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Complete interband transitions for non-Hermitian spin-orbit-coupled cold-atom systems
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Recently, synthetic spin-orbit coupling has been introduced into cold-atom systems for more flexible control
of the Hamiltonian, which was further made time varying through two-photon detuning to achieve dynamic
control of the cold-atom state. While an intraband transition can be adiabatically obtained, a complete interband
transition, rather than a superposition of different bands, obtained through fast sweeping is usually guaranteed
by having the positions of the initial and final states be far away from any band gap in the quasimomentum
space. Here, by introducing an additional non-Hermitian parameter through an atom-loss contrast together with
two-photon detuning as two controllable external parameters, both intraband and complete interband transitions
can be achieved independent of the positions of the initial and final states. In addition, a “point-source diagram”
approach in the two-dimensional external parameter space is developed to visualize and predict the locations of
any nonadiabatic transitions. This control protocol can have potential applications in quantum state control and
quantum simulations using cold-atom systems.
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I. INTRODUCTION

Recently, ultracold atoms in optical lattices have be-
come an emerging platform for exploring various topological
physics that can be challenging to achieve using conventional
approaches [1,2]. For instance, spin-orbit coupling (SOC),
which is crucial in numerous condensed matter phenomena,
is often predetermined in a given solid-state material but can
now be engineered on demand in cold-atom systems using
laser fields [3–7]. Moreover, atom loss can be purposely in-
troduced into cold-atom systems [8–10] to study a wide range
of nontrivial behaviors in non-Hermitian physics [11–29]. For
instance, non-Hermitian phase transitions, exceptional points
(EPs), chiral state transfer around EPs, and nonadiabatic tran-
sitions (NATs) [8–10] have now been demonstrated. As such,
the Hamiltonian of a cold-atom system can now be flexi-
bly controlled in both reconfigurable and dynamic manners,
enabling precise engineering of the cold-atom state under a
time-varying Hamiltonian.

Control of a quantum state through a time-varying Hamil-
tonian has a long history, particularly in the adiabatic
regime [30]. When an external parameter of the Hamiltonian
is changed sufficiently slowly, the quantum system adapts its
state to the changing conditions and remains in the instanta-
neous eigenstate of the Hamiltonian. Such adiabatic control
can be applied to a wide range of quantum systems [31–36].
In contrast, to trigger an interband transition, one can resort to
Landau-Zener tunneling [37–42] by rapidly passing through a
band gap, e.g., in a two-band system. However, a complete
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interband transition occurs only when the positions of the
initial and final states are both far from the band gap, so they
are well approximated by the diabatic states [43]. Without
this assumption, the final state is generally a superposition
of the states of the two bands without a complete interband
transition.

For cold atoms in an optical lattice, the lattice can be
moved with a constant velocity or accelerated by changing ex-
ternal electromagnetic fields, e.g., by applying a time-varying
frequency offset between two optical beams, equivalent to
accelerating atoms in the lattice rest frame [37–42]. Inspired
by previous works using atom loss as an additional external
parameter [44–46], such a parameter is used to extend the
Hamiltonian to the non-Hermitian regime as an interim pro-
cess in the control. This approach provides more degrees of
freedom for controlling the quantum state. An example is the
protocol for a non-Hermitian shortcut to adiabaticity, which
allows the system to perform a seemingly adiabatic intraband
transition in a much shorter duration than the conventional
adiabatic approach [47–49]. In this work, we will exploit such
a non-Hermitian parameter (atom loss) for cold-atom state
control. For simplicity, we focus on a two-band system in
the presence of synthetic SOC. In addition to the two-photon
detuning to change the quantum state of the original Hermitian
system (effectively in the quasimomentum space), the atom
loss will be turned on and off as an interim process to achieve
complete interband transitions with flexible choice of the po-
sitions of the initial and final states in the quasimomentum
space. Furthermore, we develop a point-source diagram ap-
proach to visualize and predict the locations of the transitions
in the two-dimensional (2D) external parameter space in the
interim process. Such an extended non-Hermitian path for
controlling a Hermitian system has potential applications in
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quantum state control and quantum simulations using cold-
atom systems [8–10].

II. COLD-ATOM SYSTEM WITH
COMPLEX-ENERGY BANDS

Our discussion starts from a cold-atom system with
SOC [3–7,10], as illustrated in Fig. 1(a). Two atomic hyper-

fine states of ultracold atoms in an optical trap are separated
by the application of an external magnetic field, referred to
as spin-up (red dots) and spin-down (blue dots) atoms. The
system dynamics follow the Schrödinger equation ih̄ d

dt |ψ〉 =
H|ψ〉, where the effective 2 × 2 Hamiltonian, in terms of the
spin-up and spin-down components ψ↑ and ψ↓ of |ψ〉, can
be expressed as

H =
(

h̄2

2m (qx − kr )2 + δ/2 − iγ↑/2 �R/2

�R/2 h̄2

2m (qx + kr )2 − δ/2 − iγ↓/2

)
. (1)

Here, the cold atoms in the optical trap have quasimomen-
tum qx in the x direction, while two Raman beams contribute
additional momentum kr = 2π

λ556
sin(α/2) [intersecting at angle

α with wavelength λ556 = 556 nm, as shown by the green
arrows in Fig. 1(a)], giving rise to the real momentum qx ∓ kr

for the two spins in the diagonal terms of H. The two beams
are actually detuned by ±δ/2 from the Raman resonance,
contributing to opposite shifts in the diagonal terms of H.
The same pair of Raman beams also couples the two spin
states through an intermediate energy level, introducing syn-
thetic SOC with constant strength �R/2 as the off-diagonal
terms of H. In the Hamiltonian, the atom-loss term −iγ↑/2
or −iγ↓/2 can be facilitated by another single near-resonant
beam (“lossy” beam), which induces transitions from either
the spin-up or spin-down state to other energy levels (not
shown). Typically, the lossy beam interacts with two spins
at different strengths, and in the following discussion, we
assume that γ↓ > γ↑. The terms with a square dependence

(a)

(b) (c)

FIG. 1. Panel (a) shows a schematic diagram of the cold-atom
system. SOC is induced by Raman beams (green arrows), and atom
loss is induced by a single resonant beam. Panels (b) and (c) show
Re(E ) and Im(E ) in the 2D external parameter space, respectively.
On the semitransparent plane, two energy bands form a band gap at
q̃x = 0. With loss contrast 	γ̃ > 0, the complex-energy bands are
degenerate at the EP (purple dot), where 	γ̃ is equal to the coupling
strength of H̃. The color of the bands indicates the spin polarization
of the corresponding eigenstates.

on the momentum are related to energy through the factor
h̄2/(2m), where m is the mass of an atom and h̄ is the reduced
Planck constant.

Here, we shift the energy by subtracting E0 =
h̄2(q2

x + k2
r )/(2m)−i(γ↓ + γ↑)/4 from both diagonal values

of H to facilitate a discussion of the band structure. The
shift in the real energy is chosen to align the mid gap
to zero energy, while the shift in the imaginary part is
chosen so that the system can be regarded as effectively
Hermitian (still giving orthogonal eigenstates) when there
is no loss contrast between the two spins (γ↓ = γ↑). Then,
the Schrödinger equation (in normalized time t̃ = t�R/(2h̄)
and Hamiltonian H̃(q̃x,	γ̃ ) = 2H/�R) for the gauged wave
function |ψ̃〉 = exp(iE0t/h̄)|ψ〉 [17] is rewritten as

i
d

dt̃
|ψ̃〉 = H̃(q̃x,	γ̃ )|ψ̃〉, (2)

with the effective Hamiltonian simplified as

H̃(q̃x,	γ̃ ) =
(

(−q̃x + i	γ̃ ) 2Er
�R

1

1 (q̃x − i	γ̃ ) 2Er
�R

)
, (3)

where q̃x = 2qx/kr − δ/(2Er ) and 	γ̃ = (γ↓ − γ↑)/(4Er ) are
defined as the two external parameters that we can tune, which
are related to the quasimomentum and loss contrast between
the two spins, respectively. Here, q̃x is actually tuned by
two-photon detuning δ, and we call this the quasimomentum
parameter for ease of discussion. Since the self-adjointness of
H̃ depends on whether 	γ̃ equals zero, we call 	γ̃ the non-
Hermitian parameter. Without loss of generality, we choose
�R = 2Er from this point onwards. When there is zero loss
contrast (	γ̃ = 0), two energy bands (E±, two eigenvalues
of H̃) in Re(E ) form a band gap against q̃x due to the SOC,
as shown on the vertical semitransparent plane in Fig. 1(b).
In addition, as H̃ is self-adjoint, Im(E ) = 0, as shown on
the vertical semitransparent plane in Fig. 1(c). When there
is a loss contrast (	γ̃ > 0), each energy band becomes a
surface in the 2D external parameter space (q̃x,	γ̃ ). As
H̃ is not self-adjoint, the two bands [E±, with Re(E+) >

Re(E−)] have both Re(E ) and generally nonvanishing Im(E ),
where Re(E ) and −Im(E ) represent the energy and damp-
ing rate of the corresponding eigenstates. Here, we use the
term “complex-energy bands” to denote the bands when H̃
is not self-adjoint. When 	γ̃ = 1 (γ↓ − γ↑ = 2�R) and q̃x =
0, the two complex-energy bands are degenerate at the EP
(purple dot), where both complex-energy bands and their
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(a) (b) (c)

FIG. 2. Panel (a) shows the paths in the 2D external parameter space (q̃x,	γ̃ ). On the black path (Hermitian case), we only tune q̃x , and on
the green path (non-Hermitian case), we tune both q̃x and 	γ̃ . The black and green lines in panels (b) and (c) show the final band index 〈B(T )〉
if we change the external parameters along the corresponding paths in panel (a) in the CCW and CW directions, respectively. In the Hermitian
case, the intraband transitions (adiabatic evolution) occur at small |v|; the complete interband transitions cannot occur. In the non-Hermitian
case, the complete interband transitions only occur in the CCW direction at small |v|.

corresponding eigenstates are degenerate, as shown in
Figs. 1(b) and 1(c). After finding the eigenstates at a fixed pair
of external parameters (q̃x,	γ̃ ), we color the bands according
to their spin polarization:

〈S〉 = |ψ↑|2 − |ψ↓|2
|ψ↓|2 + |ψ↑|2 ,

which ranges from −1 (solely spin down) to +1 (solely spin
up). The red complex-energy band (〈S〉 > 0) is the lower-loss
band [ with a larger Im(E ) ] because the lossy beam has a
weaker interaction with the spin-up atoms, γ↑ < γ↓.

III. TIME-VARYING COLD-ATOM SYSTEM

In this section, we aim to find methods for achieving com-
plete interband transitions between two energy bands [on the
semitransparent plane in Fig. 1(b)] by dynamically changing
the external parameters so that complete interband transitions
can occur with flexible choice of the initial and final state po-
sitions in the quasimomentum parameter space. Specifically,
we focus on two different cases of changing the external pa-
rameters. In the Hermitian case, with 	γ̃ = 0, we change the
quantum state of the Hermitian system by gradually chang-
ing the quasimomentum parameter q̃x, following the black
path in Fig. 2(a). In the non-Hermitian case, compared with
the Hermitian case, the non-Hermitian parameter 	γ̃ will
be induced to extend the original Hermitian system to the
non-Hermitian regime, which serves as an interim process
to assist interband transitions between two energy bands. For
simplicity, we adopt the green path in Fig. 2(a), which consists
of three straight lines, as the extended non-Hermitian path to
demonstrate the complete interband transitions.

For a given path of changing external parameters in the
2D external parameter space, abbreviated as 𝓆 = (q̃x,	γ̃ ), we
define v = d𝓆/dt̃ to denote the time rate change of the exter-
nal parameters, which is externally specified at every point on
the path as a “velocity” vector: v = (vq,vγ ) = ( d

dt̃ q̃x,
d
dt̃ 	γ̃ ).

We note that our external parameter space is actually not the
phase space in the conventional meaning and that v is not the
phase-space velocity field (Wigner current velocity) as a func-
tion in the quantum phase space [50–53] for representing the
dynamics of the state. By substituting d

dt̃ → vq
∂

∂ q̃x
+ vγ

∂
∂	γ̃

into Eq. (2),

ivq
∂

∂ q̃x
|ψ̃〉 + ivγ

∂

∂	γ̃
|ψ̃〉 = H̃(q̃x,	γ̃ )|ψ̃〉,

we can see that the externally specified v for a given path
determines the dynamics of the state through the equation of
motion.

In both the Hermitian and non-Hermitian cases that we
will discuss [black and green paths in Fig. 2(a)], we adopt a

constant “velocity” |v| =
√

v2
q + v2

γ to change the two exter-

nal parameters, and the total time spent on the whole path is
determined through T = ∫ |dq|/|v|. We would like to evaluate
how similar the final state is to the state of the target energy
band by using the inner product

〈E (T )〉 = 〈ψ̃ (T )|H̃(T )|ψ̃ (T )〉
〈ψ̃ (T )|ψ̃ (T )〉 . (4)

This gives a real number, which is the energy of one
of the two bands if the state is exactly on it or a value in
between the energies of the two bands if the state is a su-
perposition. We can further define the band index 〈B(T )〉 =
2〈E (T )〉/[E+(T ) − E−(T )] to indicate whether the final state
is on the lower-energy band (〈B(T )〉 = −1), on the higher-
energy band (〈B(T )〉 = 1), or a mixture of the two bands
(〈B(T )〉 ≈ 0).

In the Hermitian case, following the black path in Fig. 2(a),
we can change q̃x either in the negative direction q̃x : 1 → −1
or the positive direction q̃x : −1 → 1, where the positions of
the initial and final states are close to the band gap at q̃x = 0.
With the initial state loaded on the lower-energy band, the
corresponding final band index 〈B(T )〉 in the negative and
positive directions with respect to |v| is depicted by the black
lines in Figs. 2(b) and 2(c), respectively. In the limit of a
small |v|, when we slowly change q̃x in either direction, the
state can adiabatically follow the band and finally stay on the
lower-energy band, 〈B(T )〉 = −1, which is consistent with
the adiabatic theorem [30]. In the other limit of |v|, i.e., while
rapidly changing q̃x, the state has insufficient time to change
its spin polarization or the relative phase between spin-up and
spin-down atoms. As a result, the state ultimately ends in a
linear combination of the two bands, 〈B(T )〉 ≈ 0, to repro-
duce the initial probability distribution instead of completely
transitioning to the higher-energy band. This is an example
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in which a complete interband transition cannot be achieved
because the positions of the initial and final states are close to
the band gap at q̃x = 0 [43].

To achieve a complete interband transition when the posi-
tions of the initial and final states are close to the band gap,
in the non-Hermitian case, the non-Hermitian parameter 	γ̃

is turned on and off as an interim process to assist interband
transitions between two energy bands. In Fig. 2(a), the green
path can go in either a counterclockwise (CCW) direction
q̃x : 1 → −1 or a clockwise (CW) direction q̃x : −1 → 1.
Specifically, for instance, in the CCW direction, we can first
increase 	γ̃ from 0 to 1.2, followed by a decrease in q̃x from 1
to −1, and finally a decrease in 	γ̃ to 0. With the initial state
loaded on the lower-energy band, the final band index 〈B(T )〉
as a function of |v| for the CCW direction and CW direction
is depicted by the green lines in Figs. 2(b) and 2(c). We note
that in the CCW direction, when |v| is relatively small, the
state prepared on the lower-energy band can completely tran-
sition to the higher-energy band, 〈B(T )〉 = 1. However, in the
CW direction, regardless of the value of |v|, the state cannot
completely transition to the higher-energy band, 〈B(T )〉 
= 1.

IV. TRAJECTORIES AND POINT-SOURCE DIAGRAMS

To clarify the reason for the success of the complete in-
terband transition in the CCW direction and failure in the CW
direction, we present detailed numerical results for the full dy-
namic evolution in the two directions. While the Hamiltonian
is non-Hermitian in the interim process, the 〈E〉 in Eq. (4) has
to be extended from a real number to a complex number in
order to assess how similar the evolving state is to the two
complex-energy bands:

〈E (t̃ )〉 =
∑

i=+,− c∗
i (t̃ )ci(t̃ )Ei(t̃ )∑

i=+,− c∗
i (t̃ )ci(t̃ )

. (5)

In this equation, the real and imaginary parts of
〈E (t̃ )〉 range between the Re(E ) and Im(E ) of the two
complex-energy bands, respectively. The complex coefficients
for the instantaneous eigenstates |ψ̃ (t̃ )〉 = c+(t̃ )|ψ̃+(t̃ )〉 +
c−(t̃ )|ψ̃−(t̃ )〉 can be extracted using the corresponding left
eigenstates |φ̃±〉 (see Appendix A for details), which satisfy
a biorthogonal relation with the eigenstates: 〈φ̃i|ψ̃ j〉 = δi, j ,∑

i, j |ψ̃i〉〈φ̃i| = I (I is an identity matrix) [13,15]. Here, with
the norm of |ψ̃±〉 equal to each other, we use the symmetry
|ψ̃+〉 = ( 0 1

−1 0)|ψ̃−〉 to fix the relative phase between two
eigenstates. The band index can still be defined as the same
relation in Sec. III, i.e., 〈B(t̃ )〉 = 2〈E (t̃ )〉/[E+(t̃ ) − E−(t̃ )],
which is a real number and can indicate whether the evolv-
ing state is on the lower complex-energy band (〈B(t̃ )〉 =
−1), on the higher complex-energy band (〈B(t̃ )〉 = 1), or a
mixture of them (〈B(T )〉 ≈ 0). Here, “higher” and “lower”
indicate higher energy and lower energy [Re(E )] in Fig. 1(b),
respectively.

In Figs. 3(a) and 3(b), we plot the complex-energy bands,
together with the Re(〈E (t̃ )〉) of the evolving state (green
trajectories) when |v| = e−2 in the CCW direction and CW
direction, respectively. In the CCW direction, we observe that
the state adiabatically follows the lower-loss band (colored
red, 〈S〉 > 0). When the state crosses the branch cut con-

FIG. 3. The green trajectories Re(〈E (t̃ )〉) in panels (a) and (b)
show the dynamic evolution of the atoms in the CCW and CW direc-
tions at |v| = e−2. The state climbs in the CCW direction and has a
NAT and then drops in the CW direction when it crosses the branch
cut, which restricts the complete interband transitions in the CCW
direction. The point-source diagrams in panels (c) and (d) share the
same initial state |ψ−(0)〉 at the initial position [q̃x (0),	γ̃ (0)] =
(−1,1) (black center) but have a different velocity, |v| = e−2 for
panel (c) and |v| = 0.5e−2 for panel (d). The black circles show our
theoretical model for predicting the locations of NATs.

necting the lower-loss (red) and higher-loss (blue) bands, it
climbs up from the lower complex-energy band to the higher
complex-energy band. In contrast, in the CW direction, with
the occurrence of a nondadiabatic transition (NAT), the state
transitions from the higher-loss band to the lower-loss band
and then adiabatically follows it. This NAT occurs because
the lower-loss band has a smaller damping rate than the
higher-loss band. Upon crossing the branch cut, different
from the CCW case, the state drops down from the higher
complex-energy band to the lower complex-energy band. The
asymmetric behavior when crossing the branch cut in differ-
ent directions explains why the complete interband transition
from the lower-energy band to the higher-energy band suc-
ceeds only in the CCW direction. We note that a similar
behavior can also be observed in Refs. [26,27].

In addition to the above analysis, we develop a point-source
diagram approach that can be used to visualize and predict
the occurrence of NATs. The point-source diagram depicts
the band index of the evolving state when we change the
external parameters from a specific initial state along straight
lines in any direction in the 2D external parameter space
(q̃x,	γ̃ ). These straight lines can be parametrically described
by q̃x(t̃ ) = q̃x(0) + vqt̃ and 	γ̃ (t̃ ) = 	γ̃ (0) + vγ t̃ , with |v|
being constant and tan−1(vγ /vq) ranging from 0 to 2π . In
Fig. 3(c), the color of the point-source diagram displays the
band index 〈B(t̃ )〉 of the evolving states, starting from the
lower complex-energy band at [q̃x(0),	γ̃ (0)] = (−1, 1) with
|v| = e−2. We observe that with keeping away from the initial
position [q̃x(0),	γ̃ (0)], the band index of the evolving state
〈B(t̃ )〉 gradually changes from −1 to 1 in any direction, which
shows that the NATs occur over a process instead of at a time
point. Here, we define the locations where the sign of 〈B(t̃ )〉
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(a)

(d) (e)

(b) (c)

(f)

FIG. 4. Panel (a) shows the single path in the 2D external parameter space for realizing the complete interband transitions in both directions.
Panels (b) and (c) show the final band index 〈B(T )〉 in the CCW and CW directions. The complete interband transitions (〈B(T )〉 = 1) occur
in both directions at small |v|. Inside each panel, we plot the trajectory Re(〈E (t̃ )〉) at |v| = e−2. Panel (d) shows the path along which we vary
h and xm. Panels (e) and (f) depict the final band index 〈B(T )〉 as a function of xm and h at |v| = e−3 for the CCW and CW directions. In the
region 〈B(T )〉 = 1, the complete interband transitions occur; in the region 〈B(T )〉 = −1, the states remain on the same band. The blue line in
each panel shows our predictions of the minimum h needed to realize the complete interband transitions using the radius of NATs in Eq. (6).

flips as the locations of NATs in the 2D external parameter
space.

The black circle in Fig. 3(c) shows our theoretical model
for predicting the locations of NATs. The predicted lo-
cations form a circle because we assume that they are
solely dependent on the initial position [q̃x(0),	γ̃ (0)], com-
plex coefficients of the initial state |ψ̃ (0)〉 = c+(0)|ψ̃+(0)〉 +
c−(0)|ψ̃−(0)〉, and time rate change of the external parameters
|v|. The predicted radius R of NATs is formulated as follows
(see Appendix B for details):

R = |v|
Im[	E (0)]

tanh−1

(
−ξ+

√
ξ 2−4Re(bi )Re[bin(0)2]

2Re[bin(0)2]

)
,

ξ = 1 + |bi|2, 	E (0) = E+(0) − E−(0)

2
. (6)

In this equation, bi
	= c+(0)−c−(0)

c+(0)+c−(0) , which is equal to −1 if

the initial state is |ψ̃−(0)〉 and 1 if the initial state is |ψ̃+(0)〉,
becomes a complex number when the initial state comprises
both |ψ̃−(0)〉 and |ψ̃+(0)〉; n(0) = ei tan−1(|v|/(2|	E (0)|3 )), where
the phase factor is associated with the magnitude of the inter-
band Berry connection |v|/(2|	E (0)|2) divided by |	E (0)|.
When |v|/(2|	E (0)|3) � 1 and therefore n(0) ≈ 1, the ra-
dius R in Eq. (6) is proportional to |v|. This suggests that
reducing the time rate change of the two external parameters
can result in a smaller radius of the NATs. Figure 3(d) presents
a point-source diagram that shares the same initial state as the

case depicted in Fig. 3(c) but has a velocity |v| = 0.5e−2. As
expected, the radius of the NATs decreases.

V. CONTROL PROTOCOL OF COMPLETE INTERBAND
TRANSITIONS IN BOTH DIRECTIONS

As we have discussed, when the external parameters of
the system change along the extended non-Hermitian path
[green path in Fig. 2(a)], the complete interband transition
is restricted to the CCW direction due to the state asym-
metric behavior while crossing the branch cut in different
directions. In this section, we develop the control protocol
to facilitate complete interband transitions in both directions
with the green path in Fig. 4(a). Please notice that we aim
to facilitate complete interband transitions in both directions
with a single path rather than two independent paths in the
2D external parameter space. The initial and final positions
of the state remain in the quasimomentum parameter space
(Hermitian Hamiltonian), whereas the non-Hermitian param-
eter 	γ̃ will be turned on and off differently from the green
path in Fig. 2(a). For example, in the CCW direction, 	γ̃ is
turned off while decreasing q̃x from 1 to −1, then increased
from 0 to 1.2 and subsequently decreased to 0. This path
allows states to have NATs but prevents asymmetric behavior
while changing q̃x. With the initial state prepared on the lower-
energy band, the green lines in Figs. 4(b) and 4(c) represent
the final band index 〈B(T )〉 of the state as a function of |v| in
the CCW and CW directions. The state completely transitions
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to the higher-energy band (〈B(T )〉 = 1) in both directions
when |v| is relatively small. In each panel, the trajectory of
Re(〈E (t̃ )〉) is shown for |v| = e−2. The states adiabatically
evolve when 	γ̃ is turned off and transition from the lower
complex-energy band to the higher complex-energy band
when the non-Hermitian parameter 	γ̃ is induced. This indi-
cates that the complete interband transitions in both directions
are a result of combining adiabatic evolution in the Hermitian
system and NATs in the non-Hermitian system. Together with
the trivial adiabatic evolution at small |v| [30], it is possible to
realize both intraband and complete interband transitions with
flexible choice of the positions of the initial and final states in
the quasimomentum parameter space.

In addition to varying the time rate change of the two
external parameters |v|, we also investigate the impact of
other factors on the control protocol. Specifically, these factors
include the minimum range of the non-Hermitian parameter
	γ̃ and the position of q̃x where 	γ̃ is induced, which are
represented by h and xm in Fig. 4(d). Here, in the CCW
direction, we first decrease q̃x from 1 to xm; then, we increase
	γ̃ from 0 to h and subsequently decrease it to 0; and finally,
we decrease q̃x from xm to −1. As the state is assumed to
be initially loaded on the lower-energy band, the range of
xm is chosen to be less than 0. This ensures that the higher
complex-energy band is the lower-loss band when 	γ̃ is
induced; thus, the target interband transition from the lower-
energy band to the higher-energy band can occur. Figures 4(e)
and 4(f) depict the final band index 〈B(T )〉 as a function
of xm and h at |v| = e−3 for the CCW and CW directions.
It is observed that both figures can be separated into two
distinct regions, where the region with 〈B(T )〉 = 1 indicates
the occurrence of complete interband transitions, while the
region with 〈B(T )〉 = −1 denotes the states remaining on the
same band. In both directions, complete interband transitions
occur with a higher h because a larger 	γ̃ can provide a larger
damping rate contrast for NATs to occur. In addition, a smaller
xm can reduce the h needed to implement the control protocol.
The blue lines in Figs. 4(e) and 4(f) show our prediction of the
minimum h for the complete interband transitions. We assume
that the state remains on the lower complex-energy band at
(xm, h), and we can use the formula in Eq. (6) to predict the
radius R of the NATs. To have complete interband transitions,
the NAT must occur before 	γ̃ is reduced to 0, which gives
us the condition R = h to plot the blue lines. This shows our
point-source diagram approach can facilitate the estimation of
the minimum range of loss contrast in the control protocol.

VI. CONCLUSION

In this work, we propose a control protocol for realizing
interband transitions by controlling the atom loss in a non-
Hermitian spin-orbit-coupled atomic system. Compared with
realizing interband transitions by rapidly changing the two-
photon detuning, this process does not rely on the assumption
that the initial and final states are far from the band gap.
Together with the trivial adiabatic evolution, it is possible
to realize both intraband and complete interband transitions
with flexible choice of the positions of the initial and final
states. Our approach can be immediately useful for quantum
state control and quantum simulations in a wider range of

situations. In addition, the point-source diagram approach in-
troduced in this work enables visualization and prediction of
the locations of NATs, facilitating estimation of the minimum
range of loss contrast in the control protocol.
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APPENDIX A: RIGHT AND LEFT EIGENSTATES OF ˜H

With choosing �R = 2Er in the main text, the Hamiltonian
in Eq. (3) can be written as

H̃ =
(−q̃x + i	γ̃ 1

1 q̃x − i	γ̃

)
.

The two eigenvalues are E± = ±	E =
±

√
1 + (−q̃x + i	γ̃ )2, with the two right eigenstates (in

the main text, we call them eigenstates for simplicity) as

|ψ̃+〉 = [sin(θ ), cos(θ )]T ,

|ψ̃−〉 = [−cos(θ ), sin(θ )]T ,

where θ = tan−1(	E − q̃x + i	γ̃ ). Here we use the square
brackets to enclose quantities as a row vector while the trans-
pose operation T turns it into a column vector. When the
non-Hermitian parameter 	γ̃ = 0, θ is a real number and two
right eigenstates satisfy the orthogonality and completeness
relations 〈ψ̃i|ψ̃ j〉 = δi, j ,

∑
i, j |ψ̃i〉〈ψ̃i| = I (I is an identity

matrix). However, when the non-Hermitian parameter 	γ̃ 
=
0, θ is a complex number, we have to use the left eigenstates

(eigenvectors of H̃
†
) to fix the orthogonality and complete-

ness. The left eigenstates are

|φ̃+〉 = [sin∗(θ ),cos∗(θ )]T
,

|φ̃−〉 = [−cos∗(θ ),sin∗(θ )]T
,

which satisfy a biorthogonal relation with the right eigen-
states: 〈φ̃i|ψ̃ j〉 = δi, j ,

∑
i, j |ψ̃i〉〈φ̃i| = I [13,15]. Here, 〈φ̃i|ψ̃ j〉

means inner product and |ψ̃i〉〈φ̃i| means outer product. Thus,
with the left eigenstates, we can extract the coefficients of
right eigenstates when the Hamiltonian is non-Hermitian.

APPENDIX B: DERIVATION OF THE LOCATIONS OF NATs

In a time-varying system, after we transform the Hamil-
tonian (�R = 2Er) in Eq. (2) from the diabatic basis to the

adiabatic basis, it becomes H̃ = (
−	E (t̃ ) i ϑ (t̃ )

2	E (t̃ )2

−i ϑ (t̃ )

2	E (t̃ )2
	E (t̃ )

), where

ϑ (t̃ ) = −vq + ivγ and 	E (t̃ ) = [E+(t̃ ) − E−(t̃ )]/2. In the
case that the elements in the Hamiltonian can be considered
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constant, e.g., under constant ϑ and 	E (t̃ ) ≈ 	E (0),

the evolution of b(t̃ )
	= c+(t̃ )−c−(t̃ )

c+(t̃ )+c−(t̃ ) for the state ψ (t̃ ) =
c−(t̃ )|ψ−(t̃ )〉 + c+(t̃ )|ψ+(t̃ )〉 obeys

b(t̃ ) =
b(0)	E ′(0)

	E (0) − i
(
1 − i ϑ

2	E (0)3

)
tan [	E ′(0)t̃]

	E ′(0)
	E (0) − ib(0)

(
1 + i ϑ

2	E (0)3

)
tan [	E ′(0)t̃]

, (B1)

where 	E ′(0) = 	E (0) i
√

−ϑ2−4	E (0)6

2	E (0)3 . Assuming |ϑ | �
|	E (0)|, we neglect the term ϑ

2	E (0)3 [the interband Berry
connection divided by 	E (0)] in 	E ′(0)t̃ . Then, Eq. (B1) can
be rewritten as

b(t̃ ) = b(0) − i tan [	E (0)t̃]/n(0)

1 − ib(0) tan [	E (0)t̃]n(0)
, (B2)

where n(0) = eitan−1(ϑ/(2	E (0)3 )). As the NATs in the non-
Hermitian case are caused mainly by Im[	E (0)] and are

nearly independent of the direction of ϑ , we use |v|
2|	E (0)|3 to

replace ϑ

2	E (0)3 and further neglect Re[	E (0)] in 	E (0)t̃ .

Then, n(0) = eitan−1(|v|/(2|	E (0)|3 )) and Eq. (B2) becomes

b(t̃ ) = b(0) + tanh (Im[	E (0)]t̃ )/n(0)

1 + b(0) tanh (Im[	E (0)]t̃ )n(0)
. (B3)

For a state that is initially one of the eigenstates, b(0) is
either −1 or 1 and b(t̃ ) is generally a complex number. We
can obtain the time point at which NATs occur by solving
Re[b(t̃occur )] = 0 (selecting the solution t̃occur > 0) and use the
time point and velocity |v| to determine the locations of the
NATs, which are given by Eq. (6).
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