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Decoherence of a matter wave by blackbody radiation
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We have observed the decoherence of a lithium atomic wave during its propagation in the presence of the
radiation emitted by tungsten-halogen lamps, i.e., decoherence induced by blackbody radiation. We used our
atom interferometer to detect this decoherence by measuring the atom fringe-visibility loss. The absorption of a
photon excites the atom, which spontaneously emits a fluorescence photon. The momenta of these two photons
have random directions, and this random character is the main source of decoherence. All previous similar
experiments used small-bandwidth coherent excitation by a laser, whereas incoherent radiation involves several
technical and conceptual differences. Our approach is interesting as blackbody radiation is omnipresent and
decoherence should be considered if particles resonant to electromagnetic fields are used.
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I. INTRODUCTION

Decoherence of a quantum object results from its inter-
action with its environment, which then plays the role of a
measurement device [1,2], i.e., both become entangled. In our
experiment, the object is an atom, and the environment is a
thermal photon bath. Experiments have tested this process for
atoms, in particular for the coherence of a coupled motional
state of trapped ions [3,4] and between discrete atomic levels
[5] (for recent reviews see [6,7]).

The study of matter-wave decoherence can be done by
interferometry. Various interferometry experiments have been
performed such as the following:

(i) The decoherence of an atom wave arises from the ab-
sorption of a resonant photon, followed by the spontaneous
emission of a fluorescence photon [8–12]. The absorbed pho-
ton is provided by a laser beam, and the decoherence is due to
the fluorescence photon’s random momentum, which induces
a random phase shift.

(ii) The decoherence of a molecular wave describing the
propagation of a fullerene molecule was induced by the emis-
sion of thermal radiation. In this experiment, the thermal
radiation was enhanced by heating the molecules with a laser
prior to their entrance in a Talbot-Lau interferometer [13].

(iii) The decoherence of an atom or molecular wave can
also be induced by collisions with the gas in the vacuum
chamber [14–16]. The momentum transferred by such a colli-
sion, considerably larger than that of a photon, has important
consequences: an atom (or molecule) which collided may
miss the detector with a non-negligible probability, while de-
coherence can be observed only if the atom (or molecule) is
detected. This effect has been observed with heavy molecules
in a Talbot-Lau interferometer [15,16] and with sodium atoms
in a Mach-Zehnder interferometer using transmission gratings
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[14] and a moiré detection scheme [17]: in both cases, inter-
ference signals are observed with a wide detector.

We study here the decoherence due to propagation using
blackbody radiation based on thermal light. Blackbody ra-
diation interacts with any polarizable object through the ac
Stark interaction. It shifts energy levels, and even at room
temperature these shifts become relevant for atomic clocks
[18].

A radiation gradient induces a force, as detailed by
Sonnleitner et al. in the case of hydrogen atoms [19]. In 2018,
Haslinger et al. measured this force using cold-cesium-atom
interferometry [20]. This force does not play a relevant role
in our atom-interferometry experiment as our setup minimizes
radiation gradients. In our experiment, decoherence is induced
by modification of the atom momentum due to photon scat-
tering. A very large baseline atom interferometer such as the
one cited by Canuel et al. [21] should set the temperature
difference to below 0.1 K, thus reducing this effect.

II. OUR EXPERIMENTAL APPROACH

Our decoherence mechanism using thermal light radiation
implies several differences from previous studies.

In the experiments using laser excitation [8–12,14], the
laser beams were intense enough to saturate the resonance
transition. The interaction time in the cited experiments is
comparable to or shorter than the atom excited-state lifetime
τ . In the saturation regime, this short time was sufficient to
excite the atom at least once and to induce decoherence.

The radiation we use can be described as a blackbody
radiation at a temperature T close to that of the lamp filament.
The mean photon number per mode near the atom resonance
frequency ωr is very small, ≈ kBT/(h̄ωr ) � 1, so the excita-
tion regime is very far from saturation. A long atom-radiation
interaction time tint � τ is needed to produce a non-negligible
excitation probability and an observable decoherence effect.

The radiation bath used is almost isotropic, lead-
ing to an isotropic random momentum exchange: each
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FIG. 1. Top: Schematic drawing of the atom interferometer (not
to scale). The photon-recycling box is placed before the third mirror.
Bottom: Open view of the photon-recycling box: two tungsten-
halogen lamps are located inside the box, with their axis 10 mm
above the atom-interferometer arms. The box is made of copper, with
a silver coating on its internal surface. Light baffles at the two ends of
the box reduce the power radiated directly toward the support of the
laser standing-wave mirrors Mi. The box is cooled by water flowing
in copper pipes (not represented).

absorption-emission process involves the transfer of two ran-
dom photon momenta.

Decoherence experiments are frequently discussed as be-
ing experimental realizations of Heisenberg’s microscope
Gedankenexperiment [22,23]. Laser light shines on the in-
terferometer arms, and if the arm separation is smaller than
approximately half of the exciting laser wavelength, the detec-
tion of a scattered photon cannot reveal the spatial position of
the scattering atom with sufficient precision to distinguish on
which interferometer path the atom emitted the photon. The
which-path information cannot be revealed, and high-contrast
interferences can be observed [1,11]. If the separation is
larger, the ability to discriminate the which-path information
exists in principle, and this information may be extracted by
a measurement of the emitted photon. In our experiment, the
arm separation is several orders of magnitude larger than the
671-nm blackbody radiation.

We use isotropic blackbody radiation. Scattered photons
are embedded into the blackbody photons, and a Heisenberg
detector cannot distinguish them. Using our experimental pa-
rameters and assuming the characteristics of a Heisenberg
photon counter, we estimate the contribution of a one-photon
scattering toward a hypothetical photon counter (see Ap-
pendix A for details). At 2300 K, we find a mean photon
number of the blackbody radiation of nBB = 8086.6. If we take
nBB + 1 counting events, we find that the ratio of a scattered
and detected photon is less than 1%.

III. THE EXPERIMENTAL SETUP

Our experiment (see Fig. 1) is based on a Mach-Zehnder
atom interferometer [24]. A lithium atomic beam is produced
by supersonic expansion of a lithium-argon mixture, with
mean lithium velocity u ≈ 1055 m s−1, corresponding to a de
Broglie wavelength λdB ≈ 53 pm for 7Li.

Bragg atom diffraction by quasiresonant laser standing
waves is used to split, reflect, and recombine the atom wave.
The wavelength of the laser used for the laser diffraction is
about λr = 671 nm, with its frequency shifted ≈2 GHz to
the blue side of the D2 resonance line of 7Li. At this laser
wavelength, only this isotope contributes to the interferometer
signal.

A 50-µm-wide detection slit, located 400 mm after the third
laser standing wave, selects one of the interferometer output
beams which is detected by a Langmuir-Taylor hot-wire de-
tector. The signal intensity I can be described by

I = I0[1 + V0 cos ϕd ], (1)

where I0 is the mean intensity and V0 is the fringe visibility,
with typical values of I0 ≈ 3 × 104 detected atoms per sec-
ond and V0 ≈ 70%. The phase ϕd , which is sensitive to the
position of the mirrors Mi forming the laser standing waves,
is used to scan the interference fringes by displacing mirror
M3.

Decoherence will be observed if (1) an atom crossing the
interaction region has a large excitation probability, (2) the
transferred momentum is sufficient to randomize the atom
wave phase, and (3) an atom which experienced a scattering
event can be detected. Let us discuss these three conditions.

(i) In the presence of blackbody radiation, the normalized
populations Pg and Pe of the ground and excited states are in
equilibrium with the radiation:

Pe

Pg
= ge

gg
exp

[
− h̄ωr

kBT

]
, (2)

where gg and ge are the degeneracies of states g and e. For this
equilibrium situation, the excitation rate γexc is equal to the
rate of spontaneous emission Pe/τ , given by

γexc = Pe

τ
≈ ge

ggτ
exp

[
− h̄ωr

kBT

]
(3)

using Pg ≈ 1. For a lithium atom the ground state is 2S, and 2P
is the first resonant state; ge/gg = 3, h̄ωr/kB = 21443 K, and
τ = 27.1 ns. An excitation rate γexc = 1 × 104 s−1 is reached
for T ≈ 2300 K, and decoherence can then be observed with
an interaction time tint ≈ γ −1

exc ≈ 100 µs.
The photon number volumetric density at ωr inside a fully

closed blackbody box, ρN , is given by Planck’s law. We used
a photon-recycling box in the interaction region which is not
fully closed, and the walls are not perfectly reflective at ωr .
Consequently, ρN is reduced by a dilution factor D(ωr ). Using
Eq. (3), we have

D(ωr )ρN (T ) = D(ωr )
8ω2

r

π2c3

1

exp
( h̄ωr

kBT

) − 1
	ω

≈ 8ω2
r

3π2c3
D(ωr )γexcτ	ω, (4)

with 	ω being the frequency interval of interest. The approxi-
mation holds for h̄ωr � kT , which is valid in our experiment.
The effective excitation rate is thus given by D(ωr )γexc. In
Appendix B we estimate D(ωr ), but we use a fit of our model
to the experimental results to determine the effective D(ωr ).

(ii) The transferred momentum h̄	kx is the sum of the
random and isotropically distributed momenta of two photons.
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The transferred momentum probability distribution
P(	)(	kx ) can be easily calculated if the two photon momenta
are random and uncorrelated: this is exact if one averages over
all the ground-state hyperfine Zeeman sublevels. Following
the discussion by Chapman et al. [11] and Pritchard [1], the
phase shift due to this event is equal to 	ϕ = 	kxdx, where
dx is the distance between the two interferometer arms at the
point where the absorption-emission cycle occurs.

In our experiment, the center of the interaction region
is placed at 	zpb = 80 mm before the center of the third
laser standing wave, and the interferometer-arm separation dx

reads dx = (2λdB/λr )	zpb = 12.9 µm. As dx is large against
λr , the interference term in Eq. (1), cos (ϕd + 	kxdx ), oscil-
lates rapidly with 	kx, and the fringe signal averaged over
P(	)(	kx ) is fully washed out, as explained in Sec. IV.

More sophisticated calculations involving the Wigner func-
tion were developed by Hornberger et al. [25] to describe
decoherence of fullerene molecules inside a Talbot-Lau inter-
ferometer [13,15,16]. This formalism can be applied to our
experiment, but the necessary modifications are out of the
scope of the present paper.

(iii) An absorption-emission cycle changes the atom mo-
mentum and its probability of reaching the detector. This
effect increases with the distance between the photon-
scattering event and the detection slit. In order to minimize
the atom-loss probability, we placed the interaction region
as close as possible to the detection slit. With an interaction
region length lint = 100 mm, the mean interaction time is
tint ≈ 94 µs ≈ 3400τ .

Blackbody radiation is usually produced inside an almost
closed oven heated at temperature T . However, reaching
a temperature of T ∼ 2300 K is challenging, and the re-
quired power, several kilowatts, would perturb the very
sensitive alignment of the interferometer [24]. To minimize
the heat transferred to the interferometer, we chose to use two
tungsten-halogen lamps placed above the atom trajectories
inside a copper water-cooled box (see Fig. 1).

We used 5-mm-wide slits at the entrance and exit of the
box, so that even with a rough alignment, the two interferom-
eter arms cross easily this box. Wide slits also enhance the
pumping speed of the box and reduce any pressure increase in
the box due to outgassing induced by the lamps.

The internal walls of the box are coated with silver because
this metal has the largest reflection coefficient, ≈ 99%, at the
lithium resonance frequency ωr . To evaluate the spectral en-
ergy density inside the box at this wavelength, we must know
the lamp filament temperature T as a function of the lamp
current I and the dilution factor D(ωr ), which is defined by
the density of radiation energy as a fraction of the blackbody
radiation.

We explain in Appendixes B and C how we proceeded.
The current supply for the lamps might create a magnetic
gradient which decreases fringe visibility. We estimated its
contribution and found it to be negligible (see Appendix D
for details).

For a current I in the 7–12-A range, the filament tempera-
ture T is given by T ≈ 765.6 × I0.611( K). The dilution factor
D(ωr ), deduced from a thermodynamic model, is D(ωr ) ≈
17% for a clean silver surface. Unfortunately, after operation
of the lamps under vacuum, the box’s internal surface was

covered by a thin layer of black soot due to the cracking of
the vapor of the Santovac oil used in the diffusion pumps by
the UV radiation of the lamps. This soot layer considerably
increased the probability of photon absorption by the box
walls and reduced D(ωr ) to close to 1.4% ± 0.1%, a value
deduced from a fit of the measured decoherence. This value
corresponds to a diffuse reflection coefficient of ≈45%.

As the halogen lamps are placed above the interferometer
arms, the light pressure may differ in the vertical (y) direc-
tions, which would break the isotropic symmetry. However,
the vertical (y) acceptance of the detection slit is large; its ef-
fective width is about 1 mm, not causing any atom losses. The
homogeneity of the atom momentum transfer in the horizontal
(x) direction due to absorption-emission cycles is not affected.

IV. OUR MODEL

The absorption cycles change the atom momentum by
h̄	k; i.e., all directions are concerned as the blackbody ra-
diation is almost isotropic. As the detection slit is about 1 mm
large in the vertical direction (y axis), all deviating atoms in
this direction are detected, and we drop this coordinate.

After one absorption and emission of a photon, the atom
decays by spontaneous emission into the electronic ground
state, but the magnetic hyperfine sublevel may be changed. If
the incoming photon has a momentum along the z coordinate,
the excitation does not occur on the same z coordinate for the
two interferometer arms. The distances along the interferome-
ter arms traveled by the atom in the new hyperfine sublevel are
different. In our experimental setup, we have a weak nonzero
homogenous magnetic field, and the Zeeman effect introduces
a phase shift. We show in Appendix E that this phase shift is
negligible. Therefore, we assume that the kz component of the
atom momentum change does not influence the interferometer
signal.

Before detailing our model to describe the effect of radia-
tion on the interferometer signal, we resume the main results.
Let Pn be the probability for an atom to follow n absorption-
emission cycles during the interaction time tint. We will show
that, as soon as n > 0, the atom loses its phase coherence.
It contributes to the phase-insensitive part of the interference
signal with a probability πn.

We set π0 to unity. For n > 0, πn is a function of the
geometry of the interference arms and the detection-slit width.
The probability Pn of n absorption-emission cycles is given by
a Poisson distribution:

Pn(γexc) = (γexctint )n

n!
exp(−γexctint ), (5)

γexc is assumed to be constant but will be adjusted to take into
account the dilution factor D. We will show that the effect
of the radiation on the fringe intensity I0 and visibility V0 is
given by

I0,rel =
∞∑

n=0

Pn(γexc) πn/π0,

V0,rel = P0(γexc) π0∑∞
n=0 Pn(γexc) πn

. (6)
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FIG. 2. Due to absorption-emission cycles, atoms receive an
additional momentum h̄	kx and are deviated by the angle
(	kx/kdB)(u/v).

I0,rel and V0,rel are the relative values. They are very sensitive
to the values of πn, as shown by two extreme cases:

(i) If πn = 1 for all n, i.e., there are no atom losses, I0,rel =
1, and V0,rel = P0 = exp[−γexctint].

(ii) If πn = 0 for all n > 0, i.e., all excited atoms are lost,
I0,rel = exp[−γexctint], and V0,rel = 1.

We now present our model in more detail. We analyze
the effect of radiation on the atom beams, which contain the
symmetric (S) and antisymmetric (AS) interferometer signals
(see Fig. 1). All other stray beams have negligible intensities
[24].

Following the approach of [11], the n absorption-emission
cycles change the atom momentum by h̄	k and the atom
wave phase by 	kxdx.

Along the horizontal (x) direction, the atom wave deviates
by an angle (	kx/kdb)(u/v), with kdb = 2π/λdB being the de
Broglie wave-vector amplitude at the atom mean velocity u =
1055 m s−1 and v being the atom velocity. Following Fig. 2,
the displacement δx on the detector-slit plane reads

δx = 	kx

kdB

u

v
(zD − zM3 + zph), (7)

with zD and zM3 being the positions of the detector slit and zph

being the position of the absorption-emission cycle.
The center positions of the symmetric and antisymmetric

atom beams on the detector plane are given by

xc,S(v) = δx + θB
u

v
(zM2 − zM1),

xc,aS(v) = δx + θB
u

v
(zD − zM2). (8)

with θB = kL/kdB ≈ 80.5 µrad being the first-order Bragg
angle for atoms at the mean velocity u and kL being the
wave-vector amplitude for the standing-wave laser.

P(	)
n (	kx ) is defined as the probability density function for

n-cycle, 	kx momentum transfer. This function is evaluated
in Appendix F. In the experiment of Chapman et al. [11] and
in ours, no information about 	kx is available, and we have
to integrate over this quantity. The atom flux intensity at the
detection-slit plane at zD is given by the sum of the S and AS

FIG. 3. The intensity profiles I (K )
n (x) (K = S, AS) are traced for

n = 0, 1, 2. The solid lines represent the symmetric outputs (K =
S), and the dashed lines indicate the antisymmetric ones (K = AS).
The detection slit, centered at x = 0, with a width of w = 50 µm is
represented as a gray shaded rectangle.

output beams of the interferometer. Both are composed of the
sum over n of P(	)

n (	kx ) weighted by the Poisson probability
Pn(γexc):

I (x) =
∞∑

n=0

Pn(γexc)
[
I (S)
n (x) + I (AS)

n (x)
]
, (9)

with

IK
n (x) =

∫ ∞

0

∫ ∞

−∞
P(	)

n (	kx )P(v)I0(x − xc,K )

×
[
1 ± V0 cos

(
θd + 	kxdx(v)

u

v

)]
d	kxdv,

where K = S, AS denotes the contribution of the symmetric
and antisymmetric output ports of the interferometer. The plus
(minus) sign before V0 should be used for K = S (K = AS).
I0(x) is the intensity, and P(v) is the velocity profile of the
nondiffracted atom beam. In our experiment P(v) is well
described by a Gaussian distribution:

P(v) = S||
uπ

exp

[
−

(
(v − u)S||

u

)2
]
, (10)

with S|| ≈ 8 being the longitudinal velocity ratio. I0(x) can
be modeled by a trapezoidal shape using the collimation-slit
geometry. The top width is given by the collimating-slit width
wS = 18 µm (S0 and S1; see Fig. 1). The bottom width is
99 µm.

Finally, we numerically calculate the detector signal. We
confirmed that for n > 0 the terms involving the cosine
are negligibly small (e.g., for 0 < n � 3, the correction is
< 10−4).

Figure 3 shows the results for I (S)
n (x) and I (S)

n (x) for n =
0, 1, 2. The shaded region represents the detection slit with a
width of w = 50 µm, which selects the interferometer outputs.

The photon absorption-emission process increases the mo-
mentum width of the atoms; i.e., it broadens the beams, thus
resulting in losses for the symmetric beam or a gain due to the
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TABLE I. The relative signals and the probabilities πn calculated
by numerical integration.

n S(S)
n S(AS)

n πn

0 0.93 0.07 1.00
1 0.40 0.26 0.66
2 0.35 0.24 0.59
3 0.29 0.23 0.52

antisymmetric beam. We define the relative signals Sn(K ), and
we deduce the probabilities πn:

S(K )
n =

∫ w/2

−w/2
I (K )
n (x)dx,

πn = S(S)
n + S(AS)

n

S(S)
0 + S(AS)

0

. (11)

A numerical integration provides the values of πn used in
Eq. (6), as summarized in Table I.

We use our model to fit the experimental results. The
only fitted parameter is the dilution factor D, which modifies
the excitation parameter γexc (see Appendix B). Only the
probabilities for the absorption-emission cycles Pn(γexc) are
affected, while the probabilities πn are independent of this
parameter. The results from this model and our experimental
results are plotted in Fig. 4.

V. EXPERIMENT AND RESULTS

In the first step, we outgassed the box walls by running
the lamps at a moderate power without water cooling. Then,
with water cooling on, we tested the effect of the lamps on the
interferometer alignment: using an electronic autocollimator
(LDS-Vector, Newport) to measure the orientation of mirror

FIG. 4. Plot of the relative values of the mean intensity loss L(I )
and relative visibility as a function of the current I sent through
the lamps. The data points are experimental, while the solid curves
represent the results of the model, using a fit for the visibility. We
use our model with the calculated values π1 = 0.66, π2 = 0.59, and
π3 = 0.52. The dilution factor is obtained by fitting the experimental
data for the visibility, and we get D(ωr ) = 1.4% ± 0.1%.

FIG. 5. We scan the interference fringes and extract the visibility
and the mean signal. The black squares represent the values in the
absence of the blackbody radiation. The red circles represent the
values with the two lamps lit up at 10.5 A.

M3, we measured that its orientation drifts up to ∼300 µrad
after a few minutes with the lamps on.

As the interferometer requires a mirror orientation within
±5 µrad of its optimum value, we cannot continuously run
the lamps. We chose to alternate on-off periods with respec-
tive durations of 20 and 600 s. During a 20-s on period, the
energy transferred to the mirror support is small enough to
induce only a very small misalignment which relaxes during
the 600-s off period. In order to measure the mean inten-
sity and the visibility we use the same procedure developed
in our previous experiments (see, e.g., [26]). We vary the
phase ϕd [Eq. (1)] by ramping the x position of mirror M3

(Fig. 1).
We record the fringe signal before, during, and after the

lamp-on period, and we measure the fringe mean intensity
I0 and the fringe visibility V0 in these three case; the ther-
mal transient of the lamps, about 1 s, is discarded from the
analysis.

Figure 5 shows one result for the fringe intensity and
visibility. At the beginning the two lamps are switched off;
we light them by applying a current of 10.5 A, and then,
they are switched off. The lamp-on data, represented by red
circles, are taken between the two lamp-off measurement sets,
represented by black squares. The effect is clearly visible for
both quantities.

We compare the fringe intensity and visibility during the
on period to the corresponding values for the off period,
defined as the mean of the values measured just before and
after the lamp-on period: Ī0 = (I (before)

0 + I (after)
0 )/2 and V̄0 =

(V (before)
0 + V (after)

0 )/2.
Figure 4 presents the plots of the mean intensity loss

L(I ) = 1 − Ion
0 (I )/Ī0 and the relative visibility Von(I )/V̄0 as

a function of the current I circulating in the lamps. The lines
are the results of our model using Eqs. (6). We used the calcu-
lated probabilities πn (n = 0, . . . , 3), listed in Table I and the
absorption-emission-cycle probabilities Pn(Dγexc) with the di-
lution factor D as the only fit parameter for the relative fringe
visibility. We found D = (1.4 ± 0.1) × 10−2.
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FIG. 6. The relative visibility plotted as a function of Dγexctint .
The data points are experimental, while the solid line represents the
results of our model. The upper x axis shows the photon number
density DρN emitted by blackbody radiation at λ = 671 nm within
the frequency interval 	ω = 2π × 12.7 MHz.

For the relative visibility, the agreement between our model
and experiment data is very good. Our model captures the
correct trend of L(I ).

The curves show a strong nonlinear behavior which is
related to the exponential relation between γexc(T ) and the
temperature T . In Fig. 6 we plot the relative visibility as a
function of Dγexctint, with γexc defined in Eq. (3).

As shown in Eq. (4), we can link Dγexc to the photon num-
ber density DρN of the blackbody radiation emitted at 671 nm
(2P → 2S of Li). The natural choice of the frequency interval
of interest 	ω for a Li atom at rest would be the linewidth of
the D line, 2π × 5.9 MHz. However, the atoms are moving in
the z direction with a velocity distribution given by Eq. (10).
We calculate the Doppler broadening effect and estimate the
effective frequency interval 	ω = 2π × 12.7 MHz. The up-
per x axis in Fig. 6 shows the photon density DρN (T ).

VI. CONCLUSION

We observed decoherence during the propagation of a
lithium atom wave by its interaction with the broadband ther-
mal light radiation emitted by tungsten-halogen lamps. The
microscopic decoherence process is due to the transfer of
random photon momenta to the atom.

The atom excitation must be achieved inside an atom inter-
ferometer so that we can detect the decoherence effect, leading
to contradictory requirements: a large radiation temperature
and a large atom radiation interaction time must be produced
in order to ensure a non-negligible excitation probability of
the atoms without perturbing the very sensitive alignment of
the atom interferometer. Thanks to a photon-recycling box,
we succeeded, but its poor efficiency limited the observed
decoherence effect, with a reduction of the fringe visibility not
larger than ∼22%, while we had predicted a reduction larger
than 48% with the expected box efficiency.

We developed a model related to our experimental
setup. For an n absorption-emission cycle we derived the

TABLE II. For each atom, we give the energy of the first res-
onance line h̄ω0/kB, the excited-state lifetime τ , and the excitation
lifetime texc in the light of the Sun on Earth’s orbit.

Atom h̄ω0/kB( K) τ (ns) texc( s)

Li 21442 27 67 × 10−3

Na 24428 16 67 × 10−3

Rb 18446 27 40 × 10−3

Sr 20943 23 52 × 10−3

Cs 31210 23 35 × 10−3

probabilities to detect the atom, and with the probabilities of
an n absorption-emission cycle, we derived the fringe visi-
bility and mean intensity. Using a single fit parameter, this
model is used to fit experimental results; the agreement for
the fringe visibility is very good, and for the mean intensity it
is satisfactory.

The discussion of previous experiments using coherent
radiation was based on the idea of Heisenberg’s microscope
Gedankenexperiment [22,23]. The atom is scattered by a pho-
ton which can be detected. However, our employed radiation
field is isotropic and chaotic. A scattered photon is embedded
in the blackbody radiation, and at 2300 K, we estimated the
contribution of a scattered photon to the Heisenberg detection
unit to be less than 1%.

With the presence of blackbody radiation being ubiquitous,
it should be considered for ultrasensitive atom-interferometer
projects. Decoherence in an interferometer decreases the
fringe visibility and thus the phase sensitivity. Decoherence by
interaction of atoms with radiation is a universal process, with
a coherence lifetime of the order of the excitation time texc =
1/γexc. In the case of blackbody radiation at temperature T ,
this time depends a lot on the atom species because of the
frequency of its first resonance transition, on the temperature
T , and on the dilution factor.

As an example, we consider an atom interferometer in
space, close to Earth’s orbit, and the decoherence due to
sunlight, with an effective surface temperature of the Sun
T ≈ 5800 K. The atom receives the blackbody radiation emit-
ted within the solid angle of the Sun seen from Earth,
	�. Taking only this geometric effect, the dilution factor is
D = 	�/(4π ) ≈ 5.4 × 10−6. We calculated texc for lithium,
sodium, rubidium, strontium, and cesium (see Table II). In all
cases, the coherence lifetime is of the order of 5 × 10−2 s.
We did not take into account the shielding of the Sun’s radi-
ation by Fraunhofer dark lines: this effect is considerable for
sodium, with a transmission of ∼5% [27], but negligible for
rubidium and strontium, with a transmission of ∼95% [28].

For projected experiments of large atom interferometers in
space, an efficient shielding of sunlight will be necessary, as
discussed by Dimopoulos et al. [29,30].
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TABLE III. Values used for the calculation of the probabilities.
Pn is the probability for n = 0, 1 photon scattering, given by the
Poisson equation.

Quantity Value

	ν 5.7 MHz
vLi 1055 m s−1

�D 4 π/10
wLi 30 µm
	t 9.5 µs
	A 3 × 10−7 m2

λ 671 nm
T 2300 K
nBB 8086.6 photons
γexc 9894 s−1

P0(γexc	t ) 0.91
P1(γexc	t ) 0.09

ANR-11-BS04-016-01 HIPATI), and Région Midi-Pyrénées
is gratefully acknowledged.

APPENDIX A: A SIMPLE ANALYZE OF THE PHOTON
SIGNAL FOR A HYPOTHETICAL HEISENBERG

MICROSCOPE IN THE PRESENCE OF BLACKBODY
RADIATION

Let us consider that a photon-counting detection unit is
placed above one interferometer arm. This unit has an accep-
tation solid angle of �D, and as we assume isotropic emission,
the probability of a scattered photon to be detected is �D/4π .
The scattering probability is given by P1(γexc	t ), with Pn

being the Poisson distribution, γexc given by Eq. (5), and 	t
being the observation time.

We now consider the effect of blackbody radiation on one
photon detector. The mean number of photons nBB is given by

nBB(�D) = 2ν2

c2

{
exp

[(
hν

kBT

)
− 1

]}−1

	ν	A�D	t .

(A1)

We assume that only photons with 	ν, the natural linewidth
of the 2S1/2 →2 P transition, are detected. The detector is
sensitive to blackbody photons coming from an area 	A
and detection angle �D. We define the emission area 	A =
wLivLi	t , with wLi being the width of each interferometer
arm’s beams and vLi being the atom velocity. Table III sum-
marizes the used quantities.

The probability to detect n photons from the blackbody
radiation is governed by the Poisson distribution. For an n-
photon event of the detection unit, three contributions exist.

(i) No scattering occurs. The probability is

P(nsc)
n = P0(γexc	t )Pn(nBB).

(ii) A photon is scattered into the detection solid angle; i.e.,
it is detected:

P(sc,d)
n = �D

4π
P1(γexc	t )Pn−1(nBB).

TABLE IV. nBB and P(sc,d:rel.)
n+1 as a function of T .

T (K) 2300 1200 1000 770
nBB 8086.6 1.6 0.0 0.0
nc 8088 3 1 1
P(sc,d:rel.)

nc
(%) 0.9 1.6 16.4 99.2

(iii) A photon is scattered into the complementary solid
angle; it does not contribute to detection:

P(sc,nd)
n =

(
1 − �D

4π

)
P1(γexc	t )Pn(nBB).

The relative probability to scatter one photon which con-
tributes to detection is

P(sc,d:rel.)
n = P(sc,d)

n

P(nsc)
n + P(sc,nd)

n + P(sc,d)
n

. (A2)

We consider counting events of nc = nBB + 1, and we
calculate P(sc,d:rel.)

nc
(Table IV). For T = 2300 K, P(sc,d:rel.)

nc
is

small, about 1%. In order to study the effect of temperature on
the signal, we keep γexc constant, but we reduce the tempera-
ture of the emitting area 	A. As expected, P(sc,d:rel.)

nc
increases

for lower temperatures. Below 770 K, it is larger than 99%.
This is due to the rapid decrease in photon flux emitted by
blackbody radiation at 671 nm.

APPENDIX B: THE SPECTRAL ENERGY DENSITY
IN THE BOX

Assuming a stationary state, the radiation energy produced
is equal to the radiation energy either absorbed by the box’s
internal surfaces or lost by the holes. Each surface, labeled
by the index i, is characterized by its area Si, its emissivity
εi(ω), and its temperature Ti: we take into account the lamp
filaments i = f , the box’s internal surface i = b, the holes i =
h, and the light-absorbing surfaces i = a in the lamps and in
the feedthroughs. We consider these last two surfaces to be
fully absorbing, with εh = εa = 1. As we are interested in the
energy density at the wavelength λr , the lamp filaments are
the only surfaces hot enough to emit at this wavelength.

The balance of the emitted and absorbed radiation energies
gives the value of the dilution factor D(ω), which measures
the density of the radiation energy as a fraction of the black-
body radiation energy at the filament temperature Tf :

D(ω) = ε f (ω)S f

ε f (ω)S f + εb(ω)Sb + εhSh + εaSa
. (B1)

To get a rough estimate of ε f S f for the ensemble of the two
lamps, we assume that the nominal lamp power, 250 W, is
equal to the emitted power, with the filament temperature Tf

taken to be equal to the nominal color temperature 3200 K:
we thus get ε f S f ≈ 0.84 cm2. The box internal surface area is
Sb ≈ 105 cm2, and the calculated silver emissivity is εb(ωr ) =
0.009 for ωr . The hole total area is Sh ≈ 1 cm2, and we esti-
mate the total absorbing area Sa ≈ 2 cm2. With these figures,
we get D(ωr ) ≈ 0.18.

Unfortunately, a soot layer produced by UV cracking of
the Santovac oil used in the diffusion pumps reduced the box
efficiency by increasing εb(ωr ) to an unknown value. As a
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consequence, our calculation of D(ωr ) is not valid, and D(ωr )
will be fitted by the experimental results.

APPENDIX C: THE LAMP FILAMENT TEMPERATURE

We want to know the radiation density for the resonance
frequency of lithium ωr as a function of the current I in the
lamps. We use an energy balance equation to evaluate the
filament temperature Tf as a function of the current I . This
technique was used in Ref. [31], which showed that, when the
filament temperature is large, Tf > 2000 K, the power lost by
radiation largely dominates the power lost by heat conduction.
With this approximation, the power produced by the Joule
effect is equal to the power lost by radiation:

R(Tf )I2 = ε(Tf )S f σT 4
f . (C1)

R(Tf ) is the resistance of the filament, I is the current in the
lamp, ε(Tf ) is the total emissivity of tungsten, S f is the emit-
ting surface of the filament, and σ is the Stefan-Boltzmann
constant σ = 5.67 × 10−8 W m−2 K−4.

For R(Tf ), we use the equation given by Ref. [31]:

R(Tf )/R(300) = −0.5243 + 4.6613 × 10−3Tf

+ 2.842 × 10−7T 2
f , (C2)

and for ε(Tf ), we fit the CRC handbook data [32] over the
range 2000–3600 K,

ε(Tf ) = −3.95 × 10−2 + 2.013 × 10−3Tf

− 2.56 × 10−7T 2
f . (C3)

To determine the ratio S f /R(300) for the lamps (OSRAM
model 64655 HLX), we assume that the filament temperature
Tf is equal to the color temperature, 3200 K, when the lamp
is operated with its nominal power of 250 W. We thus get
S f /R(300) = 9.225 × 10−4 m2/�. We can then use Eq. (C1)
to calculate the temperature Tf (in degrees Kelvin) as a func-
tion of the current I (in amperes). We use a fit to invert the
relation, and we get

Tf = 765.6 × I0.611. (C4)

This formula predicts that the tungsten melting temperature,
3695 K, is reached for a current I ≈ 13.1 A, while we observe
melting of the filament for a current near 12.5 A correspond-
ing to Tf ≈ 3580 K. However, Eq. (C4) gives an average
temperature, whereas the central part of the filament is hotter
because it intercepts more radiation than the end parts: a
rough estimate of this effect predicts a temperature difference
∼150 K, which has the right order of magnitude to explain
this discrepancy.

APPENDIX D: EFFECT OF THE MAGNETIC-FIELD
GRADIENT DUE TO THE CURRENT CIRCULATING

IN THE LAMPS

The interferometer signal is the sum of the contributions
of the eight hyperfine Zeeman sublevels F, mF of the ground
state of a 7Li atom (ground state 2S1/2 with a nuclear spin
I = 3/2).

In the presence of a gradient of the magnetic-field mod-
ulus B, the phases of the fringe signals due to these

x
interferometer arms

y

yw

Blab xw

δx(z)

I
Bw

FIG. 7. The x − y plane of the photon box (not to scale), situated
between zmin and zmax. The wires for the lamp closest to the detector
are oriented in the z direction and carry a current I . They are situated
at xw = 16 mm and yw = ±1 mm.

sublevels are different, and the fringe visibility V is reduced
[33,34]:

V
V0

= 1

4
{(1 + χ )[1 + 2 cos (J1/2)] + (1 − 3χ ) cos (J1)}

≈ 1 − J2
1

16
(3 − 5χ ), (D1)

where the approximate form is valid if J1 � 1 rad. J1 is
given by

J1 = μB

h̄v

∫ zmax

zmin

∂B

∂x
δx(z)dz, (D2)

where δx(z) is the distance between the interferometer arms,
δx(z) = 2θB(zM3 − z). zmin and zmax are the z coordinates of
the two ends of the interaction region. Finally, χ measures
the population imbalance of the two hyperfine sublevels in the
atom-interferometer signal [34], and by definition, χ verifies
−1/5 � χ � 1/3.

The magnetic field B is the sum of the laboratory magnetic
field Blab, which has a negligible gradient, and the magnetic
field Bw produced by the current in the lamp wire. The labora-
tory magnetic field Blab is Earth’s field, perturbed by the steel
support of the vacuum tank: its largest component is vertical,
along the y axis, with Blab,y ≈ 4 × 10−5 T.

The magnetic field Bw is due to two parallel wires fixed
on the vertical side of the photon box at midheight: they carry
the current to the lamp which is farthest from mirror M3 (see
Fig. 7). The wires carrying the current to the lamp closest to
mirror M3 produce a similar magnetic field gradient, but this
gradient is applied a small distance from zmax and zM3 , and
δx(z) = 2θB(z − zM3 ) is very small: the contribution to the
integral J1 associated with the lamp closest to mirror M3 is
considerably smaller than the contribution associated with the
lamp farthest from mirror M3.

The components of the magnetic field Bw field are
given by

Bw,x = μ0I

π

yw

(x − xw )2 + y2
w

,

Bw,y = 0,

Bw,z = 0, (D3)
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where the wires are approximated as being infinite in the z
direction. The gradient ∂B/∂x of the magnetic field modulus
B is given by

∂B

∂x
≈ 2

B2
w,x

B

x − xw

(x − xw )2 + y2
w

.

For the largest current I = 12 A, we calculate Bw,x =
1.9 × 10−5 T in the region of the two interferometer arms
(x = 0), which is comparable to the laboratory magnetic field.
In this region we get ∂B/(∂x) = 9.8 × 10−4 T/m. Then, us-
ing v = 1055 ms−1, zM3 − zmin = 130 mm, and zM3 − zmax =
30 mm, we obtain J1 = 0.11 rad. For a balanced hyperfine
population i.e., χ = 0, we find V/V0 = 0.998, with compa-
rable values for any χ value. As a consequence, the visibility
reduction due to the magnetic-field gradient is fully negligible
in our experiment.

APPENDIX E: INELASTIC DIFFUSION

After photon absorption followed by a spontaneous emis-
sion, an atom has a large probability of being transferred to
a different hyperfine Zeeman sublevel F, mF of its ground
state. Pritchard and his coworkers ruled out this effect in
their decoherence studies with their sodium interferometer
[11,12]: it was obtained by pumping the sodium atoms in
the F = 2, mF = 2 ground sublevel and by exciting a cycling
transition toward the F ′ = 3, mF = 3 excited sublevel. The
use of a cycling transition was absolutely necessary in the
experiment testing the decoherence by multiple excitations
[12].

In our experiment, as the blackbody radiation is unpolar-
ized and almost isotropic, the transfer from one hyperfine
Zeeman sublevel F1, mF1 to another one F2, mF2 occurs with
a high probability. However, if the magnetic field B is homo-
geneous over the interferometer arms, the random phase shift
associated with this transfer is negligible.

This phase shift δϕ is due to the fact that the excitation
of the two arms does not occur at the same value of the z
coordinate: to evaluate this difference δz, we must consider
that the excitation can be done by any plane wave with a wave
vector k making an angle θ with the z axis. As a consequence,
δz is a random quantity, equal to δz = δx(z)/ sin θ , where
δx(z) is the distance between the interferometer arms. The
resultant phase shift δϕ is given by

δϕ = (gF1 mF1 − gF2 mF2 )μBB
δz

h̄v
, (E1)

where gFi is the Landé factor of the hyperfine level Fi. As the
order of magnitude of δz is the same as that of δx(z) and as
δx(z) is no larger than 15 µm in the interaction volume, the
interaction time δz/v is of the order of 15 ns, and the value
of μBBδz/(h̄v) is 8 × 10−3 rad for the field in the interfer-
ometer, close to Earth’s magnetic field B = 4 × 10−5 T. The
divergence due to the denominator sin θ in δz concerns only

FIG. 8. Probability function P(	)
n as a function of 	kx/kr . We use

a solid black line for n = 1, a solid red line for n = 2, and a solid blue
line for n = 3.

a very minor fraction of the plane-wave phase space, those
waves which propagate parallel to the atom trajectories, and
these plane waves are not present because of the photon box’s
entrance and exit slits.

Finally, the probability of excitation by blackbody radi-
ation is independent of the ground-state sublevel, and the
transfer from one sublevel to another one does not modify the
probability of successive excitations.

APPENDIX F: THE PROBABILITY DENSITY
FUNCTION P(�)

n (�kx)

The probability density function P(	)
n (	kx ) can be derived

in the following way. We assume that for photon absorption
and emission no privileged direction in space exists. There-
fore, P(	)

1 is given by a normalized step function, centered at
zero:

P(	)
1 = 1

4kr
[H (	kx + 2kr ) − H (	kx − 2kr )]. (F1)

H is the Heaviside function. The n-cycle distribution is given
by n independent one-step processes obeying an iterative for-
mula:

P(	)
n (	kx ) = 1

4kr

∫ ∞

−∞
P(	)

n (	k′
x )P(	)(	kx−	k′

x )
1 d	k′

x, (F2)

with 2π/kr ≈ 671 nm being the momentum of the absorbed
or emitted photon. Direct induction allows us to prove that

P(	)
n (	kx ) =

n∑
k=0

(−1)k

(4kL )n(n − 1)!

(
n

k

)
[	kx + 2kr (n − 2k)]n−1

× H[	kx + 2kr (n − 2k)]. (F3)

The induction step requires only the use of Pascal’s triangle
formula as well as index relabeling. Figure 8 shows P(	)

n for
n = 1, 2, 3 as a function of 	kx/kr . Note that P(	)

1 is uniform
for −2kr � 	kx � 2kr , which reflects the homogeneity of the
absorption and emission directions.
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