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Proposal for implementing Stiefel-Whitney insulators in an optical Raman lattice
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The Stiefel-Whitney insultor is a two-dimensional topological insulator protected by parity-time (PT ) sym-
metry. With a vanishing Chern number, the topology in this system is characterized by second Stiefel-Whitney
class. We propose a feasible scheme to realize a four-band Stiefel-Whitney insultor with spin-orbit coupled
ultracold atoms in an optical Raman lattice. Four selected spin states are coupled by carefully designed Raman
lasers to generate the desired spin-orbit interactions with spacetime inversion symmetry. We map out a phase
diagram with respect to the experimental parameters, where a large topological phase region exists. We further
present two distinct detection methods to resolve the non-Abelian band topology, in both equilibrium and
dynamical ways. The detection relies on the spin textures extracted from the time-of-flight imaging, showing
the tomographic signatures in the ground states and long-time averaged patterns on certain submanifolds via a
bulk-surface duality. Our work paves a realistic way to explore novel topology inside real Berry bundles with
quantum matters.
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I. INTRODUCTION

The study of topological insulators (TIs) has been a ma-
jor focus in ultracold atoms [1–4] and condensed matter
physics [5–8] in recent decades. The early tenfold classifica-
tion based on fundamental symmetries, including antiunitary
time-reversal T , particle-hole C, and chiral S symmetry in
noninteracting fermionic systems, highlights the central role
of the system symmetries [9–11]. This approach has been
extended to unitary spatial symmetries [12,13], leading to
the theoretical discovery of crystalline-symmetry-protected
topological phases, such as the fragile topological insulators
[14–18] and the higher-order topological insulators [19–22].
In particular, the topological Euler phase and Stiefel-Whitney
insulator (SWI) protected by the combined symmetry of PT
with spatial inversion (P) or the two-fold rotations and TRS
(C2T ) has attracted considerable interest [23–32]. The SWI
is characterized by the second Stiefel-Whitney (SW) class of
the real ground states imposed by the protecting symmetry,
which is a crystalline-protected analog of the Chern num-
ber. The classification based on orthogonal K-theory for the
single-gap topology has been established [33], and the non-
Abelian aspect of multigap topology has been widely explored
[26,30]. Meanwhile, the SWI also manifests its intriguing
features in the semimetallic phases, such as the existence of
the point nodes and line nodes carrying a Z2 monopole charge
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[23,24,28], and higher dimensional generalizations [34,35].
Therefore, it is of paramount importance to verify the theo-
retical findings in a feasible experimental setup.

Ultracold atoms [1,2] provide a versatile platform for
quantum simulation due to the high tunability of the atom-
light interactions [36–45]. The creation of artificial gauge
fields [46–53] and spin-orbit coupling (SOC) [54–64] has led
to a plethora of experimental demonstrations of topological
phases [65–70]. The fast development of detection approaches
based on dynamical response [71–77] and band tomography
[78–83] has also contributed greatly to experimental progress.
However, previous experiments usually involve only Abelian
bands in an optical lattice. The engineering and detection of
topological bands with degeneracy and stabilized by certain
symmetries are still challenging.

In this paper we propose a practical approach to real-
izing a two-dimensional (2D) PT -symmetric SWI in an
optical Raman lattice. We include four selected spin states
in the ground-state manifold so that transitions driven by
the same Raman potentials share identical Clebsch-Gordan
coefficients. This results in the desired real hopping events,
which give rise to a low-energy s-band model that naturally
preserves the PT symmetry. The two degenerate s bands are
indexed by the second SW class. We map out a phase diagram
according to the second SW class and find a robust region
of SWI on the phase plane. Since the total Chern number is
zero and the degeneracy for occupied bands in SWI doesn’t
possess any featured points in momentum space, detection
through Hall drift [74,75] and Ramsey interferometry [71–73]
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is not suitable. To overcome this obstacle, we further show
the robustness of the SWI in our model by introducing a
T -broken term modified under an external magnetic field. We
also provide two detection methods to resolve the non-Abelian
band topology, based on equilibrium and dynamical schemes.
The equilibrium scheme requires tomography of the prepared
degenerate ground state through the quasimomentum distri-
bution of the spin textures extracted from time-of-flight (TOF)
imaging. To circumvent the O(2) gauge mixing of the raw data
from state tomography, we apply a parallel transport gauge
and calculate the second SW class, giving a direct probe of the
topology. The dynamical scheme probes the unitary evolution
following a sudden quench. The topological information is
rebuilt by the long-time averaged spin textures on the reduced
quasimomentum submanifold called the band inversion sur-
face (BIS), which is defined by the quenching axis. We show
the bulk-surface duality for our model by generalizing the
original Z class case [84–86].

The rest of this paper is organized as follows. In Sec. II
we introduce the concept and formulation of our target SWI
model and second SW class. In Sec. III we present a Raman
scheme coupling four selected internal states for alkali atoms
to realize a 2D SWI in a square optical lattice. To reveal non-
trivial topology in our proposed model, two distinct detection
methods are discussed, with an equilibrium scheme shown
in Sec. IV and a dynamical one shown in Sec. V, based on
achievable experimental techniques.

II. SW INSULATOR

Under a preserved spinless parity-time PT = K symme-
try, the SWI stands for a two-dimensional topological insulat-
ing phase characterized by a Z2 index called second SW class.
Such a Bloch Hamiltonian must obey (PT )H(kkk)(PT )−1 =
H(kkk) and thus has a representation containing only real ele-
ments, along with a set of real eigenstates. In particular, we
choose the set of real Dirac matrices satisfying the Clifford
algebra as γ1 = σ1 ⊗ τ0, γ2 = σ2 ⊗ τ2, γ3 = σ3 ⊗ τ0, while
the other two Dirac matrices γ4 = σ2 ⊗ τ1 and γ5 = σ2 ⊗ τ3

are purely imaginary, with σi and τi being two sets of the
Pauli matrices and σ0 and τ0 being the 2 × 2 identity matrix.
A four-band Bloch SWI Hamiltonian can be constructed in a
compact form [33]:

H(kkk) = ddd · γγγ + mzτ3, (1)

where d1 = 2t1 sin ky, d2 = 2t2 sin kx, d3 = δV − 2t3(cos kx +
cos ky). The energy of four Bloch bands are εn,±(kkk) =
(−1)(n)

√
(
√

d2
1 + d2

3 ± mz )2 + d2
2 (n = 1, 2), in which two

valence bands with n = 1 are globally degenerate for
mz = 0, otherwise they have only two accidental degener-
acy points residing at KKK± = (± cos−1[δV /(2t3) − 1], 0) or
(± cos−1[δV /(2t3) + 1], π ).

For two occupied bands, the second SW class can be cal-
culated by [24,26]

ν = 1

4π

∫
T 2

Tr[IFR] dkx dky mod 2,

≡ 1

2π

∫
T 2

F12
R dkx dky mod 2, (2)

FIG. 1. (a) Schematic of the setup for realizing the
Stiefel-Whitney insulator (SWI). The cold atom cloud is confined by
a magnetic trap and illuminated by laser fields, EEEx and EEEy, reflected
by mirrors, which create 2D optical lattice potentials and Raman
couplings in the x-y plane. (b) Related Raman transitions between
the involved spin states. Raman transitions M(1,2)

1 and M2 are driven
by distinctive two-photon processes with individual polarization
and frequency configurations. All these two-photon processes occur
between |e〉 and |g〉 states, as shown in the inset. (c) The s-band
structures along the high-symmetry lines in the first Brillouin zone
(shown in the inset) for the T 2 = −1 symmetric case (solid lines,
mz = 0) and the broken case (dashed lines, mz = 0.065Er). The color
indicates the value of 〈γ3〉 for the corresponding eigenstates. The
global degeneracy is lifted in the broken case. Parameters are chosen
as V0 = 3Er , M10 = M20 = M0 = Er , and δV = 0.3V0. (d) The
second SW class of the lowest bands with respect to the lattice depth
V0 and the Raman coupling strength M0. Er = (h̄kL )/2ma is the
recoil energy, with ma being the mass of the atom.

where I = −iσ2 is the generator of the SO(2) group, and
FR = [∇kkk × AAA(kkk)]z is the skew-symmetric non-Abelian Berry
curvature for the real bundle with the real Berry connection
AAAmn(kkk) = 〈um

kkk |∇kkk|un
kkk 〉, and |un

kkk〉 is a real occupied Bloch state.
Remarkably, the Z2 nature arises from the reduced orthogo-
nal K group, K̃O(S2) ∼= Z2 [24] and indicates the existence
of topological obstruction for representing the real occupied
states in spin structure. As shown in Eq. (1), besides PT = K
symmetry, the proposed Hamiltonian also respects the single
P and T 2 = 1 symmetry, with P = γ3 and T = γ3K, and
additional T 2 = −1 symmetry only when mz = 0. For more
discussion on extra symmetries, see Appendix A. The pertur-
bation mzτ3 distinguishes the SWI phase from T -invariant TIs
in two dimensions.

III. MODEL REALIZATION

In this section we propose a possible experimental scheme
to realize the SWI model (1) with ultracold alkali atoms
in an 2D tunable optical Raman lattice, as illustrated in
Figs. 1(a) and 1(b). To implement the real Bloch bands, we
use four Zeeman-split ground hyperfine levels in ground-state
manifold S1/2, namely, |e↑,↓〉 = |F + 1, mF = 1,−1〉 and
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|g↑,↓〉 = |F, mF = −1, 1〉, with the energy landscape shown
in Fig. 1(b), in which the Zeeman shift is δB(−δB) for |↑ (↓)〉
subspace. The lattice and Raman potentials are both gener-
ated by standing-wave light fields given by a monochrome
EEEx and a multifrequency EEEy, namely, EEEx = Exzeeez cos kLx +
iExyeeey sin kLx, and EEEy = ∑

i=1,2 E (i)
yz eeez sin kLy + Eyxeeex cos kLy,

where Eμν (μ, ν = x, y, z) are field components propagating
in the direction μ with polarization ν, the wave number kL of
EEEx and EEEy is approximately the same, and all other irrelevant
phases in light fields are ignored. The frequency difference be-
tween the two sets of beams compensates the Zeeman splitting
as ωxy − ωyx = δF , ωxz − ω(1)

yz = δF − 2δB, and ωxz − ω(2)
yz =

δF + 2δB, in which δF is the initial hyperfine splitting between
|F 〉 and |F + 1〉 (about several GHz). Affected by these light
fields, we show below that the motion of atoms is governed
by the following Hamiltonian (more details can be found in
Appendix B):

H =
[

ppp2

2ma
⊗ 111 + V̂latt (rrr)

]
+ M1(rrr)γ1

+ M2(rrr)γ2 + mzτ3, (3)

where ma is the atomic mass and mz is obtained by slightly
tuning Zeeman field strength.

The lattice potential V̂latt ∝ (E∗
x · Ex + E∗

y · Ey) is gen-
erally anisotropic in the x-y plane and forms a spin-
dependent square lattice, taking the form V̂latt (x, y) = (Vx ⊗
111 + δVxγ3) cos2(kLx) + (Vy ⊗ 111 + δVyγ3) cos2(kLy), in which
a constant term is dropped. Without loss of generality, we
consider the isotropic case and take Vx = Vy = V0, and δVx =
δVy = δV thereafter.

The Raman potential M1(rrr) and M2(rrr) are gener-
ated by two-photon processes between EEEx and EEEy. Due
to the selection rule, one Raman potential M1(rrr) =
M10 sin(kLx) cos(kLy) with M10 ∝ ( 1


1
− 1


2
)ExyEyx can be

generated only by Exy and Eyx components. The other is
driven by two distinctive processes contributed from Exz and
E (1,2)

yz , with M2(rrr) = M20 sin(kLy) cos(kLx) in which M20 ∝
( 1

1

− 1

2

)ExzEyz, where we just set Eyz ≡ E (1)
yz = E (2)

yz .
The key ideas of generating required Raman potential are

summarized as follows. First, the choice of spin states is
symmetric relative to mF = 0, which guarantees the strength
between two simultaneously driven parts in γ1 term is equal.
Moreover, the bias Zeeman field forbids possible contribution
from Exy and Eyx in the γ2 term by lifting degeneracy. These
features ensure the validity of our proposal.

We further take that bosons occupy the lowest s or-
bitals φs,σ τ (σ = e, g, τ =↑,↓), and consider only the
nearest-neighbor hoppings. Then we derive a tight-binding
Hamiltonian,

Hs =
∑

〈ij〉,σ �=σ ′,τ

t ij
1 c†

i,σ,τ cj,σ ′,τ +
∑

〈ij〉,σ �=σ ′
t ij
2 (c†

i,σ,↑cj,σ ′,↓

− c†
i,σ,↓cj,σ ′,↑) +

∑
〈ij〉,σ,τ

t ij
σ c†

i,σ,τ cj,σ,τ

+
∑

i

mz(ni,↑ − ni,↓) + δV (ni,e − ni,g), (4)

where c†
i,σ,τ (ci,σ,τ ) is the creation (annihilation) operator with

i = (ix, iy) denoting the lattice sites, the notation 〈ij〉 runs over
all nearest-neighbor sites, and ni,σ (τ ) = ∑

τ (σ ) c†
i,σ,τ ci,σ,τ is the

particle number operator. The strengths of related spin-flipped
nearest-neighbor hoppings are given by

t
�i�j
1 =

∫
d2rrrφ(i)

s,e↑[M10 sin (kLx) cos (kLy)]φ( j)
s,g↑,

t
�i�j
2 =

∫
d2rrrφ(i)

s,e↑[M20 sin (kLy) cos (kLx)]φ( j)
s,g↓, (5)

while the strengths of spin-conserved hoppings are given by

t�i�je =
∫

d2rrrφ(i)
s,eσ [

ppp2

2ma
+ V+(cos2 kLx + cos2 kLy)]φ( j)

s,eσ ,

t�i�jg =
∫

d2rrrφ(i)
s,gσ [

ppp2

2ma
+ V−(cos2 kLx + cos2 kLy)]φ( j)

s,gσ , (6)

with V± = V0 ± δV . We further perform a gauge transforma-
tion ci,g,τ → e−iπ (ix+iy )ci,g,τ to absorb the staggered sign in
the spin-flipped hopping terms. After Fourier transformation,
the Bloch Hamiltonian in kkk space reads Hs,kkk = ∑

kkk c†
kkkH(kkk)ckkk ,

with ckkk = (ckkk,e↑, ckkk,e↓, ckkk,g↑, ckkk,g↓)T, equal to Eq. (1) except
for additional term 2t0(cos kx + cos ky)γ0, where γ0 is 4 × 4
identity matrix and has no physical significance.

We numerically solve the continuous Hamiltonian (3) us-
ing a Fourier series expansion of a Bloch function (see
Appendix C). The structure of the lowest s bands is shown
in Fig. 1(c). The inversion of the spin polarization 〈γ3〉 in
the valence and conduction bands reveals the band repulsion
induced by the SOC, indicating the topological nature of our
model. This inspires a method to detect the topology of our
model, as we will discuss later. Furthermore, we map out the
phase diagram of the continuous Hamiltonian (3) based on the
second SW class of the valence bands. The second SW class
is numerically calculated using the four parities of the Bloch
states at high symmetric momentum points. We find a large
nontrivial regime on the phase plane in Fig. 1(d), which is
accessible with current technology. Two regimes with ν = ±1
are topologically equivalent due to their Z2 nature, but they
are separated by a gap-closing event where V0 = δV = 0.

IV. EQUILIBRIUM DETECTION

We now proceed to the direct probe of the second SW
class via an O(2) link method. We assume that the system is
prepared in its ground state with a half-filling condition,

|G〉 =
∏

k

a†
k,1+

∏
k

a†
k,1−|0〉, (7)

where a†
k,1± are occupied eigenmodes, related to Bloch

states expressed in the spin basis by |uα
k〉 = a†

k,α |0〉 =∑
β[uα

k]βc†
k,β |0〉, in which [uα

k]β is the β component with a
real value.

With the system cooling down to the ground state, we
then turn off the optical potential and perform TOF imag-
ing from which we obtain quasimomentum distribution of
occupied states nβ (k) = ∑

± |[u1±
k ]β |2 with contributions of

the two degenerate bands. Following [82,83], we’re able to
separately extract the Bloch states through an impulsive pulse
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TABLE I. Numerical results for topological index ν in different
realistic conditions (with periodic or open boundaries, with or with-
out trap). The size of the lattice is uniformly set to be 8 × 8. The
depth of harmonic trap is given by μT /t1 = 0.01. Other parameters
are t2/t1 = t3/t1 = 1, mz/t1 = 0.4.

δV /t1 Periodic Open Periodic+Trap Open+Trap

2 1.000 1.000 1.000 0.999
8 0 0 0 0

right before TOF to induce a rotation between different spin
components, which generally transform expectation values of
arbitrary Hermitian unitary matrices into measurable occu-
pations. Notice that rotations combining |e〉 and |g〉 ought
to be realized through Raman processes rather than conven-
tional radiofrequency or microwave pulses since those states
carry different momenta [83]. These Raman pulses can be
applied through incident resonant Raman processes with tun-
able relative and total phases. By canceling retroreflective
beams in Fig. 1(a), lattice potentials vanish. The remaining
Raman fields generated by traveling light fields can effectively
bring spinful rotations. For instance, we choose rotations
as T1 = ei π

4 σ2 and T2 = ei π
4 γ4 , in which T1 transforms Bloch

components [u1±
k ]1 to 1√

2
([u1±

k ]1 + [u1±
k ]3), and T2 transforms

[u1±
k ]1 to 1√

2
([u1±

k ]1 + [u1±
k ]4). In this way, we obtain the full

tomography of the Bloch states in H(k) when mz = 0 (see
Appendix D for details). Then we discretize the TOF image
and define a connection matrix of Bloch states at the near-
quasimomentum pixel, [θ x(y)

k ] by [θ x(y)
k ]αβ = 〈uα

k+δkx (ky )|uβ

k〉,
in the spirit of a real Wilson loop. An O(2) link is given by

Wk = [
θ

y
k

]−1[
θ x

k+δy

]−1[
θ

y
k+δx

][
θ x

k

]
. (8)

[θ x(y)
k ] at each quasimomentum k corresponds to an SO(2)

Berry rotation with det[θ ] = +1 or −1, due to the disconti-
nuity of the O(2) group. Therefore, in the most general case,
Wk is gauge-covariant. Under a local gauge transformation
O−1

k WkO(k) with det[O] = −1, the sign of Wk changes.
Therefore, we need to apply a parallel transport gauge to fix
the orientation of the O(2) link [87]. After doing this, we build
a gauge-independent field by Fxy = i lnW = iθ tot

k σ2, corre-
sponding to a discrete version of the non-Abelian real Berry
curvature. The Euler class is then calculated by summing them
up in the Brillouin zone: ν = 1

2π

∑
k θ tot

k .
To verify our method, we simulate the experimental sig-

nals by diagonalizing the real-space Hamiltonian on a finite
lattice and using Fourier transformation [88,89], as shown in
Fig. 2. To simulate realistic experiments, we add a global
harmonic trap Vtrap = 1

2 maω
2r2, which is parameterized by

μT

t1
= 1

2 maω
2a2. We also compare the results under different

boundary conditions in Appendix D and summarize them in
Table I, which agree well with each other. Numerical calcula-
tions show that our method works well even for lattices with
very small sites and near the phase boundary.

FIG. 2. Density distributions of the spin states for ne↑ with (a) no
pulses added, (b) added T1, and (c) added T2 in momentum space for a
finite periodic lattice with 8 × 8 sites. The total density at each point
is

∑
i ni(kkk) = 2, corresponding to a half-filling case. (d) Extracted

real Berry curvature at discretized Brillouin zone. The summation
gives the second SW class ν = 1. Parameters are chosen as t2/t1 =
t3/t1 = 1, δV /t1 = 2, and mz = 0.

V. DYNAMICAL DETECTION

The equilibrium detection requires the preparation of a
nontrivial ground state. Next, we propose to probe the topol-
ogy by quench dynamics [27,79] (applied to the case where
mz = 0) that starts from a trivial initial state, and detect
the time-averaged outcome within certain submanifolds in-
side the Brillouin zone. The system is initialized in the
deeply trivial regime, then quenched to a target post-
Hamiltonian. The initial state is thus fully polarized in the
ground state of a prequench Hamiltonian H0 = miγi with a
very large mass term parallel to a fixed quench axis (the
choice of axis can be arbitrary, but we specifically choose γ2

to illustrate our method). The time-averaged spin polarization
(TASP) 〈γi〉 at kkk is given by

〈γi〉 (kkk) = 1

T

∫ T

0
〈�0|c†

kkk [eiHt
kkk tγie

−iHt
kkk t ]ckkk|�0〉

= −di(kkk)d2(kkk)/[ε(kkk) − d0(kkk)]2, (9)

where Ht
k = ddd (k) · γγγ is the postquench Hamiltonian, and T

is the evolution time after the quench. We plot the numer-
ical results in Fig. 3. The TASP γ ≡ (〈γ1〉, 〈γ3〉) vanishes
on a reduced structure called the BIS (B1), defined by B1 =
{k|d2(k) = 0}. For the case with γ2 as the quench axis, B1

is simply kx = 0, π . Furthermore, a certain component 〈γi〉
of the TASP also vanishes on B′

1 = {k|di(k) = 0}, and its
intersection with B1 gives rise to a higher-order BIS (B2)
defined by B2 = {k|d2 = di = 0}. As shown in Fig. 3(b), the
spin vector γ exhibits nontrivial winding behavior across B1

in the topological case. This feature is captured by a field
g(k) = 1

Nk
∂k⊥γ , where k⊥ denotes the momentum perpen-

dicular to B1, and 1/Nk is the normalization factor. We show
that the winding number of the field g(k) on the submanifold
B1, w1 = ∑

i

∫
B(i)

1
dk g(k) · dg(k), is equivalent to the second

Stiefel-Whitney class (for a brief proof, see Appendix E).
We can understand this connection through the gauge transi-
tion between the two patches divided by the BIS [33]. This
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FIG. 3. (a) Time-averaged spin polarization calculated using the
Bloch Hamiltonian for (i) 〈γ1〉 and (ii) 〈γ3〉 in the topological phase
(δV = 1) and (iii) 〈γ1〉 and (iv) 〈γ3〉 in the trivial phase (δV = 4). The
quench axis is γ2, with a ring-shaped BIS defined by d3(kkk) = 0, and
a line-shaped BIS defined by d2(kkk) = 0. (b) The sector of the TASP
in the topological phase calculated using the Bloch Hamiltonian
(lines) and finite real space lattice (solid circles). The arrows show
the rotation directions of the spin vector γγγ = (〈γ1〉 , 〈γ3〉) across the
BIS (along the +kx direction). For the finite system, the size is 8 × 8
with an extra harmonic trap with μT /t1 = 0.01. The evolution time
after quenching is T/t1 = 20. Here we take h̄ = 1.

correspondence builds a non-Abelian version of the dy-
namical bulk-surface duality for our system. The detection
can even be further reduced to the second-order BIS
(B2). The topology then relies on the parity of B2, ν =
1
2

∑
B2

sgn(d3,L ) − sgn(d3,R).

VI. CONCLUSIONS

In summary, we have proposed a feasible scheme to realize
a four-band PT -symmetric SWI in an optical Raman lattice,
along with two different methods to detect nontrivial topology
in our model. The proposed realization is discussed based on
a natural Raman lattice approach, which is suitable for all
alkali atoms with half-integer nuclear spins. Further detection
methods are given for both the equilibrium and nonequilib-
rium cases. Through mathematical derivation and numerical
simulation, we show the equivalence of some variations of
the topological index in SWI and address the validity of these
methods under realistic experimental imperfections, such as
limited system size, different boundary conditions, and the
existence of an extra harmonic potential. Furthermore, these

detection methods are not limited by Z2 classification and can
be directly applied to topological Euler phases. Our proposed
system would provide a promising platform for elucidating
the exotic physics of SWI that is elusive in nature and may be
realized with various artificial quantum systems [1,2,90–95].
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APPENDIX A: SYMMETRIES IN REALIZED MODEL

In this Appendix we discuss extra symmetries in the pro-
posed (PT )2 = 1 symmetric model. We recall the form of the
Bloch Hamiltonian,

Hkkk = mzτ3 + 2t1 sin kyγ1 + 2t2 sin kxγ2

+ [δV − 2t3(cos kx + cos ky)]γ3, (A1)

with 2t0(cos kx + cos ky) as a uniform hopping term.
In all chosen sets of parameters, Eq. (A1) preserves
(PT )Hkkk (PT )−1 = Hkkk while preserving parity symmetry
PHkkkP−1 = H−kkk and time-reversal symmetry T HkkkT −1 =
H−kkk individually in which we have P = γ3 and T = γ3K
symmetries with P2 = T 2 = 1. Spinless spatial symmetries
other than P preserved when mz = 0 are mirror symmetries
Mx,y and C4 symmetry, where M2

x,y = 1,C4
4 = 1 and C2

4 = P ,
given by

MxH(kx,ky )M
−1
x = H(−kx,ky ), Mx = σ0 ⊗ τ3,

MyH(kx,ky )M
−1
y = H(kx,−ky ), My = σ3 ⊗ τ3,

(A2)

and

C4H(kx,ky )C
−1
4 = H(ky,−kx ), (A3)

with

C4 =
(

iτ2 0
0 −iτ0

)
, (A4)

where σi and τi are Pauli matrices and σ0 is the 2 × 2 identity
matrix. When mz �= 0 only the C4 symmetry is broken.

When mz = t0 = 0, one can check that this Hamiltonian
also preserves additional time-reversal symmetry T (TRS),
particle-hole symmetry C (PHS), and chiral symmetry S (CS),
given by

T = iσ3 ⊗ τ2K, T 2 = −1,

C = iσ1 ⊗ τ3K, C2 = +1,

S = σ2 ⊗ τ1, S2 = +1.

(A5)

When mz �= 0, PHS and CS and TRS with T 2 = −1 are all
broken. In this case classification belongs to AI class in 2D
with trivial topology. Thus nontrivial topology is considered
to be brought by PT symmetry rather than T 2 = +1 sym-
metry alone. In Fig. 4 we show a comparison based on open
boundary energy spectrum for mz �= 0 and mz = 0, where the
former one doesn’t acquire a pair of zero-energy edge states
at kx = 0.
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FIG. 4. Energy band spectrum taken in the periodic boundary
along x and the open boundary along y in topological nontrivial phase
for δV /t1 = 2, t2/t1 = t3/t1 = 1, and t0 = 0 for (a) mz/t1 = 0.4 and
(b) mz = 0. Edge states are labeled in red.

APPENDIX B: DETAILS OF RAMAN AND OPTICAL
POTENTIALS

In this Appendix we give details of light fields which
generate the proposed potential and the Raman fields given
in main text. The light fields are

EEEx = Exzeeez cos kLx + iExyeeey sin kLx,

EEEy =
∑
i=1,2

E (i)
yz eeez sin kLy + Eyxeeex cos kLy, (B1)

where all Eμν are real strength of light fields and E (1)
yz =

E (2)
yz = Eyz. Setting quantization axis to be parallel to ẑ, light

field Exz,yz drives π transitions, and Exy,yx drives σ± transitions
by decomposing into the ê± basis:

E (−)
xy = − i√

2
Exy; E (+)

xy = i√
2

Exy,

E (−)
yx = 1√

2
Eyx; E (+)

yx = 1√
2

Eyx. (B2)

To give a parameter estimation, we make a further calcula-
tion in 133Cs atoms as an example. The chosen spin states
are |e↑〉 = |F = 4, mF = 1〉, |e↓〉 = |4,−1〉, |g↑〉 = |3,−1〉,
|g↓〉 = |3, 1〉 from ground-state manifold 6S1/2. The hyperfine
splitting is δS

F ≈ 9.20 GHz in 6S1/2, δP
F ≈ 1.17 GHz in 6P1/2

[96]. An extra magnetic field brings a energy shift estimated
by δB � 100 MHz, which is much smaller than δF , but still
much larger than any parameters in an effective Hamiltonian.
As mentioned in main text, we have only the D1 transition to
be considered, which gives the Raman strength:

M10 = 1

16

√
5

3
α2

D1ExyEyx

(
1


1
− 1


2

)
,

M20 = 1

16

√
5

3
α2

D1ExzEyz

(
1


1
− 1


2

)
,

(B3)

where 
2 = 
1 + δP
F , and αD1 ≈ 3.19ea0 is the related scalar

polarizability with a0 for the Bohr radius.
A similar direct calculation gives the spin-dependent po-

tential of |e〉 and |g〉, given by

Vex(x) = αD1E2
xy

(
13

96

1


1 − 
F
+ 19

96

1


2 − 
F

)
sin2(kLx)

+ αD1E2
xz

(
5

16

1


1 − 
F
+ 1

48

1


2 − 
F

)
cos2(kLx),

Vey(y) = αD1E2
yx

(
13

96

1


1
+ 19

96

1


2

)
cos2(kLy)

+ αD1E2
yz

(
5

8

1


1
+ 1

24

1


2

)
sin2(kLy),

Vgx(x) = αD1E2
xy

(
11

96

1


1
+ 7

32

1


2

)
sin2(kLx)

+ αD1E2
xz

(
1

48

1


1
+ 5

16

1


2

)
cos2(kLx),

Vgy(y) = αD1E2
yx

(
11

96

1


1 + 
F
+ 7

32

1


2 + 
F

)
cos2(kLy)

+ αD1E2
yz

(
1

24

1


1 + 
F
+ 5

8

1


2 + 
F

)
sin2(kLy),

(B4)

where the subscript indicates sublevel and direction. By
discarding constants in Eq. (B4) and forcing rrr = (0, 0) at
maximum, we reach a lattice potential Vlatt (x, y) = (Vx111 +
δVxγ3) cos2(kLx) + (Vy111 + δVyγ3) cos2(kLy), which is further
discussed in the isotropic case in the main text. Yet Eq. (B4)
holds a greater tunability of generated optical potential, such
as a staggered spatial distribution of lattice sites for |e〉
and |g〉.

APPENDIX C: FULL-BAND CALCULATIONS

Here we introduce the derivation of results based on con-
tinuous Hamiltonian Ĥ . We expand spatial periodic optical
potential in the following way:

Ve(x, y) = V0e + 1
4V0e(ei2kLx + e−i2kLx + ei2kLy + e−i2kLy),

Vg(x, y) = V0g + 1
4V0g(ei2kLx + e−i2kLx + ei2kLy + e−i2kLy),

(C1)

where we set Vx = Vy = V0, δVx = δVy = δV , and denote
V0e = V0 + δV and V0g = V0 − δV . The Raman potential is also
expressed by

M1(x, y) = 1

4i
M10(eikLx − e−ikLx )(eikLy + e−ikLy),

M2(x, y) = 1

4i
M20(eikLx + e−ikLx )(eikLy − e−ikLy),

(C2)

in which the Raman potentials possess half of
period of the optical potential. In a limited area
S = L2 with side length L, an orthonormal set of
wave functions with quasimomentum kkk = (kx, ky) is
{ψm,n

e (kkk) |e↑〉 , ψm,n
e (kkk) |e↓〉 , ψm,n

g (kkk) |g↑〉 , ψm,n
g (kkk) |g↓〉}

with

ψm,n
e (kkk) = 1

L
ei(2mkL+kx )xei(2nkL+ky )y,

ψm,n
g (kkk) = 1

L
ei(2mkL+kL+kx )xei(2nkL+kL+ky )y,

(C3)

where the phase difference between ψm,n
e and ψm,n

g is brought
by Raman processes along the ±êx ± êy direction. Under
a finite cutoff order Nmax, such that |m|, |n| � Nmax, the
Hamiltonian Ĥ has its matrix representation on this basis, and
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FIG. 5. Band structures for four lowest bands taking part in
effective TB model with (a) mz = 0.05Er and (b) mz = 0. Other pa-
rameters are V0 = 3Er , δV = 0.3Er , M10 = M20 = Er . The maximum
order Nmax = 5.

the related eigenproblem reads

H |� l
kkk〉 = εl

kkk

∣∣� l
kkk

〉
, (C4)

where the eigenfunction of band index l is then given by∣∣� l
kkk

〉 =
∑

m,n,s=↑,↓
al

m,n,s(kkk)ψm,n
e (kkk) |es〉

+ bl
m,n,s(kkk)ψm,n

g (kkk) |gs〉 , (C5)

with energy eigenvalue εl
kkk . Here we show the complete s-band

structure in Fig. 5, with four lowest eigenvalues, which is
only partially given in main text. As for primarily giving the
topological phase diagram from observables related to |� l

kkk〉,
we consider the simple case where mz = 0. It’s noticed that
the Bloch Hamiltonian Hkkk commutes with g02, which allows
us to divide the Hamiltonian into two Chern sections:

Hkkk = H+
c ⊗ σ+

2 + H−
c ⊗ σ−

2 , (C6)

where σ±
2 = |±〉 〈±| with σ2 |±〉 = ± |±〉 is a two pro-

jected subspace formed by eigenstates of σ2. Given the
original Hkkk = ∑

i=1,2,3 diγi, the H±
c = ∑

i d±
i σi with �d± =

(d1,±d2, d3), with preserved parity symmetry σ3H±
c (kkk)σ3 =

H±
c (−kkk) and identical topological phase characterized by

Chern number. Thus second SW class of Hkkk in this spe-
cial case is mapped into the Chern number in Hc. We
thus apply the minimal measurement for realized quan-
tum anomalous Hall models, taking the criterion based on
ξ = sgn(〈γ3〉) at parity-symmetric points � = (0, 0), X =
(π, 0),Y = (0, π ), M = (π, π ) [97],

ν = −�

2

∑
i

ξi, (C7)

where (−1)� = ∏
i ξi. For the full-band calculation this can

be settled from derived |� l
kkk〉:

〈γ3(kkk)〉l = 〈
� l

kkk|γ3|� l
kkk

〉
, (C8)

which is the spin polarization along γ3 for l in four s bands in
zero temperature.

APPENDIX D: CALCULATION OF O2 LINKS

In main text we have shown the numerical results of
extracting real Berry curvature under PBCs and mz = 0.
For other conditions, we can still begin with a many-body

ground state,

|G〉 =
N∏
i=1

a†
i |0〉 , (D1)

where we directly denote creation operators of eigenmodes
|ψi〉 ≡ a†

i |0〉 in the order of eigenenergies εi = 〈ψi|Hs|ψi〉
from the lowest one, and N = 2L2 is the number of particles
maintaining half-filling with site number L along one side in
the square lattice. Each eigenmode can be formally expanded
by a complete basis |ψi〉 ≡ a†

i |0〉 = ∑
rrr,α[ψi]rrr,αc†

rrr,α |0〉 in
which [ψi]rrr,α are coefficients related to site at rrr and spin
α = e↑,↓, g↑,↓.

To extract all discretized real Berry curvature, all of the
following distribution related to quasimomentum is essential
for each condition:

Nαβ (kkk) = 〈G| c†
kkk,α

ckkk,β |G〉 , (D2)

which assumed to be achievable through tomography by ex-
tra pulses and TOF measurements in experiments. In our
calculation, this is derived from Fourier transform from site
representation, given by

Nαβ (kkk) = 〈G| c†
kkk,α

ckkk,β |G〉

= 〈G| 1

L
∑

rrr

eikkk·rrrc†
rrr,α

1

L
∑

rrr′
e−ikkk·rrr′

crrr′,β |G〉

= 1

L2

∑
rrr,rrr′

〈G| c†
rrr,αcrrr′,β |G〉 eikkk·(rrr−rrr′ )

= 1

L2

∑
rrr,rrr′,i

[ψ∗
i ]rrr,α[ψi]

rrr′,βeikkk·(rrr−rrr′ ), (D3)

where [ψ∗
i ]rrr,α denotes complex conjugate of this coeffi-

cient. In an ideal case, n(kkk) is reduced to projector Pkkk =∑
± |u1±

kkk 〉 〈u1±
kkk | for occupied bands.

To fix the orientation that might be violated in this numer-
ical process, we have two different ways. As in the main text,
we solve Bloch functions explicitly from the northern gauge
of stereographic representation, parameterized by∣∣u1+

kkk

〉 = 1√
x2

kkk + y2
kkk + 1

(xkkk, ykkk,−1, 0),

∣∣u1−
kkk

〉 = 1√
x2

kkk + y2
kkk + 1

(−ykkk, xkkk, 0,−1),

(D4)

in which two pulses are adequate to give full tomogra-
phy of occupied Bloch states. We take Raman pulse T1 =
ei π

4 σ2 (T2 = ei π
4 γ4 ) which turns Bloch components [u1±

k ]1 into
1√
2
([u1±

k ]1 + [u1±
k ]3)([u1±

k ]1 to 1√
2
([u1±

k ]1 + [u1±
k ]4)). Parame-

ters xkkk and ykkk can be solved from relations ne↑(kkk) = x2
kkk +y2

kkk√
1+x2

kkk +y2
kkk

,

n(1)
e↑ (kkk) = (xkkk−1)2+y2

kkk

2
√

1+x2
kkk +y2

kkk

and n(2)
e↑ (kkk) = (−ykkk−1)2+x2

kkk

2
√

1+x2
kkk +y2

kkk

. It’s obvious

that the choice of pulses is not unique, and even may be not
the simplest. For more general cases, i.e., conditions listed in
Table I, the explicit form (D4) is not valid, yet we legitimately
assume all elements Nαβ (kkk) can still be obtained through a
finite number of Raman pulses. Then the parallel transport
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FIG. 6. Discretized Berry curvature with parallel gauge. (a) ν =
1, with t2/t1 = t3/t1 = 1, δV /t1 = 2, and mz = 0, under PBCs, which
is the same condition as in the main text. (b) ν = 0.999, with t2/t1 =
t3/t1 = 1, δV /t1 = 2, and mz/t1 = 0.4, under OBCs. (c) ν = 0, with
t2/t1 = t3/t1 = 1, δV /t1 = 8, and mz/t1 = 0.4, under OBCs.

gauge is applied to fix the orientation. This gauge is also
called the cylinder gauge, in which wave functions are smooth
inside the whole FBZ but the periodicity is kept for only one
direction and broken for the other due to Wannier obstruction.
We show some related results in Fig. 6. In contrast to the
figure in the main text which is derived from exhibiting accu-
mulation of local real Berry curvature near the south pole, the
distribution calculated by the parallel transport gauge varies
mildly.

APPENDIX E: BULK-SURFACE DUALITY FROM
DEFORMATION OF PT -SYMMETRIC BLOCH

HAMILTONIAN

In this section we discuss further extracting nontriv-
ial topology from the BISs. To see this, for simplic-
ity we take a general spherical representation of the

normalized Hamiltonian Hkkk = �d · �γ such that where �d =
(sin θkkk, cos θkkk sin ϕkkk, cos θkkk cos ϕkkk ) is related with the coordi-
nate of a point on a sphere. A gauge-invariant description of ν

for Hkkk = �d · �γ can be given by

ν =
∫

T 2
− i

32π
Tr[τ2Hkkk (dHkkk )2]

= 1

8π

∫
T 2

d2kkkεi jkdi(∇kkkd j × ∇kkkdk )z,

(E1)

where we use the relation Tr[τ2γiγ jγk] = 4iεi jk . The
topology for Hkkk should be equivalent with another
deformed Hamiltonian of h(kkk) = �d ′ · �γ where �d ′ =
(sin �kkk, cos �kkk sin ϕkkk, cos �kkk cos ϕkkk ) and �kkk could be
any monotomic function since both the energy gap
and PT -symmetry are preserved [84]. Substituting
into Eq. (E1), the topological invariant is written by
ν = 1/(4π )

∮
d2kkk cos �kkk[(∇kkk�kkk ) × (∇kkkϕkkk )]z. Under an

extreme choice of �kkk such that

cos �kkk =
{

1, kkk ∈ BISs

0, otherwise
(E2)

and ∇�kkk = δ(kkk − kkkBISs), Eq. (E1) is then reduced into a line
integral on closed 1D 1-BISs with an exact winding number
form ν = 1/(2π )

∮
BIS dkkk∇kkkϕkkk defined on the 1-BISs for γ1.

Since we don’t acquire any explicit form of Hamiltonian in
this derivation, the choice of the reduced component γ1 is
indeed arbitrary. This can be iteratively done to reach higher-
order BISs, as long as the deformation is valid.
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