )]2 − mgx̂

= 1

2
mω2

0[x̂ − s̃b(t )]2 − mgsb(t ) − mg2

2ω2
0

, (B1)

where s̃b(t ) = sb(t ) + g/ω2
0. The final state can now be

written as

|ψb, f 〉 = exp

[
i

h̄
Vb,dtm

]
�sc,bT̂

× exp

[
− i

h̄

∫ tm

0
dt

(
p̂2

2m
+ 1

2
mω2

0[x̂ − s̃b(t )]2

)]
|0〉 ,

(B2)

which is in terms of the explicit integral phase due to sb(t ) and
a time-ordered operator. Here,

�sc,b = exp

[
i

h̄

∫ tm

0
dt

(
mgsb(t ) + mg2

2ω2
0

)]
. (B3)

For future ease of calculation, we set sb(0) = −g/ω2
0, so

that s̃b(0) = 0. This simply means that we are considering a
diagram which is that of Fig. 1(b) subjected to a translation
along the x axis by −g/ω2

0 (zero gravitational potential is still
at x = 0). With s̃b(0) = 0 and

H0 = p̂2

2m
+ 1

2
mω2

0 x̂2, (B4)

Eq. (B2) can now be evaluated. The time-ordered element of
Eq. (B2),

|ψ̃ f 〉 = T̂ exp

[
− i

h̄

∫ tm

0
dt

(
p̂2

2m
+ 1

2
mω2

0[x̂ − s̃b(t )]2

)]
|0〉 ,

(B5)

can be split into a time-ordered product of exponential terms
consisting of the Hamiltonian Ĥ0 shifted in space as follows:

|ψ̃ f 〉 = e− i
h̄ p̂s̃b(tm−	t )e− i

h̄ Ĥ0	t e
i
h̄ p̂s̃b(tm−	t )

× e− i
h̄ p̂s̃b(tm−2	t )e− i

h̄ Ĥ0	t e
i
h̄ p̂s̃b(tm−2	t ) · · ·

e− i
h̄ p̂s̃b(0)e− i

h̄ Ĥ0	t e
i
h̄ p̂s̃b(0) |0〉 , (B6)

where 	t = tm/N in the limit N → ∞, s̃b(tm − n	t ) is s̃b

evaluated at tm − n	t with n an integer, and Ĥ0 is as in
Eq. (B4),

Ĥ0 = p̂2

2m
+ 1

2
mω2

0 x̂2. (B7)

We can combine the exponents of the consecutive terms
e

i
h̄ p̂s̃b(tm−	t )e− i

h̄ p̂s̃b(tm−2	t ) to be e
i
h̄ p̂˙̃sb(tm−2	t )	t , such that

|ψ̃ f 〉 = e− i
h̄ p̂s̃b(tm−	t )e− i

h̄ Ĥ0	t e
i
h̄ p̂˙̃sb(tm−2	t )	t

× e− i
h̄ Ĥ0	t e

i
h̄ p̂˙̃sb(tm−3	t )	t e− i

h̄ Ĥ0	t e
i
h̄ p̂˙̃sb(tm−4	t )	t · · ·

e− i
h̄ Ĥ0	t e

i
h̄ p̂˙̃sb(0)	t e− i

h̄ Ĥ0	t e
i
h̄ p̂s̃b(0) |0〉 . (B8)
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Unitaries of integer multiples of ±Ĥ0	t can now be inserted. This serves to “push” the various e− i
h̄ Ĥ0	t terms in Eq. (B8) all

the way to the right. Explicitly, this manipulation works as follows:

|ψ̃ f 〉 = e− i
h̄ p̂s̃b(tm−	t )e

i
h̄ Ĥ0	t e− i

h̄ Ĥ0	t e− i
h̄ Ĥ0	t e

i
h̄ p̂˙̃sb(tm−2	t )	t e

i
h̄ Ĥ02	t e− i

h̄ Ĥ02	t e− i
h̄ Ĥ0	t e

i
h̄ p̂˙̃sb(tm−3	t )e

i
h̄ Ĥ03	t e− i

h̄ Ĥ03	t e− i
h̄ Ĥ0	t

× e
i
h̄ p̂˙̃sb(tm−4	t )	t e

i
h̄ Ĥ04	t e− i

h̄ Ĥ04	t · · · e− i
h̄ Ĥ0(N−1)	t e− i

h̄ Ĥ0	t e
i
h̄ p̂˙̃sb(0)	t e

i
h̄ Ĥ0N	t e− i

h̄ Ĥ0N	t e− i
h̄ Ĥ0	t e

i
h̄ p̂s̃b(0) |0〉 . (B9)

It can be seen that the unitaries inserted are of the form e
i
h̄ Ĥ0n	t e− i

h̄ Ĥ0n	t , with n increasing to the right. Looking at the second
to the fourth lines of Eq. (B9), it can be seen that the operator p̂ is being evolved for time −n	t through the Hamiltonian Ĥ0.
Denoting this as p̂H (−n	t ), we get

|ψ̃ f〉= e− i
h̄ p̂s̃b(tm−	t )e

i
h̄ Ĥ0	t e

i
h̄ p̂H (−2	t )˙̃sb(tm−2	t )e

i
h̄ p̂H (−3	t )˙̃sb(tm−3	t ) · · · e

i
h̄ p̂H (	t−tm )˙̃sb(	t )	t e

i
h̄ p̂H (−tm )˙̃sb(0)	t e− i

h̄ Ĥ0N	t e− i
h̄ Ĥ0	t e

i
h̄ p̂s̃b(0)|0〉 .

(B10)

This can now be expressed in integral form in the limit
	t → 0 as

|ψ̃ f 〉 = e− i
h̄ p̂s̃b(tm )e

i
h̄

∫ tm
0 dt p̂H (t−tm )˙̃sb(t )e− i

h̄ Ĥ0tm e
i
h̄ p̂s̃b(0) |0〉 .

(B11)

With

ˆ̃x =
√

h̄

2mω0
(â† + â) (B12)

leading to p̂H (−	t ) simply taking the form of momentum
evolved through simple harmonic motion [91,93],

p̂H (t ) = 1

i

√
mω0 h̄

2
(âe−iω0t − â†eiω0t ). (B13)

|ψ̃ f 〉 can now be expressed in terms of the ladder operators
[45],

|ψ̃ f 〉 = e− i
h̄ p̂s̃b(tm )e

∫ tm
0 dt[α(t )â†−α(t )∗â]e− i

h̄ Ĥ0tm e
i
h̄ p̂s̃b(0) |0〉 ,

(B14)

with

α(t ) = −
√

mω0

2h̄
˙̃sb(t )eiω0(t−tm ). (B15)

From D(β1)D(β2) = eiIm(β1β
∗
2 )D(β1 + β2) [45], we obtain

the relation

e
∫ tm

0 dt[α(t )â†−α(t )∗â] = ei
∫ tm

0 dt2
∫ t2

0 dt1Im[α(t1 )α(t2 )∗]

× D

(∫ tm

0
dtα(t )

)
. (B16)

Plugging this into Eq. (B14) and simplifying, additionally
using the conditions s̃b(0) = 0 and H0 |0〉 = (h̄ω0/2) |0〉 [91],
we are finally left with

|ψ̃ f 〉 = exp

[
i

(
φb,1 + φb,2 − ω0tm

2

)]

× D

(√
mω0

2h̄
s̃b(tm) −

√
mω0

2h̄

∫ tm

0
dt ˙̃sb(t )eiω0(t−tm )

)
|0〉 ,

(B17)

where

φb,1 = mω0

2h
s̃b(tm)

∫ tm

0
dt ˙̃sb(t ) sin [ω0(t − tm)], (B18)

and

φb,2 = mω0

2h

∫ tm

0

∫ t2

0
dt1dt2 ˙̃sb(t1)˙̃sb(t2) sin [ω0(t1 − t2)].

(B19)

Equation (B2) can finally be expressed in terms of the
displacement operator as follows:

|ψb, f 〉 = �sc,b exp

[
i

(
φb,1 + φb,2 − ω0tm

2
+ Vb,dtm

h̄

)]

× D(αbot) |0〉 , (B20)

where

αbot =
√

mω0

2h̄
s̃b(tm) −

√
mω0

2h̄

∫ tm

0
dt ˙̃sb(t )eiω0(t−tm ). (B21)

If the initial state in the trap is not |0〉 but is instead a
coherent state |β〉, the calculations in this section follow up
to and including Eq. (B14) (with |0〉 replaced by |β〉). From
that point onwards, the evaluation proceeds as follows:

Hamiltonian evolution acts on |β〉 as [94]

e− i
h̄ Ĥ0tm |β〉 = |e−iω0tmβ〉 = β(tm). (B22)

The final state for the bottom trap will now be given by

|ψb, f 〉β = �sc,b exp

{
i

[
φb,1 + φb,2 + Vb,dtm

h̄

+ Im[αbotβ
∗(tm)]

]}
D[αbot + β(tm)] |0〉 . (B23)

Comparing with Eq. (B20), it can be seen that |β〉 simply
resulted in shifting the final coherent state and introducing a
different phase. We can now write down the updated coher-
ence for |β〉,

Cβ = eiφTOT exp{iIm[(αtop − αbot )β
∗(tm)]}

× | 〈αbot + β(tm)| αtop + β(tm)〉|. (B24)

This can be used to evaluate the coherence for the case where
the initial trap state is a thermal state. That is, for the thermal
state distribution [46]

P(β, β∗) = 1

π n̄
e− |β|2

n̄ , (B25)
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the coherence is

Ctherm = eiφTOT | 〈αbot + β(tm)| αtop + β(tm)〉|

×
∫

d2β
e−|β|2/n̄

π n̄
exp{iIm[(αtop − αbot )β

∗(tm)]}.
(B26)

This can be evaluated to obtain

Ctherm = eiφTOT e− n̄
4 |αtop−αbot|2 | 〈αbot + β(tm)| αtop + β(tm)〉|.

(B27)

Combining this with the fact that | 〈αbot + β(tm)| αtop +
β(tm)〉| = | 〈αbot| αtop〉| and using the relation in Eq. (19), we
get Eq. (24).

APPENDIX C: SENSITIVITY ELABORATION

Following from Eq. (40), the density of atoms ρatom(t0)
right before the trap is turned on is approximated by

ρatom(t0) = ρMOT

(
rMOT

r(t0)

)3

. (C1)

The volume of a far-off resonance trap can be taken to be
[50,51]

Vtrap = cV

λ
w4

0, (C2)

where

cV = −π2 ln (1 − η)
√

η

1 − η
, (C3)

where η = kBTtrap/Vd is a constant, whose value we take to be
0.4 as was also given in Ref. [51], such that

Vtrap = 0.417
π2

λ
w4

0. (C4)

For mathematical convenience, making the approximation
that the optical dipole trap is turned on abruptly, the number
of atoms Natom,trap that get trapped is given by Natom,trap ≈
ρatom(t0) Vtrap such that

Natom,trap ≈ 0.417
π2

λ
ρMOT

(
rMOT

r(t0)

)3

w4
0. (C5)

APPENDIX D: INTRINSIC LASER NOISE ELABORATION

In this section, we show the derivation of results of
Sec. IV B. If we consider the peak electric field to be Ep, we
can approximate the electric-field operator Êp in terms of the
operator for the number N̂ of photons to be [95]

|Êp| =
√

2h̄ν
(
N̂ + 1

2

)
ε0VOL

, (D1)

where ν is the (noiseless) frequency of the light creating
the optical dipole trap, VOL is the volume of the cavity in
which the trap is located, and N̂ |n〉 = N |n〉, with |n〉 being
harmonic-oscillator eigenstates and N being the total number
of photons. Note that the original formalism in Ref. [95] is for
a one-dimensional cavity, but we very approximately apply it
to a Gaussian beam.

With the distribution of N as given in Eq. (55), we can
use the relationship between the intensity and the electric
field [43],

Im = 1
2 nrε0c|Ep|2, (D2)

to find the distribution of Im(t ):

〈〈Im(t ′)Im(t )〉〉 − 〈〈Im(t )〉〉2

=
(

h̄ν

πw2
0

)2(c

l

)2
(

nr√
κ

)2

N̄κe−κ|t ′−t |, (D3)

where l is the length of the cavity and nr is the cavity’s refrac-
tive index. Here, VOL = πw2

0 l . Instead of explicitly deriving
this expression, we can make a qualitative argument to obtain
it. The coefficients consist of the square of the energy per
unit area of a single photon divided by the time taken for the
photon to cross the cavity (hence, the square intensity of a
single photon), multiplied by the distribution of photons in
the cavity as given by Eq. (55).

We can use the relation N = CI Im, and Eqs. (56) (expres-
sion for CI ), and (42) (spring constant in terms of Im/Isat),
to convert Eq. (D3) to Eq. (57) (the spring constant noise
distribution).

To conduct numerical evaluations, in the case of a cavity,
we can express κ in terms of the cavity’s finesse F . Using the
following equations from Klein [96] for a Fabry-Pérot cavity,

Q = −2πνc,0
E

dE/dt
, Q = νc,0

	νc
, and F = c/(2nl )

	νc
,

(D4)

where Q is quality factor of the cavity, E is the energy in
the cavity, νc,0 is the cavity’s resonant frequency, 	νc is the
linewidth of the cavity’s resonance curve, l its length, and n is
an integer, we find that

E = E0 exp [−κt], (D5)

where κ = (πc)/(nlF ) and is the constant of energy decay.
We set n = 1.

APPENDIX E: CENTER OF TRAP
AND TRAP DEPTH NOISE EVALUATION

Equation (68) can be rewritten as

|ψb, f 〉noise

= �̃sc,b exp

[
i

h̄

∫ tm

0
dtVb,d (t )

]

× T̂ exp

[
− i

h̄

∫ tm

0
dt

(
p̂2

2m
+ 1

2
mω2

0,b[x̂− η̃b(t )]2

)]
|0〉 ,

(E1)

where η̃b(t ) = sb(t ) − ηb(t ) + ηb(0) + g/ω2
0,b with the sub-

script b denoting that the quantities are for the “bottom” trap.
Here,

�̃sc,b = exp

[
i

h̄

∫ tm

0
dt

(
−mgsη,b(t ) + mg2

2ω2
0,b

)]
, (E2)

where sη,b(t ) = −sb(t ) + ηb(t ) − ηb(0). The time-ordered ex-
ponential is of the same form as that evaluated in Sec. III A so
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its results can be used directly, with −sb(t ) being replaced by
sη,b(t ) and s̃b(t ) by η̃b(t ). As such, we have the new parame-
ters α̃bot(η̃b(t ), ˙̃ηb(t )), φ̃b,1(η̃b, ˙̃ηb), and φ̃b,2( ˙̃ηb). Similarly, we
obtain the expression for |ψt, f 〉noise = Û T

move|	x̂=−L |0〉, where

α̃top has the same form as α̃bot, with the exception that the
subscripts are now t instead of b.

For φ̃TOT as given in Eq. (69), setting ω0,t = ω0,b to some-
what simplify the expression, α̃∗

botα̃top is given by

α̃∗
botα̃top = mω0

2h̄
η̃b(tm)η̃t (tm) − mω0

2h̄

∫ tm

0
dt[η̃b(tm) ˙̃ηt (t ) + η̃t (tm) ˙̃ηb(t )] cos [ω0(t − tm)]

+ mω0

2h̄

∫ tm

0

∫ tm

0
dtdt ′ ˙̃ηb(t ) ˙̃ηt (t

′) cos [ω0(t − tm)] cos[ω0(t ′ − tm)]

+ mω0

2h̄

∫ tm

0

∫ tm

0
dtdt ′ ˙̃ηb(t ) ˙̃ηt (t

′) sin [ω0(t − tm)] sin[ω0(t ′ − tm)]

− i
mω0

2h̄

∫ tm

0
dt[η̃b(tm) ˙̃ηt (t ) − η̃t (tm) ˙̃ηb(t )] sin [ω0(t − tm)]

+ i
mω0

2h̄

∫ tm

0

∫ tm

0
dtdt ′ ˙̃ηb(t ) ˙̃ηt (t

′) cos [ω0(t − tm)] sin[ω0(t ′ − tm)]

− i
mω0

2h̄

∫ tm

0

∫ tm

0
dtdt ′ ˙̃ηb(t ) ˙̃ηt (t

′) sin [ω0(t − tm)] cos[ω0(t ′ − tm)]. (E3)

Continuing the center of trap noise calculation, with conditions as given in Sec. IV C, we can write the variance of φ̃TOT,A(tm)
to be

σ 2
φ̃TOT,A

= 〈〈φ̃TOT,A(tm)2〉〉 − 〈〈φ̃TOT,A(tm)〉〉2

=
(mg

h̄

)2
∫ tm

0

∫ tm

0
dtdt ′[〈〈ηt (0)2〉〉 − 〈〈ηt (0)ηt (t

′)〉〉 − 〈〈ηt (t )ηt (0)〉〉 + 〈〈ηt (t )ηt (t
′)〉〉] + terms for ηb. (E4)

σ 2
φ̃TOT,A

characterizes the variance in the interferometer space-time area covered.

Now we have an expression for σ 2
φ̃TOT,A

in terms of the correlation functions of the noise terms ηt and ηb. Plugging in appropriate

versions of Eq. (71) by setting none, one, or both of t and t ′ to zero, we find the general expression

σ 2
φ̃TOT,A

=
(mg

h̄

)2
∫ ∞

−∞
df [Sη,t ( f ) + Sη,b( f )]

[
1

2π2 f 2
− cos (2π f tm)

2π2 f 2
+ t2

m − tm sin (2π f tm)

π f

]
. (E5)

APPENDIX F: CALCULATION OF TRANSITION PROBABILITY DURING HOLD

Here, we detail out the calculation for the probability of transition from the harmonic-oscillator ground state to second-excited
state that occurs when the atom is on hold in the trap, as discussed in Sec. IV E. Here, k(t ) = k0 + δk(t ), and Eq. (81) becomes

p(1)
h (t ) =

∣∣∣∣∣∣
√

2

8

∫ t0+tr+tt

t0+tr

d
dt ′ [δk(t ′)]

k0 + δk(t ′)
exp

⎡
⎣2iω0

∫ t ′

0

√
1 + δk(t )

k0
dt

⎤
⎦dt ′

∣∣∣∣∣∣
2

. (F1)

We can work without the square root in the integral by taking (δk(t )/k0) � 1, such that p(1)
h (t ) is approximated to be

p(1)
h (t ) =

∣∣∣∣∣
√

2

8

∫ t0+tr+tt

t0+tr

d
dt ′ [δk(t ′)]

k0 + δk(t ′)
exp

[
2iω0t ′] exp

[
iω0

k0

∫ t ′

0
δk(t )dt

]
dt ′

∣∣∣∣∣
2

. (F2)

To remove the derivative of δk(t ) we can do integration by parts to rewrite the equation as

p(1)
h (t ) =

∣∣∣∣
√

2

8

[
ln

(
k0 + δk(t ′)

k0

)
exp[2iω0t ′] exp

[
iω0

k0

∫ t ′

0
δk(t )dt

]]t0+tr+tt

t0+tr

−
√

2

8

∫ t0+tr+tt

t0+tr

ln

(
k0 + δk(t ′)

k0

)

×
(

2iω0 + iω0δk(t ′)
k0

)
exp[2iω0t ′] exp

[
iω0

k0

∫ t ′

0
δk(t )dt

]
dt ′

∣∣∣∣
2

. (F3)
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Here, we can make an approximation where we consider the contribution by exp[ iω0
k0

∫ t ′

0 δk(t )dt] to be negligible, such that

p(1)
h (t ) ≈

∣∣∣∣
√

2

8

[
ln

(
k0 + δk(t ′)

k0

)
exp[2iω0t ′]

]t0+tr+tt

t0+tr

−
√

2

8

∫ t0+tr+tt

t0+tr

dt ′ ln

(
k0 + δk(t ′)

k0

)(
2iω0 + iω0δk(t ′)

k0

)
exp[2iω0t ′]

∣∣∣∣
2

.

(F4)

After Taylor expanding the logarithmic term and neglecting terms of order [δk(t ′)/k0]2, we finally get

p(1)
h (t ) = 1

8mk0

∫∫ t0+tr+tt

t0+tr

δk(t ′)δk(t )e2iω0(t ′−t )dt ′dt . (F5)
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