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Sine-Gordon dynamics in spin transport
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We study spin transport in a one-dimensional finite-length wire connected to fermionic leads. The interacting
wire is described by the sine-Gordon model while the leads are either noninteracting or interacting Luttinger
liquids. We calculate the spin current driven by a spin bias in the nonlinear regime by solving numerically the
classical equation of motion, and find that the cosine term in the sine-Gordon model gives rise to an oscillating
spin current when the spin bias exceeds its critical value. We discuss the results in connection with transport
experiments with ultracold atoms.
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I. INTRODUCTION

The sine-Gordon model is a relativistic field theory
ubiquitous in physics, applied both in high-energy and
condensed-matter physics, especially in the description of
low-dimensional systems [1–3]. In the condensed-matter con-
text, the model provides the low-energy description of systems
as varied as spin chains [4], long Josephson junctions [5–7]
and Josephson-junction arrays [8,9], fermions and bosons
in one-dimensional periodic potentials [10,11], and coupled
quasi-one-dimensional Bose-Einstein condensates [12–17]. In
one dimension, the spin and charge degrees of freedom of
fermions decouple in the low-energy limit, and the collective
spin degree of freedom is generally described by the sine-
Gordon model [3].

The model has been extensively studied both numerically
and analytically. Due to its integrability, many quantities can
be solved exactly [18]. The excitation spectrum has been
mapped in terms of solitons, antisolitons, and their bound
states called breathers [19]. An experiment with two coupled
quasi-one-dimensional Bose-Einstein condensates, where the
relative phase realizes the sine-Gordon model [12–17], has
inspired extensive theoretical work. Its ground states [20] as
well as dynamics due to periodic driving [21,22] and quenches
[23–31] have been described using a wide range of methods
based on semiclassical approximations, Hilbert-space trunca-
tion, or matrix product states. Similar realizations have been
proposed with coupled spin chains [32] and one-dimensional
Bose-Hubbard chains [33]. Generalized hydrodynamics de-
scriptions have recently illuminated large-scale fluctuations
[34], thermodynamics, and the transport of solitons and
antisolitons, in particular the spreading of the topological
charge in a bipartitioning protocol [35–38]. Experimentally,
the dynamics of soliton and antisoliton excitations have been
observed in spin chain materials by high-field spectroscopy
[39].
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Another important nonequilibrium situation arises in a
two-terminal transport measurement, commonly used to char-
acterize the properties of solid-state systems. Transport
measurements reveal the insulating, conducting, or super-
conducting properties of materials, essential for the design
of any device. To measure steady-state charge transport, the
system is coupled to leads, or reservoirs, at different chem-
ical potentials, which induces an electric current. While a
chemical potential bias leads to charge transport, a temper-
ature bias drives a heat current and a spin bias drives a spin
current. Two-terminal transport measurements have recently
also been realized in experiments with ultracold atoms, where
two atom cloud reservoirs are coupled by a point contact or
a narrow channel [40]. This setup was used for example to
measure particle and spin conductances [41] and to study
transport through a short one-dimensional periodic potential
[11], where the charge sector is described by the sine-Gordon
model in the low-energy limit.

From a theoretical point of view, the Landauer-Büttiker
formalism underpins our understanding of quantum coherent
transport in noninteracting mesoscopic systems [42–44]. It
has been generalized to interacting particles using nonequi-
librium Green’s functions [45]. In the paradigmatic example
of an interacting one-dimensional Tomonaga-Luttinger liquid
(TLL) wire coupled to leads, the conductance can be solved
analytically using a bosonized description [46–48]. Such a
system with noninteracting leads is known to have a conduc-
tance equal to the conductance quantum independent of the
interactions in the TLL wire. When the leads are interacting
TLLs, the conductance is proportional to the Luttinger param-
eter of the leads. While for spinless fermions, the low-energy
limit maps to a TLL, for fermions with spin, the backscatter-
ing of opposite-spin fermions gives rise to the sine-Gordon
model even in the absence of any external potentials. An in-
teresting question therefore is how spin is transported through
an interacting wire of fermions with spin.

Spin transport in a sine-Gordon wire coupled to leads
was previously analyzed via renormalization group in the
linear-response regime [49,50]. Here, we focus instead on
the real-time dynamics, characterized by the spin density and
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FIG. 1. (a) A one-dimensional wire of length L is coupled to
Fermi-liquid (FL) leads, modeled by noninteracting 1D systems.
The interacting wire is described by the sine-Gordon (s-G) model
[Eqs. (2) and (3)], and the noninteracting leads are described by the
quadratic Hamiltonian (2). (b) The Luttinger parameter is Kσ in the
wire and Kσ = KL in the leads, while the coupling y1⊥ is zero in the
leads and nonzero in the wire. To model FL leads, we set KL = 1.
Modified from Ref. [50].

spin current, in the nonlinear regime at finite spin bias. We
adopt an approach similar to that of Refs. [11,47]. Namely, the
spin degree of freedom is driven by a magnetic-field gradient,
and we compute the spin current by solving numerically the
classical equation of motion of the corresponding forced sine-
Gordon model. We find that the spin current either is damped
to zero or oscillates with a nonzero average value, depending
on the magnitude of the magnetic-field gradient with respect
to the coefficient of the cosine term in the sine-Gordon model.
We characterize the oscillation frequency and amplitude and
compute the differential conductance of the interacting wire
both for noninteracting leads and leads that are interacting
Luttinger liquids.

The paper is organized as follows: We introduce the model
of the interacting sine-Gordon wire, the observables used
to characterize spin transport, and the classical equation of
motion in Sec. II. Section III presents the solution of the equa-
tion of motion for generic parameters, while Sec. IV discusses
its possible connection to the cold-atom transport experiment
of Refs. [11,41]. Finally, the discussion is expanded in Sec. V,
conclusions are presented in Sec. VI, and technical details are
found in the Appendices.

II. MODEL

We consider an interacting wire of finite size L, connected
to infinite leads on either side, as depicted in Fig. 1(a). We
focus on the case where the leads are in the Fermi-liquid
state and are modeled as one-dimensional noninteracting sys-
tems with Luttinger parameter KL = 1. In Sec. III D, we also
comment briefly on the case of interacting TLL leads, for
which the description is identical apart from KL �= 1. We use
a bosonized description where the interacting and noninter-
acting regions are taken into account by varying the relevant
parameters [Fig. 1(b)]. The Hamiltonian for the interacting
wire is of the sine-Gordon form. This model describes the
low-energy properties of a wide class of microscopic models
in one dimension, and for the most part, we do not limit
the discussion to a specific microscopic model. In Sec. IV,
however, we discuss the parameter regime relevant for the

experiment of Ref. [41], and in this context, consider the
one-dimensional continuum Hamiltonian

H = − h̄2

2m

∑
s=↑,↓

∫
dxψ†

s (x)
∂2

∂x2
ψs (x)

+ g1⊥
∫

dxψ†
↓(x)ψ†

↑(x)ψ↑(x)ψ↓(x) (1)

for fermionic atoms with contact interactions. Here, h̄ is the
reduced Planck constant, m the atom mass, g1⊥ the coupling
constant for the backscattering of fermions with opposite spin,
and ψ†

s (ψs ) the fermionic field operator that creates (de-
stroys) a particle with spin s =↑,↓. We adopt natural units
where h̄ = kB = 1.

A. Bosonization

In the low-energy limit, Eq. (1) maps onto the effective
bosonized model H = H0

ρ + H0
σ + H ′

σ . Here, ρ and σ denote
the collective charge and spin degrees of freedom, respec-
tively. In the absence of external potentials, charge and spin
are decoupled and the term H0

ν with ν = ρ, σ is the TLL
Hamiltonian:

H0
ν = 1

2π

∫ ∞

−∞
dx

[
vνKν (∂xθν )2 + vν

Kν

(∂xφν )2

]
. (2)

This model is quadratic in the boson fields φν (x, t ) and
θν (x, t ). The collective charge and spin excitations have the
velocities vρ and vσ , which are in general different from each
other. The TLL represents a critical system where correlation
functions decay as power laws, and the Luttinger parameters
Kρ and Kσ appear in the exponents. The velocities and Lut-
tinger parameters are determined by the parameters, such as
interactions, of the original microscopic model.

While the charge excitations are described by the quadratic
TLL model, the spin Hamiltonian has an additional term H ′

σ

arising from the backscattering of fermions with opposite
spin:

H ′
σ = 2g1⊥

(2πα)2

∫ L
2

− L
2

dx cos (φσ ). (3)

Here, g1⊥ is the coupling constant for backscattering and α

is a short-distance cutoff. The Hamiltonian H0
σ + H ′

σ with
the quadratic and cosine terms is known as the sine-Gordon
Hamiltonian [3,6]. Additionally, we include a magnetic field
which is different in the two reservoirs, so that there is a
magnetic-field gradient along the wire. This is analogous to
the electric field considered in Refs. [11,47], and is taken into
account by the force term:

Hh = 1√
2π

∫ L
2

− L
2

dxh(x)∂xφσ . (4)

Here, h = gμBH, where H is the magnetic field, g the Landé
factor, and μB the Bohr magneton, so that h has the dimension
of energy. In the following, we will use the term “magnetic
field” to refer to h. The magnetic field couples to the spin de-
gree of freedom but not the charge. The total spin Hamiltonian
is now the forced sine-Gordon model:

Hσ = H0
σ + H ′

σ + Hh. (5)
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We model the Fermi-liquid leads by noninteracting one-
dimensional regions with Kρ = Kσ = 1. As we do not
consider a chemical potential bias, there is no charge transport
in the wire and we limit the discussion to spin transport.

While the TLL is gapless, the cosine term in the sine-
Gordon Hamiltonian can give rise to an energy gap. When
the interactions are attractive, the spin gap can be understood
as the pairing energy of fermions with opposite spin. In terms
of the bosonized Hamiltonian, in the limit of strong coupling,
the field φσ is fixed to one of the minima of the cosine. An
expansion around the minimum gives a quadratic mass term,
where the mass is equal to the spin gap in this limit. A gapped
and a gapless phase therefore exist in the thermodynamic
limit—the gapped phase is generally insulating while the gap-
less phase supports the ballistic transport of excitations. The
transport properties can however vary when the system is of
finite length [49,50]. A periodic potential leads similarly to a
sine-Gordon Hamiltonian for the charge degree of freedom,
and the charge conductance in the presence of Umklapp scat-
tering from a periodic potential was considered previously in
Refs. [11,49,51–53].

B. Observables

To characterize spin transport in the wire, we compute
the spin current jσ = j↑ − j↓ obtained from the continuity
equation ∂tσ (x, t ) + ∂x jσ = 0. Here, σ (x, t ) is the spin den-
sity σ = ρ↑ − ρ↓. We use the relations ρs = −∂xφs/π , with
s =↑,↓, and

φσ = 1√
2

(φ↑ − φ↓) (6)

to obtain the spin density as

σ (x, t ) = −
√

2

π
∂xφσ (x, t ). (7)

The spin current is written in terms of the time derivative of
the field φσ :

jσ (x, t ) =
√

2

π
∂tφσ (x, t ). (8)

Equation (7) shows that, in terms of physical quantities, the
field φσ is proportional to the spin density integrated up to
point x at time t . Alternatively and equivalently, according
to Eq. (8), it is proportional to the accumulated current that
has flowed through point x by time t , added to φσ (t = 0). In
the absence of current, φσ is therefore constant in time, and a
nonzero current corresponds to a time-varying φσ . We denote
the current averaged over the one-dimensional wire by

jav
σ (t ) = 1

L

∫ L
2

− L
2

dx jσ (x, t ) (9)

and the average over both the wire length and a time period in
the steady state by jσ .

In the linear-response regime, charge transport is typically
characterized by the conductance G, which is the change in
the charge current driven by a chemical potential bias in the
limit of zero bias. For spin transport, the relevant quantity is

the spin conductance

Gσ = lim
�h→0

jσ
�h

, (10)

and at finite bias, one can compute the differential
conductance:

�Gσ = d jσ
d�h

. (11)

In the following, we report the current in units of G0�h0,
where G0 = e2/h is the conductance quantum with e the el-
ementary charge and h Planck’s constant. In the natural units
with e = h̄ = 1, we have G0 = 1/(2π ). For convenience, we
define the quantity

�hc = 2Lvσ y1⊥
α2

, (12)

which is the critical bias at the conductor-insulator transition
suggested by the form of the equation of motion (see Ap-
pendixes A and B). Here, y1⊥ is the dimensionless coupling
y1⊥ = g1⊥/(πvσ ). We furthermore define the energy scale

�h0 = LvF

α2
, (13)

obtained from Eq. (12) by setting y1⊥ = 1
2 and vσ = vF . Here,

vF is the Fermi velocity in the noninteracting leads.

C. Solution by the classical equation of motion

To obtain the spin current and spin density, we approx-
imate the action by its stationary point along the classical
path φσ (x, t ). In other words, we formulate the classical equa-
tion of motion for φσ (x, t ) and solve it numerically in a region
of discretized space and time. This approach is the same as the
one applied to a TLL wire in Ref. [47], albeit in that case the
equation of motion can be solved analytically. The numerical
discretization of a classical field’s equation of motion has
previously been used to study the equilibration properties of
classical integrable field theories [54] and to model charge
transport through a periodic potential [11].

The equation of motion in the bulk of the wire,

∂2
t φσ = v2

σ ∂2
x φσ +

√
2v2

σ Kσ y1⊥
α2

sin(2
√

2φσ ) − vσ Kσ B√
2

,

(14)

with B the magnetic-field gradient, is a second-order nonlinear
differential equation obtained from the Euler-Lagrange equa-
tion, as derived in Appendix A. We set the initial conditions
as

φ(x, t = 0) = ∂tφ(x, t )|t=0 = 0,

so that the system is at equilibrium in the initial state, there is
no current, and the spin density is zero. Similar to Ref. [11],
we implement nonreflecting boundary conditions of the form

∂tφ(L, t ) + v∂xφ(L, t ) = 0,

∂tφ(0, t ) − v∂xφ(0, t ) = 0. (15)

These boundary conditions correspond to the continuity equa-
tion for a conserved quantity, which in this case is the field
φσ . The current is transported into and out of the wire the
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FIG. 2. (a) The magnetic field is quenched from zero to nonzero
at t = 0. For t > 0, it is given by Eq. (17). As a result, the spins
rearrange and a spin current is generated. We choose the sign of the
magnetic field so that a positive spin current jσ = j↑ − j↓ flows from
left to right. (b) The parameters y1⊥(x) and B(x) of Eq. (D1) are set
to zero within the leads and change smoothly into the values y1⊥0, B0

within the wire.

same way as it would for infinitely long leads. In particular,
there is no reflection of waves at the boundaries. Transparent
boundary conditions for the sine-Gordon model were studied
in detail in Ref. [55].

A spin current is driven by a spin bias, i.e., a difference
in the magnetic fields in the left and right reservoir, �h =
hL − hR. To obtain a positive spin current flowing from left to
right, we impose a negative magnetic field in the left lead and
a positive one in the right lead, switched on at time t = 0. This
leads to a flow of spin-up fermions towards the right lead and
spin-down towards the left, as illustrated in Fig. 2. We denote
the magnetic-field gradient by B(x), so that h(x) depends on
position as

h(x) = hL −
∫ x

− L
2

B(x′)dx′, (16)

where hL = h(−L/2). We impose a constant field gradient
within the wire and assume, analogous to Ref. [47], that h has
a constant value in each lead and changes linearly within the
wire:

h(x) = hL − B0

(
x + L

2

)
. (17)

Here, B0 = �h/L.
The equation of motion is solved numerically by discretiz-

ing the space and time coordinates, as detailed in Appendix C.
Both y1⊥(x) and B(x) have a constant value within the wire
and are zero in the leads. For numerical stability, these param-
eters are changed smoothly at the boundaries as

f (x) = f0

2

[
erf

(
x + L

2

w

)
+ erf

(
−x + L

2

w

)]
(18)

FIG. 3. The spatial profiles of (a) the field φσ , (b) the spin
density, and (c) the spin current, at fixed times during the initial
time evolution. The wire region is within x ∈ [−L/2, L/2] while
|x| > L/2 corresponds to the leads. Here, we set �h/�hc = 0.5,
vσ = vF , and time is in units of L/vF .

where f = y1⊥, B. This function is drawn schematically in
Fig. 2(b). The parameter w controls the width of the boundary
regions. We choose w larger than the spatial discretization but
much smaller than the wire length and check that the choice
of w does not change the results qualitatively. In the leads,
Eq. (D1) has the form of a wave equation ∂2

t φσ = v2
F ∂2

x φσ . In
the following, we use y1⊥ to refer to the constant value y1⊥0

within the wire.

III. GENERAL SOLUTION

In this section, we characterize the solution for generic
parameters Kσ , vσ , and y1⊥ not specific for any microscopic
model. We discuss the general features of the solution when
the spin bias is varied. We set here the velocity and the Lut-
tinger parameter constant for simplicity, i.e., equal in the wire
and leads, Kσ = KL = 1 and vσ = vF . In Sec. III D, consider
different Kσ and vσ in the wire and in the leads, and in
Sec. IV, the parameters are set by the experimental parameters
of Ref. [41].

A. Initial time evolution

We analyze here the numerical solution φσ (x, t ), the spin
density σ (x, t ), and the spin current jσ . At time t = 0, the
magnetic field is quenched from zero to the profile of Eq. (17).
This induces a spin current, illustrated in Fig. 2(a), as fermions
with spin up start to move towards the right lead and spin-
down fermions move towards the left lead. A deformation of
the spin density originates at the contacts where the reorga-
nization of spins is possible: Fig. 3(b) shows how the spin
density is depleted around the left contact and accumulates
around the right one.

The spin current profile is plotted at different times in
Fig. 3(c). Driven by the spin bias, the spin current grows to
its maximum value, and both the current and the spin density
deformations spread into the reservoirs as more particles are
involved in transport. The linearly changing magnetic field
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FIG. 4. The field φσ (a, d), the spin density σ (b, e), and the spin
current jσ (c, f) as functions of position x and time t . The upper row
with �h/�hc = 0.5 corresponds to an insulating steady state and the
lower row with �h/�hc = 1.5 corresponds to a conducting one. We
set vσ = vF . The wire region is between the white dotted vertical
lines.

inside the wire leads to a spin density that changes linearly in
this region. The transport of spin within the wire is impeded
due to the interactions giving rise to a spin gap. As the spin
density is not sufficiently replenished by the reservoirs, the
current in the wire starts to decrease. This evolution is differ-
ent from a Luttinger liquid wire, where transport is ballistic
and the current evolves into a uniform steady-state distribu-
tion (see Appendix D). The initial time evolution of the spin
density and spin current is qualitatively similar in both the
conducting and insulating parameter regimes. In the insulating
one, the current subsequently decays to zero, whereas in the
conducting regime, the competition of the spin gap and the
spin bias gives rise to a periodic reduction and increase, as
discussed below.

B. Transition from insulator to conductor

After the initial transient time evolution, the system evolves
into a steady state. In Fig. 4, we plot the field φσ , spin den-
sity, and spin current as functions of position and time. The

initial time evolution shows a “light cone” structure where
the spin density deformation and current originating at the
contacts propagate into the leads. As the boundary conditions
are nonreflecting, there are no boundary effects, and the sys-
tem corresponds to a wire coupled to infinite leads similar
to Ref. [47]. After the initial transient time evolution, the
system reaches a steady state where the current averaged over
a time period is constant. Two kinds of steady states occur: an
insulating and a conducting one. In Fig. 4, the transition takes
place when �h exceeds its critical value given by Eq. (12).

At equilibrium and in the thermodynamic limit, a phase
transition occurs between a spin-gapped and a TLL phase
when the magnetic field exceeds the spin gap [3,56]. In a wire
coupled to leads, however, the finite length of the wire plays a
role and one may rather expect a Landau-Zener-type transition
[57–59]. In the charge transport through a Mott insulator wire,
the Landau-Zener dielectric breakdown was found to occur at
a threshold electric field Eth ∼ �2/W , where � is the charge
gap and W the bandwidth [60–65]. For spin transport, we may
expect a threshold magnetic-field gradient Bth ∼ �2

σ /vσ , so
that the critical spin bias �hLZ = L�2

σ /vσ gives an estimate
for the spin gap in the system. We note that the critical bias
in the classical equation of motion may nevertheless not give
an accurate estimate of the spin gap of a given microscopic
quantum system, since quantum fluctuations, not taken into
account here, would lead to a renormalization of the parame-
ters. We come back to this point in Secs. IV and V.

For �h < �hc, as in Figs. 4(a)–4(c), the transient oscilla-
tions are damped and φσ reaches a constant value in the steady
state where the spin density and spin current are zero. This
corresponds to an insulating state of the wire. For �h > �hc,
the steady state is characterized by persistent oscillations with
constant frequency and amplitude. The field φσ shows a linear
increase modulated by oscillations, and jσ oscillates with a
nonzero average value that is constant in time. The wire is
therefore in a conducting steady state. This transition is seen
in Fig. 5(c), which shows jσ averaged over several oscillation
periods in the steady state, as a function of �h. We have
fixed the parameters so that the transition occurs at �h = �h0

when vσ = vF ; in particular, we set here y1⊥ = 1
2 . Conversely,

fixing �h and varying y1⊥ produces the same phase transition.
Physically, the existence of a steady state with a constant time
average of jσ is enabled by the infinite reservoirs to which the
wire is coupled, providing an endless supply of particles and
unchanged by the spin-polarized current that flows between
them.

In Figs. 3–6, the wire length is set to L = 1 and the regions
designated as the leads have length L/2, so that the solution is
computed for x ∈ [−1, 1]. Extending the leads beyond |x| = 1
does not change the solution, up to numerical errors on the or-
der of 10−4 for the discretization used here (see Appendix C).

C. Oscillating solution

In the conducting state, the oscillating solution may be
thought of in terms of instanton solutions of the classical
field [3,19]: The spin current is mediated by a succession of
instanton excitations. An instanton transfers the field φσ from
one minimum of the cosine to the next, which for Eq. (D1)
corresponds to a change by π/

√
2, seen in Fig. 5(a). This
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FIG. 5. (a) The solution φσ as a function of time, averaged over
the wire length. For a spin bias below the critical value (�h/�hc =
0.5), the steady-state solution is constant, while above the critical
bias, φσ grows linearly with a modulation in steps of π/

√
2. Here,

vσ = vF and y1⊥ = 0.5 so that �hc = �h0. (b) The spin current jav
σ

corresponding to panel (a) decays to zero when �h < �hc and oscil-
lates with a nonzero time average when �h > �hc. The dotted lines
show the limiting value G0�h for �h � �hc. (c) The steady-state
time-averaged spin current jσ as a function of the bias. The solid lines
are the solution of the equation of motion for different couplings y1⊥
and the dotted lines show Eq. (19). (d) The steady-state oscillation
amplitude A as a function of the bias. Close to the critical bias, the
amplitude approaches 2G0�hc.

has similarity to the equilibrium situation where a sufficiently
high magnetic field induces a phase transition from a spin-
gapped phase into a Luttinger liquid with a finite density of
solitons [66] dispersed with the distance ∼vσ /h between them
[3]. We find that φσ grows in steps of π/

√
2 with a time

period τ ∼ �h−1. In the case of charge transport in a charge-
density-wave wire, described by the sine-Gordon model, the

FIG. 6. (a) The time-averaged spin current as a function of the
spin bias for varying Kσ within the wire. The other parameters are
fixed as y1⊥ = 0.5, KL = 1, vσ = vF . For Kσ � 0.5, the current is
closely reproduced by Eq. (19) marked by the dotted line, and ap-
proaches G0�h at large bias for all Kσ . (b) The time-averaged spin
current as a function of the spin bias for varying KL with Kσ = 1
within the wire. The other parameters are as in panel (a). The spin
current approaches KLG0�h at large bias, indicated by the dotted
lines.

conductivity [67] and dc conductance [52,53,68,69] were dis-
cussed previously in terms of soliton and instanton transport.

The spin current corresponding to Fig. 5(a) is shown in
Fig. 5(b). For �h/�hc = 0.5, the current has an initial tran-
sient peak and then relaxes to zero, while for �h > �hc, jσ
oscillates with a nonzero average and a fixed frequency and
amplitude in the steady state. The average slope of π/

√
2φσ

is equal to the time-averaged value jσ . For large bias �h �
�hc, the time average approaches G0�h, marked with dotted
lines in Fig. 5(c). Note that the average slope of π/

√
2φσ is

also the inverse oscillation period, and therefore the oscilla-
tion frequency ω = 2π/τ is connected to the time-averaged
current as ω = 2π jσ .

We plot jσ in Fig. 5(c) as a function of �h for different
coupling constants y1⊥. To ensure that the system has reached
a steady state, we extract the time-averaged quantities from
the later half of a time evolution up to t/(L/vF ) = 250. For
the values y1⊥ � 0.5, the numerically evaluated average spin
current is closely reproduced by the expression

G0

√
�h2 − �h2

c , (19)

while for the stronger coupling y1⊥ = 1 there is a larger
deviation. This is similar to the expression for the voltage
V = R

√
I2
ext − I2

c induced by a dc current drive Iext in an
overdamped Josephson junction with critical current Ic and re-
sistance R [70]. This correspondence is not obvious since the
overdamped Josephson junction is described by a first-order
differential equation and does not contain a spatial derivative
as in Eq. (D1).

The oscillation amplitude A shown in Fig. 5(d) is larger for
larger coupling y1⊥ and decays with �h, although we do not
find a simple functional dependence. In overdamped Joseph-
son junctions, the induced voltage is a periodic series of pulses
with a maximum value 2IcR for Iext � Ic [70]. Comparing to
Eq. (19) suggests an amplitude 2G0�hc for jσ . We find that
close to the critical bias, the amplitude approaches this value,
marked by the dotted lines in Fig. 5(d).

D. Different Kσ in the wire and in the leads

In the previous sections, we considered Kσ equal in the
wire and in the leads. Here, we investigate the effects of
a different Kσ in the wire than in the leads when the wire
is described by the sine-Gordon model and the leads are
Luttinger liquids with y1⊥ = 0. We present both the case of
noninteracting leads and interacting TLL leads. The parameter
Kσ changes smoothly at the boundary of the wire and leads,
similar to y1⊥(x) and the magnetic-field gradient B(x) shown
in Fig. 2. For an interacting TLL wire, it is known that the
conductance is determined by the Luttinger parameter of the
leads, G = KLG0, instead of that of the wire [46–48]. This was
shown to be true also for a spatially varying velocity and Lut-
tinger parameter within the wire, given that they approach the
constant parameters in the leads smoothly [71]. We therefore
investigate whether the same result is found for the differential
conductance of the sine-Gordon wire at �h � �hc where the
current-bias curve is linear.

Figure 6(a) shows the time-averaged steady-state spin cur-
rent as a function of bias for different values of Kσ in the wire,
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while the leads are noninteracting and the spin velocity is fixed
to vσ = vF everywhere. The critical bias is �hc = �h0 given
by Eq. (12) for all but the smallest value of Kσ shown here.
For Kσ = 0.2, it is reduced in a nontrivial way. This may be
related to whether the correlation length ξσ ∼ vσ /�σ is larger
or smaller than the wire length L; in Mott insulator wires, the
threshold voltage for the Landau-Zener breakdown was found
to have a different dependence on the charge gap in these
two cases [64] (see also Appendix B). The current at large
bias �h � �hc approaches the line G0�h signifying ballistic
transport, similar to the Luttinger liquid wire. In Fig. 6(b),
we fix Kσ = 1 within the wire while the leads are interact-
ing Luttinger liquids with KL �= 1. In this case, we observe
that the critical bias is reduced for the largest value KL = 2.
The differential conductance KLG0 is recovered in the limit
�h � �hc.

IV. EXPERIMENTAL PARAMETERS

While the magnetic-field configuration of Fig. 2 could be
realized by applying an external magnetic field, we discuss, in
this section, a different experimental situation where the spin
current originates from an initial spin population imbalance
between the two reservoirs. The imbalance can be modeled
by including a spin bias �h, analogous to the case of charge
transport due to a chemical potential bias in Ref. [11]. In
particular, we discuss the parameter regime relevant for the
cold-atom experiment of Ref. [41], where spin and particle
conductances were measured in both conducting and insulat-
ing parameter regimes. We compare the predicted oscillation
period of the spin current to the reported time scales in or-
der to estimate whether the oscillation dynamics could be
observable in that setup. In the experiment, two atom cloud
reservoirs, initially separated, are prepared with a spin pop-
ulation imbalance. The imbalance translates to a spin bias
via the equation of state. Connecting the reservoirs allows
them to exchange particles, generating a spin current. The spin
imbalance decays as a function of time, which is different
from the constant magnetic-field gradient considered here.
We nevertheless estimate the expected oscillation period and
compare it to the typical experimental transport time scales to
determine whether these oscillations could be observed in the
short-time dynamics. While a constant bias occurs naturally
in solid-state devices, initializing and measuring spin currents
in the solid state is challenging. The cold-atom setup therefore
offers an interesting route to studying spin transport.

In Refs. [11,41], the reservoirs are attractively interacting
but are at a finite temperature. If the temperature is larger than
the spin gap, the effects of pairing should be negligible and
we can assume that noninteracting leads are a reasonable de-
scription. We therefore consider interactions only in the wire.
The interactions between the fermionic atoms in different spin
states arise from s-wave scattering, which microscopically can
be modeled by spin-rotation-invariant contact interactions.
Due to spin-rotation invariance, the parameters Kσ and y1⊥
are related through y1⊥ = 2(K2

σ − 1)/(K2
σ + 1). The coupling

y1⊥ is determined by the scattering length a and the particle
density ρ0 in the wire as described in Appendix E.

We compute the time evolution of the spin current us-
ing the smallest and largest interaction strengths quoted in
Refs. [41,50]. For the bias �h = 340 nK used in Fig. 7(a), the

FIG. 7. (a) The spin current jσ averaged over the wire length,
multiplied by 2π , as a function of time for two different scattering
lengths. The spin bias is 340 nK, for which the spin current oscillates
when a = −2623a0 and relaxes to zero when a = −3789a0. The
particle density in the wire is set to ρ0 = 0.8/µm and the wire length
is L = 6 µm. (b) The time-averaged spin current in the steady state
is close to G0�h at large bias. (c) The amplitude A of the oscillation
decays with �h.

weaker interaction with a = −2623a0 leads to an oscillating
steady state with a nonzero average spin current. Here, a0 is
the Bohr radius a0 = 5.29 × 10−11 m. For the stronger inter-
action (a = −3789a0), the current in the steady state is zero,
and an oscillating steady state is reached with a larger bias.
Figure 7(b) shows the time-averaged spin current in the steady
state as a function of the bias. For the parameters used here,
the current changes seemingly discontinuously from zero to a
finite value when the spin bias exceeds the critical value. We
expect that this discontinuity would be smoothed out if the
effects of a finite temperature were taken into account. The
average spin current approaches the value G0�h expected for
ballistic transport, consistent with the results of the previous
section.

The current shown in Fig. 7(b) is of similar order of mag-
nitude as the particle currents reported in Ref. [41], where the
atom number imbalance changes by around 104 within 1 s.
The oscillation amplitude is of similar order of magnitude as
the reported changes in atom numbers between data points.
The initial spin bias is on average 0.24μ [41], while the
chemical potential μ is quoted as 360 nK in Ref. [72]. A
spin bias of order 0.24μ ≈ 90 nK is smaller than the bias
340 nK at which the wire becomes conducting for the smaller
interaction in Fig. 7(b). On the other hand, the classical equa-
tion of motion may not reflect the true value of the spin
gap, as its validity here is limited to the strongly attractive
regime. A more precise value can be found by solving the spin
gap directly for the Gaudin-Yang model using Bethe ansatz
equations [73]. A rough order-of-magnitude estimate for the
critical bias can then be obtained as �hLZ = L�2

σ /(h̄kBvσ ), as
discussed in Sec. III B. For the particle density ρ0 = 0.8/µm
and the scattering lengths a = −2623a0 and −3789a0, we
get �hLZ ≈ 32 and 180 nK, respectively (see Appendix E).
The oscillating current could then be present at spin biases
similar to the ones used in Ref. [41]. The oscillation period
would be around 0.5 ms for �h = 90 nK. For biases below the
experimental temperature 60 nK [41], the oscillations would
likely be blurred out by thermal fluctuations. We also note
here another point of experimental relevance: when the short-
distance cutoff α is set as the interparticle distance ρ−1

0 , the
critical spin bias obtained from Eq. (19) is proportional to ρ2

0 .
In contrast, the Gaudin-Yang spin gap decays with the particle
density, as does the critical bias �hLZ estimated from this gap
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(vσ increases with ρ0). The density dependence of the critical
bias could therefore help to identify the appropriate theoretical
description of the system.

The exponential decay of the spin imbalance has a time
constant that is related to the transport time used in the mea-
surements in Ref. [41]. We use here the transport time ttr = 4 s
as a reference time scale. The oscillation period 0.5 ms is
orders of magnitude smaller than the characteristic transport
time, so that several oscillation periods could be realized
before the spin bias decays significantly. As the bias decays
in time, the oscillation period, inversely proportional to the
bias, would, in a simple picture, increase as a function of
time. The decay curves can be used to reconstruct the full
current-bias characteristics [72], and the presence of a critical
bias should appear as a nonzero long-time asymptote of the
spin imbalance.

V. DISCUSSION

Solving the classical equation of motion for φσ amounts
to approximating quantum field theory path integrals by the
classical path along which the action is stationary. This ap-
proximation can be expected to be most accurate when the
quantum fluctuations of φσ have a negligible contribution.
For the sine-Gordon model, this corresponds to the regime
where the cosine term in the Hamiltonian is relevant in renor-
malization, i.e., the renormalization flows to strong coupling
(see for example Ref. [50]), fermions with opposite spin are
paired, and the spin gap is nonzero. In that case, φσ is fixed to
the value that minimizes the cosine, and fluctuations around
this minimum are negligible. For the cold-atom experiment
with spin-rotation invariant contact interactions discussed in
Sec. IV, this is the strongly attractive regime. In the weakly
attractive case, one can expect deviations from the classical
result, as well as in the repulsive one, where the cosine term
is irrelevant due to strong quantum fluctuations.

Quantum effects are known to lead to a mass renormaliza-
tion of sine-Gordon solitons and antisolitons [19]. It would
be interesting to study whether this has consequences on
the critical bias for the spin transport mediated by instanton
excitations, as we find the spin gap to be overestimated by
the solution of the classical equation of motion compared to
the exact spin gap in the Gaudin-Yang model. Taking into
account quantum fluctuations might explain this deviation if
the possibility of quantum tunneling of φσ from one minimum
of the cosine to the next reduces the critical bias.

Furthermore, considering the effects of a finite temper-
ature would be interesting in connection with experiments.
In Ref. [11], to make comparisons with experimental data,
the effects of finite-temperature reservoirs were modeled by
stochastic noise at the boundaries. In statistical physics, one
commonly includes both a friction term proportional to ∂tφσ

and a stochastic fluctuation, which at thermal equilibrium are
connected via the fluctuation-dissipation theorem and deter-
mine the temperature. We do not include these terms in the
equation of motion, and our model therefore can be thought to
describe an isolated quantum system at a finite energy density.
In Ref. [11], a finite temperature is found to contribute to spin
transport as thermal excitation energies exceed the spin gap.
Here, we expect that accounting for a finite temperature by

including a stochastic noise would lead to a smoother change
of the current around the critical bias and smearing out of the
current oscillations.

VI. CONCLUSIONS

In an interacting wire coupled to noninteracting or
Luttinger-liquid leads, the spin current displays a transition
from a spin-insulating to a spin-conducting phase when the
spin bias exceeds its critical value. In the conducting phase,
the spin current oscillates with a fixed frequency given by the
spin bias, and the solution has similar features to a damped
Josephson junction driven by a dc current. When the Luttinger
parameter is different in the wire than in the leads, we re-
cover a differential conductance proportional to the Luttinger
parameter of the leads in the limit of large spin bias. We
furthermore estimate the oscillation period in physical units
and compare it to characteristic time scales reported for the
cold-atom transport experiment of Refs. [11,41]. The oscil-
lation period is orders of magnitude smaller than the typical
transport time, suggesting that the oscillation could be observ-
able in the short-time dynamics.

There is a multitude of systems where the low-energy
physics is described by the sine-Gordon model. Observing
dynamical effects resulting from the underlying sine-Gordon
model in spin transport would be particularly intriguing as the
cosine term arises purely from interactions. A similar model
can be realized for charge transport in a periodic potential
[11], although in this case there are coupling terms between
the spin and charge sectors. The spin sector, in the absence
of external potentials, is therefore a cleaner realization of the
sine-Gordon model and could offer an interesting (quantum
simulation) platform to study its dynamics. The solution of
the classical equation of motion considered here could further
be used to examine the effects of inhomogeneities in the sine-
Gordon parameters. Beyond the classical solution, it would be
interesting to investigate the effects of quantum fluctuations
on the transport dynamics.
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APPENDIX A: DERIVATION OF THE EQUATION
OF MOTION

The largest contribution to path integrals is given by the
classical path φcl along which the action is stationary:

δS

δφ

∣∣∣
φ=φcl

= 0. (A1)
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The real-time action S = ∫
dx

∫
dtL(φ, ∂tφ, ∂xφ) is written

in terms of the Lagrangian density L, connected to the Hamil-
tonian density as

L = �∂tφ − H. (A2)

We rewrite the canonical momentum � = h̄
π
∂xθ using the

duality relation

� = h̄

πKv
∂tφ, (A3)

where h̄ is included for completeness. The Lagrangian for the
forced sine-Gordon model, corresponding to Eq. (5), is then

L = h̄

2πK

(
1

vσ

φ2
t − vσφ2

x

)

− 2π h̄vσ y1⊥
(2πα)2

cos(2
√

2φ) − h(x)√
2π

φx. (A4)

Here, we shorten the notation to ∂xφ = φx, ∂2
x φ = φxx.

From Eq. (A1), one obtains the classical equation of mo-
tion, or the Euler-Lagrange equation, as

δL
δφ

= ∂

∂x

(
δL
δφx

)
+ ∂

∂t

(
δL
δφt

)
.

Taking into account the spatial variation of vσ , Kσ , and y1⊥,
we find the different terms as

∂

∂x

δL
δφx

= − ∂

∂x

[
h̄vσ (x)

πKσ (x)
φx + h(x)√

2π

]

= − h̄vσ (x)

πKσ (x)
φxx − h̄

π

(
∂

∂x

vσ (x)

Kσ (x)

)
φx + B(x)√

2π
,

∂

∂t

δL
δφt

= h̄

πKσ (x)vσ (x)
φtt ,

δL
δφ

=
√

2π h̄vσ (x)y1⊥(x)

(πα)2
sin(2

√
2φ),

where, according to Sec. II C, ∂xh(x) = B(x) is given by
Eq. (18). Within the bulk of the wire, vσ , Kσ , y1⊥, and B are
taken as constants, and we recover the equation of motion

φtt = v2
σφxx +

√
2v2

σ Ky1⊥
α2

sin(2
√

2φσ ) − B0vσ K

h̄
√

2
, (A5)

where B0 = �h/L.

APPENDIX B: CRITICAL SPIN BIAS

In the absence of an exact solution to Eq. (A5) in the
wire-and-leads geometry, we find the critical spin bias from
the numerical solution. The form of the equation of motion
however suggests a simple expression for the critical bias that
we use as a reference value. Without the spatial derivative
term v2

σφxx, Eq. (A5) describes for instance a Josephson junc-
tion driven with external current [70] or a planar pendulum
driven with constant torque. These systems possess a critical
drive, given by the coefficient of the cosine, below which a
stationary solution exists and above which the solution in-
creases with time. Based on the similar form of the equation of
motion Eq. (A5), we expect the transition from insulating

(∂tφσ = 0) to conducting (∂tφσ �= 0) to occur when the last
term of Eq. (A5) is equal to the coefficient of the sine term.
We therefore define the expression

�hc = 2Lvσ y1⊥
α2

(B1)

for the critical bias and study whether this value is reproduced
by the numerical solution. Here, we again set h̄ = 1.

This critical bias can be connected to the threshold volt-
age Vth in the Landau-Zener dielectric breakdown in band
and Mott insulators [60–65]. For a one-dimensional insulator
of length L, numerical results of nonequilibrium Green’s-
function calculations indicate that the dielectric breakdown is
governed by the electric field Eth = Vth/L ∼ �2/W , where �

is the charge gap and W the bandwidth, when the wire length
is larger than the correlation length ξ = W/� [64]. For wires
shorter than the correlation length, the threshold voltage was
found to be approximately given by the gap, Vth ∼ � [64].

We may compare these results to the sine-Gordon model
deep in the massive phase (y1⊥ → ∞, Kσ → 0), where an
expression for the spin gap is available. The cosine term in the
Hamiltonian can be expanded around a minimum, resulting in
a quadratic mass term ∼M2φ2

σ where the phonon mass

M =
√

4Kσ v2
σ y1⊥

α2
(B2)

is identified with the spin gap [see Eq. (2.153) in Ref. [3]].
In this limit, we can then expect a threshold magnetic-field
gradient:

Bth ∼ �2
σ

vσ

= 4Kσ vσ y1⊥
α2

. (B3)

This expression is not identical to �hc/L as given by Eq. (B1)
but has the same functional dependence on y1⊥, vσ , and the
cutoff α. In Eq. (B1), the critical bias is independent of
Kσ , which agrees with the numerical results in Fig. 6(a) for
Kσ � 0.5. For Kσ < 0.5, the critical bias is reduced and has a
dependence on Kσ .

To gain insight into this difference, we define the cor-
relation length ξσ = vσ /�σ [50]. Using Eq. (B2), ξσ =
α/(2

√
Kσ y1⊥) in the strong-coupling limit. Setting α = 1 and

y1⊥ = 0.5 as in Fig. 6, we find that the correlation length
exceeds the wire length L = 1 when Kσ < 0.5. In Ref. [64],
the threshold voltage was found to be approximately equal
to the gap in this case. For Kσ = 0.2, shown in Fig. 6(a),
the strong-coupling spin gap of Eq. (B2) would have the
value �σ/�h0 ≈ 0.6, while the numerically obtained critical
bias is �hc/�h0 ≈ 0.7. As the value y1⊥ = 0.5 is not in the
strong-coupling limit, we do not expect the expression (B2)
for the spin gap to be accurate. Despite this discrepancy, it is
interesting to note that the behavior of the critical bias changes
when the correlation length exceeds the wire length.

APPENDIX C: NUMERICAL SOLUTION OF THE
EQUATION OF MOTION

To solve Eq. (D1) numerically, we discretize the space and
time coordinates as x j and tn, respectively. We denote the
discretized field as φ(x, t ) → un

j = u(x j, tn). We reformulate
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the equation of motion as

φtt = v2φxx + δσφx + F (φ(x, t ), x, t ),

where

δσ = vσ (x)

Kσ (x)
[v′

σ (x)Kσ (x) − vσ (x)K ′
σ (x)]. (C1)

In the discretized form, this is

un+1
j − 2un

j + un−1
j

�t2
=v2

j

un
j+1 − 2un

j + un
j−1

�x2

+ v2
j δ j

2�x
· un

j+1 − un
j−1

2�x

+ F (un
j , x j, tn) + O(�x2,�t2),

where

δ j =
(

v j+1 − v j−1

v j
− Kj+1 − Kj−1

Kj

)

and

F
(
un

j , x j, tn
) = −

√
2v2

j Kjy j

α2
sin

(
2
√

2un
j

) + Bjv jKj√
2

.

We may now rewrite the equation as

un+1
j = − un−1

j + 2
(
1 − γ 2

j

)
un

j + γ 2
j

(
un

j+1 + un
j−1

)
+ δ j

4
γ 2

j

(
un

j+1 − un
j−1

)
+ �t2F

(
un

j , x j, tn
) + O(�x2,�t4),

where γ j = v j
�t
�x and now j ∈ {2, . . . , J − 1} and n ∈

{2, . . . , N − 1}.
The nonreflecting (Sommerfeld) boundary conditions of

Eq. (15) are discretized as

un+1
J = un

J−1 − QJun+1
J−1 + QJun

J ,

un+1
1 = un

2 − Q1un+1
2 + Q1un

1,

where Qj = (1 − γ j )/(1 + γ j ). As initial conditions, we set
u1

j = u2
j = 0. We set the discretization as �x/L = 5 × 10−5

and �t/(L/vF ) = 2 × 10−5 while the width w of the wire-
lead boundary in Eq. (18) is set to w/L = 10−2.

APPENDIX D: INITIAL TIME EVOLUTION IN A
LUTTINGER LIQUID WIRE

In the case of an interacting Luttinger-liquid wire, the
equation of motion is [47]

φtt = v2φxx + Kvφx∂x

(
v

K

)
+

√
2KvE . (D1)

Here, E is the electric field within the wire due to a chemical
potential bias which drives charge transport. In analogy with
the spin transport, we assume a field E of the form of Eq. (18).
A model of this form arises, in one dimension, for spinless
fermions or the charge sector of fermions with spin. The
parameters v and K are here the ones pertaining to the charge
sector.

As a comparison to Sec. III A, we present here the initial
time evolution of φ, the charge density ρ = −

√
2

π
∂xφ, and

FIG. 8. The spatial profiles of (a) the field φ, (b) the charge
density ρ = −

√
2

π
∂xφ, and (c) the current j =

√
2

π
∂tφ, at fixed times

during the initial time evolution. The solid lines correspond to K =
0.8 in the wire and KL = 1 in the leads, while the dotted lines show
the noninteracting case K = 1 at the same times for comparison.
Time is in units of L/vF , and we set v = vF everywhere and the bias
to V/W = 0.5. Here, W is the energy scale W = 1/(πρ0) with the
constant density of states ρ0 = 1/(πvF ).

current j =
√

2
π

∂tφ. These are shown in Fig. 8 for both an in-
teracting Luttinger-liquid wire coupled to noninteracting leads
and a fully noninteracting system. The electric field within
the wire is quenched to a nonzero value at time t = 0, which
induces a charge current between the contacts. Charge density
is depleted from the left reservoir and accumulates in the right
one, similar to spin density in the case of spin transport. As
the wire is ballistic, there is no resistance to charge transport
and the current profile evolves into j = 2G0V everywhere
in the wire, as seen in Fig. 8(c). Here, V is the voltage, or
chemical potential bias, V = E0L. The charge current has a
factor of 2 due to spin degeneracy. The steady-state current is
independent of K in the wire [46–48].

APPENDIX E: PARAMETERS IN THE
COLD-ATOM EXPERIMENT

Similar to Ref. [50], we determine the parameters y1⊥, Kσ ,
and vσ from the experimental parameters used in Ref. [41].
We consider a one-dimensional channel, corresponding to a
situation where only one transverse mode is occupied. The
effective parameters y1⊥ and Kσ can be determined from
the experimental parameters via the Gaudin-Yang model of
Eq. (1), which describes spin- 1

2 fermions with interacting with
an effective delta-function interaction potential. When the
atoms are confined into a quasi-one-dimensional geometry,
the coupling g1⊥ is obtained as

g1⊥ = 2h̄ω⊥a

1 − A a
a⊥

, (E1)

where ω⊥ is the transversal confinement frequency, a the
s-wave scattering length, a⊥ the oscillator length, m the
atom mass, and A a dimensionless constant arising from the
wave-function expansion in the derivation of the effective
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TABLE I. The spin velocity and spin gap given by Eqs. (E4) and
(E5) for ρ0 = 0.8/µm and L = 6 µm. These are used to estimate the
correlation length ξσ = h̄vσ /�σ and the critical spin bias �hLZ =
L�2

σ /(h̄kBvσ ) due to a Landau-Zener-like transition.

a/a0 vσ (mm/s) �σ /kB (nK) ξσ (µm) �hLZ (nK)

−2623 16 25 4.8 32
−3789 17 62 2.1 180

interaction potential [74]. The oscillator length is given by
a⊥ = √

h̄/(mω⊥). The values used for these parameters are
given in Table II of Ref. [50].

The dimensionless coupling y1⊥ is obtained from g1⊥ as

y1⊥ = g1⊥
πvσ

. (E2)

The oscillation behavior of the spin current is independent
of the sign of y1⊥ as it only produces a phase shift in
cos(2

√
2φσ ). For spin-rotation invariant interactions, Kσ is

fixed by

Kσ =
√

1 + y1⊥
2

1 − y1⊥
2

(E3)

[see for example Eq. (2.105) in Ref. [3]]. The spin velocity is
obtained by interpolating between the analytic expressions for

weak and strong attractive interactions [73]:

vσ

vF
�

{
1 − γ

π2 + . . . , 1
γ

→ −∞,

− γ

π
√

2

(
1 − 2

γ
+ . . .

)
, 1

γ
→ 0−,

(E4)

where γ = mg1⊥/(h̄2ρ0). In the noninteracting system with
Kσ = 1, the spin velocity is equal to the Fermi velocity vF =
h̄ρ0π/(2m). We choose the short-distance cutoff α as the
inverse density ρ−1

0 .
We similarly compute the exact spin gap [73]:

�σ

EF
�

⎧⎪⎨
⎪⎩

16
π

√
|γ |
π

e−π2/(2|γ |) + . . . , 1
γ

→ −∞,

2γ 2

π2

[
1 − π2

2γ 2 + O(γ −4)
]
, 1

γ
→ 0−,

(E5)

where EF = mv2
F /2 is the Fermi energy. Using Eqs. (E4)

and (E5), an order-of-magnitude estimate for the critical bias
can be obtained as �hLZ = L�2

σ /vσ . The values of the spin
velocity, spin gap, correlation length, and critical bias are
computed in Table I for the particle density ρ0 = 0.8/µm
and wire length L = 6 µm. The scattering lengths are given in
units of the Bohr radius a0 = 5.29 × 10−11 m, the Boltzmann
constant is kB = 1.38 × 10−23 J/K, and the reduced Planck
constant h̄ = 1.054 × 10−34 J s. As the correlation length ξσ

is smaller than the wire length but comparable to it, it is not
unambiguous whether �hLZ or �σ is a better estimate for the
critical bias (see Appendix B). This remains to be determined
experimentally.
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