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Blocking particle dynamics in a diamond chain with spatially increasing flux

Tomonari Mizoguchi ,1,* Yoshihito Kuno ,2 and Yasuhiro Hatsugai 1

1Department of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
2Graduate School of Engineering Science, Akita University, Akita 010-8502, Japan

(Received 23 August 2023; accepted 2 May 2024; published 22 May 2024)

Spatial nonuniformity in tight-binding models serves as a source of rich phenomena. In this paper we study a
diamond-chain tight-binding model with a spatially increasing magnetic flux at each plaquette. In the numerical
studies with various combinations of the minimum and maximum flux values, we find the characteristic dynamics
of a particle, namely, a particle slows down when approaching the plaquette with π flux. This originates from
the fact that the sharply localized eigenstates exist around the π -flux plaquette. These localized modes can be
understood from a squared model of the original one. This characteristic blocked dynamics can be observed in
photonic waveguides or cold atoms.
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I. INTRODUCTION

The dynamics of particles in tight-binding models has
attracted considerable interest. The particle dynamics con-
tains a variety of useful information about the properties of
the systems, such as the localized nature [1] and nontriv-
ial topology [2–11]. It also provides a novel notion based
on the dynamical properties [12–14]. Moreover, such dy-
namical properties have become experimentally accessible.
The tight-binding-type models were originally introduced to
describe the electronic structures in solid. Recently, it has
been recognized that tight-binding models describe various
systems having discrete translational symmetry, such as ul-
tracold atoms in an optical lattice [15–18], light in photonic
waveguides [19,20], and wave motion in mechanical systems
[21,22].

The roles of spatial modulations of Hamiltonians in wave
functions and dynamics have also attracted considerable inter-
est. One of the most well-known phenomena induced by the
spatial modulation is Anderson localization [23–25], where
disorders turn extended wave functions into exponentially
localized ones. The drastic change of the wave functions
is also caused by disorder-free modulations. For instance, a
uniform electric field that causes a linear potential induces
the localization of the wave functions, which is called the
Wannier-Stark localization [26]. Then the resulting dynamics
becomes oscillatory rather than accelerated. This oscillation
of the particle dynamics, called Bloch oscillation, has been
experimentally realized in various artificial setups [27,28].
Recently, the roles of the characteristic band structures and
Bloch wave functions, such as Dirac fermions and flat bands,
in the aforementioned electric-field-induced phenomena have
been investigated extensively [29–32].

In this paper we seek another disorder-free modulation
of Hamiltonians that causes the characteristic dynamics of
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tight-binding models. Specifically, we introduce the diamond-
chain model with a spatially increasing flux. The diamond
chain is a one-dimensional corner-sharing network of square
plaquettes (Fig. 1). In the tight-binding models of this lat-
tice, we can introduce the flux at each plaquette as a Peierls
phase. In fact, the effects of the uniform flux in the diamond
chain have been studied intensively. When the flux is equal
to π (per flux quantum), all the bands become completely
dispersionless, resulting in the complete confinement of the
particle motion. Such a flux-induced localization, called an
Aharonov-Bohm cage [33–40], has been experimentally re-
alized in various setups such as photonic crystals [41–43],
ultracold atoms [44] superconducting circuits [45] and LC
circuits [46,47]. (We summarize the characteristic band struc-
tures for the uniform flux case in Appendix A.)

In the present work we consider the case where the fluxes
penetrating the leftmost and rightmost plaquettes are �min

and �max, respectively, and the flux between them is in-
creased linearly. We investigate the characteristic localization
and dynamics of this model. We first investigate the case
of (�min,�max) = (0, π ). We reveal that the eigenstates can
be categorized into several types. Among them, we find that
sharply localized eigenstates near the π -flux plaquette appear
whose energy is close to the finite-energy flat band in the
uniform π -flux case. We also investigate the single-particle
dynamics where the particle is initially localized at one or a
few sites. We find a characteristic feature of the wave front,
namely, the particle slows down as it approaches the π -flux
plaquette. Remarkably, this behavior resembles neither the
ballistic motion of the uniform system nor the Bloch oscil-
lation in the linear potential. On the basis of these results, we
further study the cases of various choices of �min and �max.
We find that the localized states around the π -flux plaquette
appear ubiquitously and such states serve as a blockade of the
particle dynamics.

The rest of this paper is structured as follows. In Sec. II
we introduce our model and its basics such as symmetries.
Our main results of this work are presented in Sec. III. We
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FIG. 1. Schematic of the diamond-chain model with spatially
increasing flux.

study in detail the cases where the flux is increased from 0
to π and from 0 to 2π . Based on these results, we discuss
the particle dynamics of various combinations of �min and
�max. Section IV is devoted to a comparison between the
diamond-chain model and the other models with increasing
magnetic flux to elucidate the uniqueness and ubiquity of
the diamond chain. We also address another aspect of the
characteristic dynamics, namely, the early-time dynamics. We
present a summary of this paper and several perspectives for
future work in Sec. V.

II. MODEL

We study the tight-binding Hamiltonian

H =
L∑

n=1

c†
A,n(cB,n + cC,n) + c†

A,n+1(e−i�n cB,n + cC,n) + H.c.,

(1)

where cA,n, cB,n, and cC,n are annihilation operators and �n

is a spatial-dependent flux. Note that we focus on the open
boundary case and the total number of sites is Nsite = 3L + 1.
For convenience, we introduce the matrix representation of
this Hamiltonian

H = ĉ†Hĉ, (2)

where ĉ is the column vector of the annihilation operator
and H is the Hamiltonian matrix. The H preserves the chiral
symmetry, namely, H satisfies gHg = −H, where

[g]i j = giδi, j, (3)

with gi = +1 (−1) for i ∈ A (i ∈ B,C). By diagonalizing the
Hamiltonian, we have

H =
∑

ν

ενα
†
ναν, (4)

where

α†
ν =

∑
i

ψν (i)c†
i (5)

is the creation operator of the νth eigenstate, αν is its
Hermitian conjugate, and ψν (i) is the wave function at site
i.

In the following, we study the case of spatially in-
creasing flux. Specifically, we set �n = �min + 	�(n − 1),
with 	� := �max−�min

L−1 . This situation induces a different
strength of flux for each plaquette in the system, as shown
in Fig. 1. Before proceeding to the numerical results of
various (�min,�max), we address the generic properties of

FIG. 2. Schematic of the Hamiltonian hA.

the eigenvalues and eigenstates. First, the chiral symme-
try of H indicates that the positive- and negative-energy
modes appear in a pairwise manner and that there exist
degenerate zero-energy modes, whose number is equal to
|Tr(g)| = (L − 1) [48–51]. In fact, the degenerate zero-energy
modes are spanned by the compact localized states, shown in
Appendix B.

Second, the chiral symmetry also indicates that taking
a square of the Hamiltonian provides a perspective on the
finite-energy modes [42,52–59]. If we align the basis ĉ as
ĉ = (cA,1, . . . , cA,L+1, cB,1, . . . , cB,L, cC,1, . . . , cC,L )T, we can
write the Hamiltonian matrix in the form

H =
(
OL+1,L+1 
†


 O2L,2L

)
, (6)

where OM1,M2 stands for the M1 × M2 zero matrix and 
 is
the 2L × (L + 1) matrix that describes the hopping between
A sites and B or C sites. Taking the square of H, we have

H2 =
(

hA OL+1,2L

O2L,L+1 hB,C

)
, (7)

where hA := 
†
 and hB,C := 

†. Let uν be a normalized
eigenvector of hA with an eigenvalue Eν . Since hA is positive
semidefinite, Eν � 0 holds. In the following, we assume that
Eν > 0. Then we find the following two facts: (i) The vector
u′

ν = 1√
Eν


uν is a normalized eigenvector of hB,C and (ii) the

vector ψ±
ν = 1√

2
(uν,±u′

ν )T is an eigenvector of H with an

eigenvalue ±√
E [55,59,60]. The above facts, in combination

with an additional fact that the matrix elements of 
 are
restricted to pairs of neighboring sites, indicate the following:
If uν is a sharply localized wave function, so are u′

ν and
ψ±

ν . Let us focus on hA, which corresponds to a tight-binding
Hamiltonian of the (L + 1)-site chain. In Fig. 2 we show the
schematic of hA. It contains the on-site potentials and the
nearest-neighbor hoppings. In particular, the hopping param-
eter between the nth site and the (n + 1)th site is given by
tn,n+1 = t∗

n+1,n = 1 + ei�n . This indicates the following. Sup-
pose there exists a plaquette whose flux value is close to π ,
i.e., �n = π + δ�, with δ� a small number. Then the hop-
ping parameter is approximated as tn,n+1 ∼ −iδ�. This means
that the hoppings for hA near n corresponding to the π -flux
plaquette are largely suppressed, which gives rise to a sharply
localized eigenstate uν (but its state does not have compact
support due to the small finite contribution of hopping −iδ�
around the π -flux plaquette). Turning to the diamond chain,
the resulting ψ±

ν around the π -flux plaquette is sharply local-
ized too, as we will see in the next section.
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FIG. 3. (a) Energy spectrum and (b) DOS for (�min,�max) =
(0, π ), L = 200. In (b) the contribution from the degenerate zero-
energy modes is excluded. (c) Gap between the zero-energy mode
and the lowest positive-energy mode, 	, as a function of L.

III. RESULTS

In this section we present our numerical results on
the diamond-chain model for various combinations of
(�min,�max).

A. Case of (�min,�max ) = (0, π)

We first focus on the case of (�min,�max) = (0, π ). In fact,
the detailed analysis of this case is helpful for understanding
the generic cases of (�min,�max). In particular, the role of the
π -flux plaquette is elucidated.

We first study the energy spectrum and energy eigenstates.
In Fig. 3(a) we plot the energy spectrum. We see that the
zero-energy modes are macroscopically degenerate, as we
mentioned in the preceding section.

In Fig. 3(b) we plot the density of states (DOS) for the
nonzero energy modes, defined as

DOS(ω) = − 1

πNsite

∑
ν �=zero modes

Im

(
1

ω + iη − εν

)
. (8)

Here η is a small parameter set as η = 0.03 so that the
DOS becomes reasonably smooth as a function of ω. As
indicated in Eq. (8), we exclude the degenerate zero-energy
modes that give a divergent contribution to the DOS near
ω = 0, in order to clarify the contribution from nonzero-
energy modes. We see that the DOS drops around ω = 0. We
also see the large DOS around ω = ±2, which corresponds
to the energy of the perfect flat bands for the π -flux case
(see Appendix A).

The drop of the DOS around ω = 0 raises the ques-
tion whether the first excited state above the zero-energy
modes, i.e., the (2L + 1)th mode, has a finite-energy gap or
not. To see this, in Fig. 3(c) we plot the energy gap be-
tween the (2L + 1)th mode and the zero-energy mode, 	,
as a function of L. We find that 	 can be fitted as 	 ∼
1.564L−0.485. Therefore, the spectrum is gapless around the
zero energy. It is worth noting that, for the uniform flux case,
the gapless spectrum is realized only when � = 0, where
the finite-energy bands exhibit the Dirac-like linear spectrum
(see Appendix A).

We now turn to the features of the wave functions. In Fig. 4
we plot the probability density distribution for several values
of ν. We focus on 1 � ν � L + 1, i.e., the negative-energy
sector. We find a rich structure of the eigenstates, depending
on its eigenenergy. The most characteristic state is Fig. 4(d),
where the wave function is compact and localized at the right
edge. In fact, this is the right-edge mode whose eigenenergy is
−√

2 and whose exact wave function is shown in Appendix C.
We label the annihilation operator of this edge mode as R−;
hereafter, the index − stands for the negative-energy sector.
Note that this edge mode is the same as that for the uniform
π -flux case [42]. The remaining states are categorized into
the following three types: (i) At the band edge [Figs. 4(a)
and 4(f)], the wave functions are localized at the left edge.
We call these modes the band-edge (BE) modes and we rep-
resent their annihilation operator by Xν,−. (ii) For the state
with E ∼ −2, which corresponds to the finite-energy flat band
for the uniform π -flux case (Appendix D), the wave func-
tions are sharply localized near the π -flux plaquette shown
in Fig. 4(c). We call these modes the π -flux-localized (PFL)
modes and represent their annihilation operators by Yν,−. (iii)
The intermediate states have moderate amplitudes on the left
side of the system and a vanishingly small amplitude on the
right side. The typical probability density distributions of the
modes are shown in Figs. 4(b) and 4(e). We call these modes
the intermediate (Int) modes and represent their annihilation
operators by Zν,−. Note that the origin of the PFL modes can
be accounted for by the squared Hamiltonian, as we saw in the
preceding section. Also, many of the sharply localized states
tend to have a high weight in the right half of the system, since
the hopping amplitude for hA, |tn,n+1| = |1 + ei�n |, becomes
smaller as n becomes larger.
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FIG. 4. Probability density distribution |ψν (i)| for (�min, �max) = (0, π ), L = 200, and (a) ν = 1, (b) ν = 30, (c) ν = 100, (d) ν = 164,
(e) ν = 184, and (f) ν = 201. The blue, orange, and green dots are for sublattices A, B, and C, respectively (the orange dots overlap the green
ones). The corresponding eigenenergies are (a) −2.82, (b) −2.52, (c) −2.00, (d) −√

2, (e) −1.00, and (f) −0.12.

Summarizing, we can explicitly write the structures of the
eigenstates as

H = H+ + H−, (9)

where

H− = −
√

2R†
−R− +

∑
ν∈BE

εBE
ν X †

ν,−Xν,−

+
∑

ν∈PFL

εPFL
ν Y †

ν,−Yν,− +
∑
ν∈Int

εInt
ν Z†

ν,−Zν,− (10)

represents the negative-energy part and H+ is the chiral coun-
terpart of H− corresponding to the positive-energy part. Note
that the degenerate zero-energy modes do not appear in the
Hamiltonian. We remark that we do not specify a clear crite-
rion for classifying X , Y , and Z since changes among them
are crossoverlike rather than sharp deformations. The clas-
sification nevertheless gives useful insight for understanding
the physical properties of this model, as we will argue in the
following.

We next elucidate whether the above three types of states
X , Y , and Z are localized or not. To this end, we investigate
the scaling behavior of the inverse participation ratio (IPR),
defined as

Pν =
∑

i

|ψν (i)|4. (11)

In Fig. 5(a) we plot the IPR for the negative-energy sector for
L = 200. Clearly, the compact right-edge mode has the largest
IPR. The PFLs exhibit the secondary peak. The remaining
states have small IPR, but the BE states have slightly larger
IPR than the rest of the states. In Fig. 5(b) we plot the system-
size dependence of the X , Y , and Z states. For all states,
the IPR is fitted by the power function Pν = xL−y. Again, as
expected, the Z state has the largest exponent (y = 0.865),
the X state has the second largest (y = 0.496), and the Y
state exhibits the almost localized tendency (y = 0.220). From

these results, it is quantitatively clear that the PFL states have a
distinctively localized character compared with the remaining
states.

Finally, we investigate the single-particle dynamics
described by the unitary time evolution. Let |φ(0)〉

FIG. 5. (a) IPR for the negative-energy sector for L = 200. (b) L
dependence of the IPR for ν = 1 (blue dots), ν = (3/10)L (orange
dots), and ν = L/2 (green dots). The lines are the fitting curves.
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FIG. 6. Time evolution of the probability density distribution per
unit cell for the initial condition (a) φ1,A(0) = 1 and (b) φ1,B(0) =
φ1,C = 1/

√
2. (c) Coordinate of the wave front divided by time for

(a).

be an initial state. Then, at the time t , the state is given as

|φ(t )〉 = e−iHt |φ(0)〉 =
∑

ν

ϕν (t ) |ν〉 , (12)

ϕν (t ) = 〈ν |φ(t )〉 = ϕν (0)e−iεν t , (13)

where |ν〉 := α†
ν |0〉 (|0〉 represents the vacuum) and we set

h̄ = 1.

In Fig. 6 we plot the time evolution of the probability
density per unit cell,

Nn(t ) =
{|φA,n(t )|2 + |φB,n(t )|2 + |φC,n(t )|2, 1 � n � L

|φA,n(t )|2, n = L + 1,

(14)

with φi(t ) = 〈i |φ(t )〉 = 〈0| ci |φ(t )〉. In Fig. 6(a) [Fig. 6(b)]
we set the initial state as φ1,A(0) = 1 [φ1,B(0) = φ1,C (0) =
1/

√
2] and 0 otherwise. In other words, we set the initial states

where the particle localizes at the left edge and see how the
particle spreads in time evolution.

For both Figs. 6(a) and 6(b) we see a characteristic feature
of the wave front, namely, for small t (�100), the wave front
moves to the right. However, on approaching the right edge
(n � 120), it slows down and does not reach the right edge
even after a very long time (to t = 600). In Fig. 6(c) we plot
the coordinate of the wave front divided by time nwf/t , where
nwf is the value of n at which Nn(t ) takes the maximal value.
The initial state is the same as that for Fig. 6(a). We see that
nwf/t is a decreasing function of t , which clarifies the slowing
down of the particle dynamics. This behavior is understood
by the structure of the eigenstates, namely, as indicated in
Eqs. (12) and (13), the overlap between the initial state and
the eigenstates, φν (0), plays a decisive role in the quench
dynamics. In the present case, the initial state has a very tiny
overlap with the right-edge state and the PFL states. Since no
eigenstate other than the right-edge state and the PFL states
has a large weight near the right edge, the particle does not
reach the right edge.

It is also worth noting that the degenerate zero modes do
not affect the dynamics for Fig. 6(a) because these zero modes
do not have an amplitude at A sites, meaning that the zero
modes have zero overlap with the initial state. Considering the
fact that the characteristic slowdown of the wave front is seen
in both Figs. 6(a) and 6(b), we can conclude that this behavior
does not originate from the degenerate zero modes.

B. Case of (�min, �max ) = (0, 2π)

As another representative case, we study the case of
(�min,�max) = (0, 2π ). It is worth noting that the flux dis-
tribution in this case satisfies �n ≡ −�L+1−n (modulo 2π ),
which means that the right half of the system is the time-
reversal counterpart of the left half.1 The corresponding
symmetry of the Hamiltonian is elaborated in Appendix E.

In Fig. 7(a) the energy spectrum for L = 200 is plot-
ted. Remarkably, the energy spectrum looks quite similar
to that of Fig. 3(a). However, there is a sharp difference
from the previous case, that is, most of the finite-energy
modes have (quasi)twofold degeneracy. To see this, focus-
ing on the negative-energy modes, we plot δε

(1)
ν ′ := ε2ν ′ −

ε2ν ′−1 and δε
(2)
ν ′ := ε2ν ′+1 − ε2ν ′ (ν ′ = 1, . . . , L/2). We see

that δε
(1)
ν ′ (δε(2)

ν ′ ) is almost zero for ν ′ � 50 (ν ′ � 50). More
precisely, setting the numerical threshold as η′ = 10−5, we ob-
tain δε

(1)
ν ′ < η′ for ν ′ � 46 and δε

(2)
ν ′ < η′ for ν ′ � 54. Hence,

1Note that, when L is even, there is no plaquette exactly satisfying
�n = π . Specifically, �L/2 = π L−2

L−1 and �L/2+1 = π L
L−1 .
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(a)

(c)

(b)

FIG. 7. Results for L = 200 and (�min, �max) = (0, 2π ). (a) En-
ergy spectrum. (b) Energy gap between the neighboring eigenener-
gies (see the text for its definition). Red and blue dots represent δε

(1)
ν′

and δε
(2)
ν′ , respectively. (c) IPR for the negative-energy sector.

as shown in the inset of Fig. 7(b), among the negative-energy
modes (ν = 1, . . . , 201), those with ν = 93, . . . , 107 are non-
degenerate while the other modes have twofold degeneracy
within the numerical accuracy.

In Fig. 7(c) we plot the IPR for the negative-energy sector.
Note that for a twofold-degenerate pair ν1 and ν2, the IPR is
defined as

P(ν1,ν2 ) =
∑

i

( |ψν1 (i)|2 + |ψν2 (i)|2
2

)2

. (15)

We again see a sharp peak near E = −2, which originates
from the PFL states localized near n = L/2, i.e., the plaquettes
with �n ∼ π . We note that the edge state is absent in this

configuration; hence the peak of the IPR at E = −√
2 seen

in Fig. 5(a) is absent.
In Figs. 8(a) and 8(b) we plot the time evolution of the

probability density per unit cell for the same initial state as
that for Figs. 6(a) and 6(b), respectively. Remarkably, for both
cases, the particle starting from the left edge slows down as it
approaches the center of the system and it does not reach the
right half of the system.

We additionally consider the following two choices of the
initial state. The first one is the case where the particle starts
from the right edge [Fig. 8(c)]. We see that the particle does
not reach the left half of the system. This behavior indicates
that the PFL states obstruct the spreading of the particles, as
is the case of (�min,�max) = (0, π ). The second one is the
case where the particle starts from the center of the system
corresponding to the portion of the nearly-π -flux plaquette
[Fig. 8(d)]. We see that the spreading of the particle is highly
suppressed for a long time, which is further evidence that the
nearly-π -flux plaquette obstructs the particle dynamics.

C. Blocked dynamics due to the π-flux plaquette

From the results of Fig. 6 and Fig. 8, we see that the
PFL states serve as a blockade over which the particle cannot
spread. To further demonstrate this feature, we plot the time
evolution of the probability density for the several combina-
tions of (�min,�max) and the choices of the initial states.

In Figs. 9(a) and 9(b) we show the results for
(�min,�max) = (0, 1.5π ), where the nearly-π -flux plaquette
is located at n ∼ (2/3)L, i.e., n ∼ 133 for L = 200. As ex-
pected, the particle starting from the left (right) edge does not
go across the opposite side separated by the π -flux plaquette,
as shown in Fig. 9(a) [Fig. 9(b)]. In Fig. 9(c) we consider the
case where �min �= 0. Note that the spectrum around the zero-
energy modes is gapped, in contrast to the cases of �min = 0.
Clearly, the particle is again blocked by the π -flux plaquette,
indicating that the blocking of the π -flux plaquette occurs
regardless of the existence of the gap in the energy spectrum.

In Fig. 9(d) we consider the case of (�min,�max) =
(0, 4π ), where there are two nearly-π -flux plaquettes at n ∼
L/4, (3/4)L. We see that the particle starting at the middle
of the two nearly-π -flux plaquettes is confined in the region
between them.

Finally, in Fig. 9(e) we consider the case of (�min,�max) =
(0, 0.75π ), which does not contain the π -flux plaquette, to
clarify the essential role of the π -flux plaquette. We see that
the blocked dynamics is not seen, namely, the wave front
reaches the right edge around t ∼ 300, though its velocity
slightly decreases as it approaches the right edge.

From these results, the blocked dynamics due to the nearly-
π -flux plaquettes and the corresponding PFL states around
them is established.

IV. COMPARISON TO OTHER MODELS

In this section we show the results for two additional mod-
els with spatially increasing flux to make a comparison with
the diamond-chain model.
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FIG. 8. Time evolution of the probability density distribution per unit cell for the initial condition (a) φ1,A(0) = 1, (b) φ1,B(0) = φ1,C =
1/

√
2, (c) φL+1,A(0) = 1, and (d) φL/2+1,A(0) = 1. We set L = 200 and (�min, �max) = (0, 2π ).

A. Creutz ladder

The Creutz ladder has a feature similar to the diamond-
chain model, in that all bands, i.e., two bands in this case,
become flat at a specific value of complex hopping [10,61–
63]. It is also worth noting that the Creutz ladder is also

realized in various artificial systems [64,65]. Here we consider
a generalization of the Creutz ladder where the phase factors
of the complex hoppings are spatially increasing as described
in Fig. 10(a). Note that all bands become flat at � = π

2 for the
uniform case.

FIG. 9. Time evolution of the probability density distribution per unit cell for (a) (�min,�max) = (0, 1.5π ) and φ1,A(0) = 1,
(b) (�min, �max) = (0, 1.5π ) and φL+1,A(0) = 1, (c) (�min,�max) = (0.5π, 1.5π ) and φ1,A(0) = 1, (d) (�min, �max) = (0, 4π ) and φL/2,A(0) =
1, and (e) (�min, �max) = (0, 0.75π ) and φ1,A(0) = 1. The system size is L = 200.
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FIG. 10. (a) Schematic of the Creutz ladder with spatially in-
creasing phase factors. The time evolution of the probability density
distribution per unit cell is shown for (b) (�min, �max) = (0, π ) and
φn=1,u(0) = 1 and (c) (�min, �max) = (0, 0.3π ) and φn=1,u(0) = 1.
Note that n labels the column and the subscript u stands for the upper
row. We set L = 200 [the number of sites is 2(L + 1) = 402].

In Fig. 10(b) we show the particle dynamics for
(�min,�max) = (0, π ). Clearly, the particle slows down as
approaching n ∼ L/2, where the value of the phase factor is
close to that of the case of all bands flat, exhibiting similarity
to the diamond chain. For comparison, we also consider the
case of (�min,�max = 0, 0.3π ) [Fig. 10(c)], where none of
the phase factors corresponds to the case of all bands flat. In
this case, the blocking of the particle does not occur and it
reaches the right edge, which also resembles the result of the
diamond chain.

B. Two-leg ladder

We next consider the two-leg ladder model with a magnetic
flux [Fig. 11(a)]. In contrast to the diamond chain and Creutz
lattice, in the uniform case, the complete flat bands do not
appear at any value of the flux. It is worth noting that the
model with uniform flux has been studied as the thinnest limit
of the Hofstadter model [66–68].

In Figs. 11(b) and 11(c) we show the particle dynam-
ics starting from the left edge for (�min,�max) = (0, π )
and (�min,�max) = (0, 2π ), respectively. In Fig. 11(b) the

particle exhibits the standard spreading dynamics, reaching
the right edge after a certain time, and the reflected wave
arises, as expected. Meanwhile, in Fig. 11(c) the particle
sharply slows down around n ∼ 130, similar to the diamond
chain and the Creutz ladder. This behavior is nontrivial be-
cause the sharply localized eigenstates are expected to arise
for any value of flux. For further comparison, we show the
particle dynamics with the initial position being the middle of
the system in Fig. 11(d). We see that the blocking of the parti-
cle dynamics is much weaker than the diamond-chain case and
not a few amounts of the particle density propagate to the left
and right edges. Combining these results, we speculate that
there can be a universal, i.e., lattice-independent, mechanism
of the blocking dynamics by the spatially increasing flux even
without the localized wave functions unique to the all-flat-
band systems, but the degree of blocking is not as strong as
that of the all-flat-band systems such as the diamond chain and
the Creutz ladder. Further studies on a possible mechanism
are necessary to extract the uniqueness of the lattices with all
bands flat.

C. Early-time dynamics

We further make a comparison among three models from
a different point of view, namely, we focus on the early-time
dynamics for each model. The study of particle or correlation
spreading is interesting since real experiments can capture
such a spreading. For example, a recent optical lattice ex-
periment [69] observed the spread of correlation between a
doublon and holon in a quench dynamics and found a lin-
earlike propagation of it. Also, a cloud spreading has been
investigated in detail [70]. Some theoretical works about
quench dynamics of particle spreading in early time have been
reported [71,72]. Motivated by these works, we focus on the
early-time dynamics of the flat-band and the non-flat-band
models. Several behaviors are observed from our numerical
results.

(i) In the flat-band model with linearly increasing flux
(�min,�max) = (0, π ) [as shown in Fig. 6(a)], its dynamics
does not exhibit the linear spreading. We expect that such a
dynamics occurs for an initial particle put on any position.

(ii) In the two-leg ladder model with linearly increasing
(�min,�max) = (0, π ), linearlike spreading in 0 � t � 150 is
observed for an initial particle put on any position [as shown
in Fig. 11(b)].

(iii) For the two-leg ladder model with an initial position
being the left end, the secondary wave front is strongly sup-
pressed [the blue regions within 0 � t � 200 and 0 � n � 50
of Fig. 11(b) and 0 � t � 100 and 0 � n � 20 of Fig. 11(c)],
which is in contrast to the diamond chain. This might originate
from the chiral nature of the dynamics.

(iv) In the two-leg ladder model with linearly increasing
(�min,�max) = (0, 2π ), when the initial particle is set around
the π flux, the particle matter wave clearly exhibits a lin-
ear wave front [Fig. 11(d)]. This is significantly different
from that of the flat-band case, where the initial particle is
not spread, highly bounded around the π flux as shown in
Fig. 8(d).

In particular, observation (iv) implies that a highly lo-
calized eigenstate around the π -flux plaquette is absent
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(b)

(c)(a)

・・・

(d)

FIG. 11. (a) Schematic of the two-leg ladder with spatially increasing flux. The time evolution of the probability density distribution per unit
cell is shown for (b) (�min, �max) = (0, π ) and φn=1,u(0) = 1, (c) (�min, �max) = (0, 2π ) and φn=1,u(0) = 1, and (d) (�min, �max) = (0, 2π )
and φn=L/2+1,u(0) = 1. Note that n labels the column and the subscript u (l) stands for the upper (lower) row. We set L = 200 [the number of
sites is 2(L + 1) = 402].

in the two-leg ladder model, which is in contrast to the
flat-band models where the nonspreading dynamics is at-
tributed to the highly localized eigenstates [73]. These
behaviors, in particular, the difference between the flat-band
model and conventional dispersive band models, can be ob-
served in a real experiment such as photonic waveguides.

V. CONCLUSION

We have investigated the characteristic structures of the
eigenstates and resulting dynamics in the diamond-chain
model with spatially increasing flux. For the uniform flux
case, the remarkable feature of the diamond-chain model is
the realization of the all-flat-band system at the π flux. This
feature carries over to the spatially-increasing-flux case, in
that the sharply localized eigenstates emerge around the π -
flux plaquette. Consequently, the π -flux plaquette serves as
a blockade of the particle dynamics. Indeed, by investigating
the particle dynamics with the localized eigenstates, we find
that the particle slows down as it approaches the π -flux pla-
quette. This behavior of the particle dynamics is unique to
the present model, which does not resemble any of the con-
ventional spreading dynamics for itinerant systems, the Bloch
oscillation for the Wannier-Stark-type localized systems, or
the complete localization for the Aharonov-Bohm cages.

We conclude this paper by addressing future directions
for research. As for the single-particle dynamics, various
patterns of spatially varying flux, such as a random flux or
quasiperiodic flux, will be sources of unconventional features,
which we think are worth being studied. The investigation
of eigenstate properties of the squared Hamiltonian would
provide insight to help us understand the localization prop-
erties of the eigenstates of the original model. Considering

the many-particle system under the present setup is another
interesting direction because the π -flux blockade serves as
a novel mechanism of confining a particle which will lead
to slow thermalization or disorder-free localization. Finally,
the experimental realization of the present model will also
be an important issue. The photonic waveguides [41,42] and
ultracold atoms [18,74] will be possible platforms due to
the tunability of the effective magnetic flux. For instance,
Ref. [41] has suggested that the tight-binding model on the di-
amond chain with flux is realized as an effective Hamiltonian
of the periodically driven photonic waveguide, and the phase
factor can be locally determined by the phase modulation of
the driving term on each site. Hence, the spatially dependent
flux can be realized by tuning the site-dependent phase. Quite
recently, the electric circuit realization of the π -flux diamond
chain was also reported [46], which may offer another plat-
form for the experimental realization of our model.
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APPENDIX A: BULK SPECTRUM OF THE DIAMOND
CHAIN WITH FLUX

In this Appendix we review the bulk spectrum of the
diamond chain in the presence of the uniform flux �. For
the uniform flux, the transitional invariance is preserved;
hence we use the momentum-space description. The Bloch
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FIG. 12. Band structure for the diamond-chain model with uni-
form flux. The red solid, blue dashed, and green dotted lines are for
� = 0, π/3, and π , respectively.

Hamiltonian reads

H (k) =
⎛
⎝ 0 1 + e−i(k+�) 1 + e−ik

1 + ei(k+�) 0 0
1 + eik 0 0

⎞
⎠. (A1)

As mentioned in the main text, the model preserves the
chiral symmetry. In the momentum-space picture, this sym-
metry can be represented by ḡH (k)ḡ = −H (k), where ḡ =
diag(1,−1,−1). Since |Tr(ḡ)| = 1, there exists a zero-energy
mode for any k.

The dispersion relation can be obtained analytically by
again taking the square of the Hamiltonian

H2(k) =

⎛
⎜⎜⎝

| f1(k)|2 + | f2(k)|2 0 0

0 | f1(k)|2 f ∗
1 (k) f2(k)

0 f1(k) f ∗
2 (k) | f2(k)|2

⎞
⎟⎟⎠,

(A2)

where f1(k) = 1 + e−i(k+�) and f2(k) = 1 + e−ik . We can
easily find from Eq. (A2) that the eigenenergies of H2(k) are
0 and | f1(k)|2 + | f2(k)|2 (doubly degenerate). Consequently,
the eigenenergies and the eigenvectors of H (k) are given as

E±(k) = ±
√

| f1(k)|2 + | f2(k)|2,

uk,± = 1√
2[| f1(k)|2 + | f2(k)|2]

⎛
⎜⎝

√
| f1(k)|2 + | f2(k)|2

± f ∗
1 (k)

± f ∗
2 (k)

⎞
⎟⎠,

(A3a)

E0(k) = 0, uk,0 = 1√
| f1(k)|2 + | f2(k)|2

⎛
⎜⎝ 0

f2(k)
− f1(k)

⎞
⎟⎠.

(A3b)

It should be noted that at � = π we have E±(k) = ±2 for
any k, which means that all bands are flat in this case. In
Fig. 12 we plot the band structures for � = 0 (red solid lines),
π/3 (blue dashed lines), and π (green dotted lines).

FIG. 13. Schematics of (a) the CLS with E = 0, (b) the right-
edge state, and (c) the CLS with E = −2 for the uniform π flux.

APPENDIX B: COMPACT LOCALIZED STATE AT E = 0

In this Appendix we elucidate the compact localized state
(CLS) at E = 0. The guiding principle of constructing the
CLS is to set the amplitudes at A sites to be zero. For the con-
figuration of Fig. 13(a), we obtain the compact wave function
with finite amplitudes on only four sites. For its solution, the
above assumption leads to the three equations

ψB + ψC = 0, (B1a)

e−i�nψB + ψC + ψ ′
B + ψ ′

C = 0, (B1b)

and

e−i�n+1ψ ′
B + ψ ′

C = 0. (B1c)

From these equations, we obtain the wave function of the
CLS,

(ψB, ψC, ψ ′
B, ψ ′

C ) = 1

N

(
1,−1,−x1

x2
, e−i�n+1

x1

x2

)
, (B2)

where N is the normalization factor, x1 = e−i�n − 1, and x2 =
1 − e−i�n+1 . It is worth noting that the CLSs in general are not
orthogonal to each other, since the neighboring CLSs overlap.
We also note that the solution is not valid when �n+1 = 0
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because x2 = 0. In fact, in this case, the CLS is given as

(ψB, ψC, ψ ′
B, ψ ′

C ) = 1√
2

(0, 0, 1,−1), (B3)

which indicates that the CLS has finite amplitude on only two
sites rather than four sites.

APPENDIX C: RIGHT-EDGE STATE FOR �max = π

Here we discuss the right-edge state for �max = π . For
the uniform π -flux model, the compact edge states with the
eigenenergy ±√

2 appear [42]. Due to the compact nature,
we have the same edge states even in the present case of the
increasing flux with �max = π . To be specific, for the config-
uration of Fig. 13(b), the right-edge state has finite amplitudes
at only three sites, i.e., (B, L), (C, L), and (A, L + 1). For the
eigenstate with E = −√

2, the wave function is given as

(ψA,L+1, ψB,L, ψC,L ) =
(

1√
2
,

1

2
,−1

2

)
. (C1)

APPENDIX D: FINITE-ENERGY CLS FOR π FLUX

As mentioned in Appendix A, the case of the uniform flux
with � = π is special in that all bands are completely flat.
Therefore, the states with E = ±2 can also be given by the
set of CLSs. In Fig. 13(c) we present the wave function for
E = −2, which can be obtained by solving the Schrödinger
equation explicitly.

APPENDIX E: SYMMETRY OF THE HAMILTONIAN
FOR (�min, �max ) = (0, 2π)

We now discuss the symmetry of the Hamiltonian for the
case of (�min,�max) = (0, 2π ) and L is even. The Hamilto-

nian H satisfies the relation

PHP−1 = H, (E1)

where

[P](n,a),(m,a′ ) =

⎧⎪⎪⎨
⎪⎪⎩

1 for m = RA(n), a = a′ = A
ei�n for m = RB(n), a = a′ = B
1 for m = RC (n), a = a′ = C
0 otherwise,

(E2)

with RA(n) = L + 2 − n and RB(n) = RC (n) = L + 1 − n.
Let us discuss the consequence of this symmetry on the

dynamics. To be specific, we consider the case corresponding
to Fig. 8(d), where φL/2+1,A(0) = 1. In this case, the initial
state is at the center of the system. Noting that P |φ(0)〉 =
P−1 |φ(0)〉 = |φ(0)〉, where P denotes the operator repre-
sented by the matrix P , we have

φ(n,a)(t ) = 〈(n, a)| |φ(t )〉
= 〈(n, a)| e−iHt |φ(0)〉
= 〈(n, a)| Pe−iHt P−1 |φ(0)〉
= eiχ(n,a)〈(Ra(n), a) |φ(t )〉 , (E3)

where we have used 〈(n, a)| P = eiχ(n,a) 〈(Ra(n), a)| with the
phase factor χ(n,a) being determined by Eq. (E2). This leads
to the relation |φ(n,a)(t )| = |φ(Ra(n),a)(t )|, which means that the
particle density spreads in a symmetric manner. We note, how-
ever, that Nn(t ) plotted in Fig. 8(d) is not exactly symmetric
with respect to n = L/2 + 1 because the definition of Eq. (14)
is not symmetric.
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