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The development of quantum gas microscopy for two-dimensional optical lattices has provided an unparalleled
tool to study the Fermi-Hubbard model (FHM) with ultracold atoms. Spin-resolved projective measurements, or
snapshots, have played a significant role in quantifying correlation functions, theory verification, and thus the
uncovering of underlying physical phenomena such as antiferromagnetism at commensurate filling on bipartite
lattices and other charge and spin correlations, as well as dynamical properties at various densities. Here we
employ a recent concept, the multiscale structural complexity, and show that when computed for the snapshots
(of single spin species, local moments, or total density) it can provide a theory-free property, immediately
accessible to experiments. Specifically, after benchmarking results for Ising and XY models, we study the
structural complexity of snapshots of the repulsive FHM in the two-dimensional square lattice as a function
of doping and temperature. We generate projective measurements using determinant quantum Monte Carlo
and compare their complexities against those from the experiment. We demonstrate that these complexities are
linked to relevant physical observables such as the entropy and double occupancy. Their behaviors capture the
development of correlations and relevant length scales in the system. We provide an open-source code in PYTHON

which can be implemented into data analysis routines in experimental settings for the square lattice.
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I. INTRODUCTION

The Fermi-Hubbard model (FHM) is of great importance
in describing the electronic properties of strongly correlated
materials. It accurately captures some of their key charac-
teristics and it exhibits a number of canonical phases of
matter, hosting a metal-to-insulator crossover and magnetic
and charge order in the two-dimensional (2D) square lattice,
and is extensively researched in relationship to d-wave super-
conductivity [1–6].

One of the major accomplishments in quantum simulation
has been the precise engineering of the FHM with ultracold
atoms in optical lattices. These exhibit flexible tunability of
the kinetic and interaction energies, as well as the lattice filling
or even the lattice geometry [7–17]. In lower-dimensional lat-
tices, i.e., one and two dimensions, quantum gas microscopy
has provided direct observation of correlations beyond near-
est neighbors through real-space imaging of spin-resolved
projective measurements [18–28]. These results have yielded
profound insights into the phase diagram [29], in particular
regarding antiferromagnetism, and how spin correlations are
affected by the presence of holes at intermediate temperatures.

Despite these great achievements, many questions remain
open about the model in two dimensions, in particular those
pertaining to the pseudogap, strange metal, and possible
superconducting regions, where complex patterns and com-
peting orders emerge that are hard to describe quantitatively
[30–33]. One possible route to extract physical information
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from projective measurements in an unbiased way, where
such quantitative descriptions are difficult, is by enlisting
the help of machine learning or other data-driven techniques
[34]. For example, an early application of supervised learn-
ing aimed to detect the onset of the pseudogap phase upon
doping in experimental snapshots [35]. In another study, ker-
nels of a convolutional neural network, trained to distinguish
experimental snapshots taken at high and low temperatures,
were used to analyze correlations that develop in the system
at low temperatures, including those at dopings relevant to
the strange metal phase [36,37]. Machine learning has also
been successfully exploited to obtain the relation between the
ground-state energy and the density [38].

In this work we focus on a recently introduced unbiased
measure, called multiscale structural complexity [39], which
is based on dissimilarity of patterns at different scales and
uses ideas from the renormalization-group flow to aggregate
information about different scale correlations present in the
system. So far, it has been used for analyzing snapshots of
1D classical and quantum systems [40], including systems
out of equilibrium [41]. It has also been shown to be capable
of detecting phase transitions to and from the off-diagonal
bond-density-wave ordered phase of the half-filled extended
FHM in one dimension despite only employing diagonal (den-
sity) snapshots [42]. Given the large data sets attainable in
experiments with quantum gas microscopes, we demonstrate
that the structural complexity can be an immediately useful
tool to analyze Fermi-Hubbard snapshots.

We first apply the structural complexity technique to clas-
sical models of magnetism to build an intuition of what the
dissimilarities and the complexities capture. We then study the
structural complexity of the repulsive FHM in the 2D square
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lattice at intermediate coupling (where the on-site interaction
equals the noninteracting bandwidth) as a function of hole
doping δ and temperature T . This value of the interaction is
where the antiferromagnetic correlations are maximal at com-
mensurate filling and therefore allows for a good comparison
against classical models as well as setting the stage for the
study of the doped system. On the theory side, we perform
determinant quantum Monte Carlo (DQMC) [43,44] simula-
tions, from which spin-resolved, local moment, and density
snapshots are generated [45]. We compare their complexities
against those from experimental data and demonstrate they are
directly linked to relevant physical observables such as the
entropy and the double occupancy. Their behaviors illustrate
the extent to which correlations arise and capture relevant
length scales in the system.

The remainder of this paper is organized as follows. In
Sec. II we present the models studied and the methods used.
In Sec. III we present our main findings, first results for
classical models, followed by those for the FHM. Section IV
summarizes our findings and presents an outlook for future
studies.

II. MODEL AND METHODS

A. Classical spin models

Since our main objective is to work with quantum gas
microscope snapshots of Fermi-Hubbard models, which are
images with 0’s and 1’s as the pixel values, we first aim
to gain some intuition about the structural complexity and
the dissimilarities measure in well-known scenarios. For this
reason, we perform Monte Carlo simulations of classical spin
models [46] in two dimensions,

H = −J
∑
〈i, j〉

si · s j = −J
∑
〈i, j〉

cos(θi − θ j ), (1)

in order to obtain and work with classical snapshots of spins.
Here si is the spin vector at site i and 〈· · · 〉 indicates a
sum over nearest neighbors. We focus on the ferromagnetic
(FM) Ising model (J > 0, θ = ±π/2), the antiferromagnetic
(AFM) Ising model (J < 0, θ = ±π/2), and the FM XY
model (J > 0, θ ∈ [0, 2π )). Although the location of the criti-
cal temperature is the same for the FM and AFM Ising models,
Tc/J = 2.269, the magnetic orderings (and thus the relevant
patterns in snapshots) are different and therefore one expects
the behavior of the structural complexities to be different as
well.

On the other hand, the 2D FM XY model does not have an
order parameter, nor does it exhibit long-range order. Rather,
it has a finite-temperature Berezinskii-Kosterlitz-Thouless
(BKT) transition at Tc/J = 0.88. In this model, vortices are
the topologically stable configurations and the transition is
characterized by the binding-antibinding of pairs of vortices
with opposite vorticity. Due to these fundamental differences,
exploring this model will yield relevant information on what
the complexity measures capture in the presence of more
intricate patterns and topological phase transitions. It is worth
noting as well that the transition into a superfluid phase in
the 2D attractive FHM at generic fillings is in the BKT class
[47], so an understanding of the structural complexity in the

XY model could be directly relevant to future studies of the
former model as well.

B. Fermi-Hubbard model and DQMC

We are mainly interested in investigating the FHM

H = −t
∑

〈i, j〉,σ
(c†

iσ c jσ + H.c.) + U
∑

i

ni↑ni↓ − μ
∑
i,σ

niσ ,

(2)
where c†

iσ (ciσ ) is the creation (annihilation) operator for a
fermion with spin flavor σ =↑,↓ on site i = 1, 2, . . . , N in
a 2D square lattice, N denotes the number of lattice sites,
niσ = c†

iσ ciσ is the number operator for flavor σ , t is the
nearest-neighbor hopping amplitude, and U is the interaction
strength. We work in the grand canonical ensemble and use
the chemical potential μ to adjust the fermion density. We
set h̄ = kB = 1 throughout the paper and consider the U > 0
(repulsive) case.

In this work we generate snapshots of projective mea-
surements in 10 × 10 lattices using the method described in
Refs. [45,48], in which nested componentwise direct sam-
pling of fermion pseudodensity matrices is used to generate
an ensemble of pseudosnapshots, which, when reweighted,
is equivalent to an ensemble of projective measurements of
the occupation numbers. The procedure introduces a weight
associated with each snapshot, which for all the cases we
consider here is more or less uniform among snapshots and
we therefore ignore it for simplicity. We use DQMC with
a Trotter step of �τ = 0.05t . The projective measurements
correspond to the spin-resolved densities niσ in the lattice,
from which the local moment mz

i = |ni↑ − ni↓| and the total
density ni = ni↑ + ni↓ are constructed. We apply point-group
symmetries to increase the number of samples eightfold.

C. Structural complexity

The qualitative concept of the complexity of patterns, sys-
tems, and processes is inherent to human perception and
plays an important role in natural and social sciences. A
precise mathematical description was given recently [39]
which formulates a single unique number that characterizes
the structural complexity of an image. This number is ob-
tained via a series of coarse-graining steps (as is done in
renormalization-group calculations). In each step, information
from different scales present in the system aggregates. For-
mally, the structural complexity C0 is defined as

C0 =
kmax−1∑

k=0

Dk =
kmax−1∑

k=0

∣∣∣∣Ok+1,k − 1

2
(Ok+1,k+1 + Ok,k )

∣∣∣∣, (3)

where kmax is the total number of coarse-graining steps and

Ok,p = 1

N

N∑
i=1

u(k)
i u(p)

i (4)

is the overlap function, where the image has N pixels and u(k)
i

corresponds to the value of the pixel at site i at coarse-graining
step k. The coarse-graining procedure using a � × � window
and the calculation of the overlaps is depicted in Fig. 1. Dk

is the dissimilarity at coarse-graining step k. It contains cor-
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FIG. 1. Structural complexity procedure. An image A is coarse
grained using a � × � window. The resulting image after coarse
graining corresponds to image b, which is then resized to its original
size (image B). Overlaps between images are computed by taking
the dot product of the arrays. Here we illustrate the pixel-by-pixel
product for the overlap between A and B (OAB) and the pixel-by-pixel
result for the differences between overlaps (OAB − 1

2 [OAA + OBB]).
Performing a sum over pixels and taking the absolute value of the
result corresponds to the dissimilarity Dk .

relations that extend up to a linear size of �k in the original
image and measures how different the images at consecutive
coarse-graining steps k and k + 1 are. Here we set � = 2. As
we will see later, it is also useful to define C1 = C0 − D0, i.e.,
we start the sum in Eq. (3) at k = 1 rather than k = 0. We will
also see that the contributions fall off rather rapidly with k, so
in practice only a limited number of terms need be considered.

This definition of the complexity reflects the intuitive sense
of what corresponds to a more complex pattern in general,
but also has been used specifically to detect finite-T phase
transitions in models such as the classical ferromagnetic Ising
model [39], to detect quantum phase transitions in the 1D
extended FHM [42], and to distinguish quantum states in
one-dimensional qubit chains [40]. In contrast to numerically
expensive n-point correlation functions or neural network
learning techniques to detect phase boundaries, the struc-
tural complexity offers a simple, unbiased, and numerically
cheaper technique to do so.

To apply the technique to our DQMC snapshots, we
tile a region of space using 256 × 256 of them, which
allows us to perform the coarse-graining procedure up to
nine times (kmax = 9). In addition, we compare our results
against experimental data where possible, for which a similar
tessellation procedure is performed. These correspond to the
data used in Ref. [36].

III. RESULTS

A. Classical models

1. Hamiltonians with Z2 symmetry

In Fig. 2(a) we show the temperature dependence of the
structural complexity of the FM Ising model. Our results
are in agreement with Ref. [39] and the critical temperature,
deduced from the location of the rapid drop in C0 or C1

or the peak in their derivatives, is in excellent agreement

with the exact result. We can gain further understanding about
the inner workings of the complexity measure by looking at
the dissimilarities as a function of the coarse-graining step
k [Fig. 2(b)]. At high temperatures in the disordered phase,
Dk falls off rapidly with k. As the temperature is lowered
to near, but still above, the transition, Dk decays much more
slowly, with nonvanishing values even at large values of k,
illustrating the existence of correlations between far regions
in the model. Finally, in the ordered phase, Dk is mostly small
and vanishes quickly at all k by decreasing T . This makes
sense since in a perfect ferromagnet, coarse-graining does not
lead to a different image.

In contrast to the FM case, where C0 starts at a finite but
constant value and then rapidly falls off to zero below the
critical temperature, we find that in the AFM Ising model,
C0 remains constant at all temperatures, as can be seen in
Fig. 2(c). In order to understand this, let us analyze two limit-
ing cases. At infinite temperature, i.e., in the fully disordered
phase (where each spin orientation is equally probable), the
structural complexity for both models is given by (see Ap-
pendix A for a derivation)

C0 = 3

8

( ∞∑
k=0

1

4k

)
= 3

8

(
4

3

)
= 1

2
. (5)

On the contrary, in the ground state for the perfect classical
FM and AFM orderings it suffices to analyze what happens
after the first coarse-graining (CG) step, i.e., C0 = D0, since it
is easy to see that all other Dk for k > 1 vanish:

[
1 1
1 1

]
CG−→

[
1 1
1 1

]
→ D0 = 1 − 1 + 1

2
= 0 (FM case),

(6)[
1 −1

−1 1

]
CG−→

[
0 0
0 0

]
→ D0 = 0 − 1 + 0

2

= 1

2
(AFM case). (7)

From these two limiting cases we conclude that while in the
FM case C0 must exhibit a drop from 1/2 to 0 as one lowers
the temperature and the system develops a net magnetization,
in the AFM case C0 can remain constant. We note that the
variations in C0 in Fig. 2(c) are of the order of 10−5 and not
visible in the scale of the plot. Since the derivation at high
temperatures assumes an equal number of spins up and spins
down and in the perfect classical AFM ordering this balance
is preserved at all temperatures, we infer that C0 is sensitive
only to the uniform magnetization of the system. As we will
see later, this is also the case for the spin-balanced FHM.

On the other hand, C1 captures the transition temperature in
the AFM Ising model with great accuracy and exhibits a sim-
ilar behavior to its FM counterpart: The complexity is larger
in the disordered phase, but tends to zero in the ground state,
illustrating that in the latter state, after a single coarse-graining
step, the resulting patterns are no longer complex and there is
scale invariance.
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FIG. 2. Classical models in 128 × 128 lattices. Results are presented for Ising (a) and (b) FM and (c) and (d) AFM couplings and for
(e) and (f) the XY model. (a), (c), and (e) Plots of C0 (blue circles) and C1 (red squares) as a function of T/J . Solid lines correspond to the
absolute value of the derivative. The extracted transition temperatures Tc are consistent with the exact results in all cases. In (e) black markers
and lines correspond to results obtained in 256 × 256 lattices. (b), (d), and (f) Plots of Dk vs k for different temperatures. The behavior of the
dissimilarities for each model are significantly different.

We observe that the behaviors of the FM and AFM dissim-
ilarities as a function of k are very different. For the AFM
case [Fig. 2(d)], in the ordered phase, only D0 is nonzero
and contributions at higher k come from thermal fluctuations.
Interestingly, because C0 is constant at all T , we observe a
conservation of weights in the dissimilarities. In other words,
the same exact weight loss in Dk for k > 0 is gained by D0 at
every temperature.

Finally, we notice that D0 in the FM Ising model closely
tracks, within a prefactor, the temperature behavior of the
entropy per spin S (not shown) and C0 correlates with the
Boltzmann entropy SB, defined as [49]

SB = −
∑

σ

pσ log2(pσ ), (8)

where pσ = (1 ± m)/2, with m the average magnetization of
the system. That means C1 follows the trend in the “total
correlation density” ρc = SB − S [49]. The Boltzmann en-
tropy assumes the lack of internal correlations and corre-
sponds to the isolated spin entropy. Since ρc only vanishes
when no internal correlations occur, i.e., when each spin is
independent, it measures how constrained the spin distribution
is and is therefore maximized when the spins are strongly
correlated [49].

2. Hamiltonian with O(2) symmetry

We now turn our attention to the XY model. In Fig. 2(e) we
show the structural complexity of the model as a function of
temperature for two system sizes 128 × 128 (closed markers)
and 256 × 256 (open black markers). The results are averaged

over five different initial random seeds. We further apply a
moving average with a five-point window over temperature
fitted with a local third-order polynomial (the Savitzky-Golay
filter) to reduce noise. Similarly to the AFM Ising model,
C0 is more or less constant for all temperatures and for both
system sizes, indicating the near-zero net magnetization of the
system. On the contrary, C1 increases as the temperature is
lowered, indicating that the low-T phase, where the existence
of pairs of vortices with opposite vorticity is expected [46], is
the most complex one. We find a strong finite-size dependence
in C1, expected to persist in this model for certain proper-
ties even with systems an order of magnitude larger in size
[50]. The derivative of C1 for the 128 × 128 system exhibits
broad and inconclusive features at T/J � 3. By increasing
the system size to 256 × 256, these features develop into a
sharp upturn at the lowest temperatures we could access in
our simulations due to inflating autocorrelation times. This
feature is consistent with the location of the peak in the spe-
cific heat (T/J ∼ 1.04) and the BKT transition temperature
of the model (Tc/J = 0.894) [50,51]. In order to access lower
temperatures and larger system sizes, more sophisticated nu-
merical algorithms are required, which are beyond the scope
of this work [50,52,53].

We find that in this case, the behavior of the dissimilar-
ities as a function of k is completely different from those
for the FM or AFM Ising models as illustrated in Fig. 2(f).
At high temperatures Dk decays rapidly with k. However,
as the temperature is lowered, we find significant contribu-
tions to the complexity from all length scales for T � Tc,
which we attribute to the existence of a nontrivial topological
phase.
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FIG. 3. Average linear length scale in the classical models. Re-
sults of 2〈k〉 vs T/J are shown for the classical models. We apply the
linear transformation y → 20 × (y − 1) + 1 to the AFM Ising data
to display their behavior on the same scale. Vertical lines indicate
the location of peaks in the FM case (black) and the derivative in the
AFM case (red).

3. Relevant length scales

Since the structural complexity aggregates information
about correlations in the system up to a distance of �k at step
k, we define an average for k,

〈k〉 =
∑

k kDk∑
k Dk

= 1

C0

∑
k

kDk, (9)

and take �〈k〉 = 2〈k〉 as a relevant length scale of the model.
We therefore expect this quantity to reflect the cluster sizes
needed to describe the behavior of the system at different
temperatures.

We show 2〈k〉 vs T/J in Fig. 3 for the classical models
considered here. In the case of the FM Ising model, it grows
rapidly near Tc as the temperature is lowered and then rapidly
falls in the ordered phase. Its behavior is reminiscent of the
critical behavior of the magnetic susceptibility of the model.
The location of the peak in this quantity (black vertical line in
Fig. 3) provides a great estimate for Tc. Interestingly, we find
that the behavior of 2〈k〉 for the AFM Ising model resembles
the shape of the energy and its derivative (red dashed line
in Fig. 3) predicts an accurate estimate for Tc too (its peak
location is denoted by the red vertical line). Finally, for the XY
model, 2〈k〉 grows as the temperature is lowered, indicating a
growing length scale for relevant correlations, consistent with
the nontrivial topological order the system exhibits.

B. Fermi-Hubbard model

In Fig. 4 we present examples of the simulated snapshots
of nσ , mz, and n for U/t = 8, three different filling fractions
(δ = 0, 0.18, 0.5), and three temperatures (T/t = 5, 1, 0.4).
In the half-filled case, where there is on average one particle
per site (top row), as the temperature is lowered, one can
observe signatures of (i) Mott physics (formation of more
uniform local moments), (ii) antiferromagnetism (checker-
board patterns in the nσ snapshots), and (iii) superexchange
physics, i.e., doublon-hole quantum fluctuations which occur
at neighboring sites in the n snapshots and are necessary for
antiferromagnetism to emerge [25]. In contrast, results at 18%
doping (middle row) exhibit remnants of the parent AFM
state, but the presence and behavior of holes is more com-
plicated. Finally, at 50% doping (bottom row) in the Fermi
liquid regime, electrons tend to avoid each other (Pauli hole)
and, other than the reduction in double occupancies, there do
not seem to be any significant changes as the temperature is
lowered.

FIG. 4. Sample simulated snapshots of the FHM at U/t = 8 in 10 × 10 lattices. Results are presented at densities 〈n〉 = 1, 0.82, 0.5 for
temperatures T/t = 5, 1, 0.4 for n↓ densities (blue), the local moment mz = |n↑ − n↓| (green), and total density n = n↑ + n↓ (purple). White
corresponds to 0; blue, green, and light purple to 1; and dark purple to 2.
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FIG. 5. Structural complexity and dissimilarities of the half-
filled FHM at U/t = 8 from spin-resolved snapshots. (a) Plot of C0

(blue circles) and C1 (red squares) from 10 × 10 simulated snapshots
as a function of temperature. Dashed lines are derivatives and open
markers are based on experimental data. The inset is an example
of the experimental snapshots and the 16 × 16 region used for the
analysis. (b) Dissimilarities as a function of coarse-graining steps at
different temperatures. Experimental data at T/t = 0.3 are shown
as open green circles. The inset shows the same data in logarithmic
scale.

1. Spin-resolved densities nσ

In Fig. 5(a) we show the structural complexity of single-
species snapshots of the half-filled FHM as a function of
temperature. We observe that C0 is constant for all tempera-
tures, similar to what was observed in the AFM Ising model,
indicating a spin-balanced mixture. On the contrary, C1 decays
monotonically as the temperature is lowered. Its derivative
(red dashed line) appears to diverge as T → 0, in agreement
with the fact that for the 2D FHM, the Néel transition occurs
at TN = 0.

Results for the corresponding dissimilarities as a func-
tion of the coarse-graining step at different temperatures
exhibit behavior similar to that for the AFM Ising model [see
Fig. 5(b)]. More specifically, the weight lost by D0 as the tem-
perature increases is gained by Dk>0. There is however a fun-
damental difference here corresponding to the nonvanishing
D1 at all temperatures, which signals the presence of quantum
fluctuations in the model. The C0 is constant despite that.

For both the complexities and the dissimilarities, results
based on snapshots that are obtained experimentally using a
quantum gas microscope [36] (denoted by open markers) are

in excellent agreement with the theory curves. Furthermore,
this agreement between the numerical and experimental val-
ues of the dissimilarities holds for every Dk at all temperatures
considered, as evidenced in Fig. 6 where we show Dk vs T/t
for the half-filled case and the 18% doped FHM. Such excel-
lent agreement demonstrates the applicability of the method
to current experiments involving ultracold atoms in optical
lattices.

More interestingly, we find that C1 vs temperature or dop-
ing exhibits the same trends as the entropy per site S/N in
the model (see Fig. 7 for the doping dependence at different
temperatures). We observe that below T/t < 1, the structural
complexity develops a peak around 20% doping. Although
the peak in the entropy occurs at a slightly lower doping (see
the inset of Fig. 7), the shape and trends are fairly similar.
Additionally, we also observe good agreement with the ex-
perimental data at all temperatures considered, which further
supports the validity of our results. Because of the correlation
between C1 and S/N , this suggests the structural complexity
of Fermi-Hubbard snapshots can be used as a quick and rapid
proxy for the entropy of the system. This can be very useful
in optical lattice experiments, where after loading the lattice,
the calculation of the entropy is not straightforward [55].

It is worth mentioning that previous studies in one-
dimensional systems, bit strings [40] and the extended
Hubbard model [42], have demonstrated that the structural
complexity draws a close analog to the entanglement entropy
since both capture the existence of nonlocal correlations in
the models. In the present study we do not have access to
the entanglement entropy and therefore only focus on the
thermodynamic entropy. Although the entanglement entropy
and the thermodynamic entropy are not equivalent to each
other, they are associated with the development of correlations
in the system and with the freezing of degrees of freedom,
respectively, which generally occur together as we vary a tun-
ing parameter. The establishment of connections between the
structural complexity and the entanglement entropy in doped
Fermi-Hubbard models at finite T is an open question that
requires further exploration.

Another important observation is the fact that at the
temperatures considered, the region where the structural com-
plexity is maximal corresponds to the strange metal region.
The broad peak in C1 spanning δ ∈ [10%, 30%] is consis-
tent with the doping value δc ∼ 30% that corresponds to the
crossover to the Fermi liquid phase [56]. Moreover, the trends
in the structural complexity vs doping illustrate that features
related to phases that emerge in this doping range at lower
temperatures (such as fluctuating stripes [30–32]) are more
complex than the AFM parent state at half filling and that
this metallic region is also more complex than the conven-
tional Fermi liquid found at larger dopings. As optical lattice
experiments evolve and stripe physics becomes available, we
expect that signatures of the presence and periodicity of stripe
orderings should be detectable by analyzing the contributions
of the dissimilarities at different scales and C1.

2. Local moments and total density

Before quantum gas microscopy had access to images of
both fermionic species of the same system at the same time,
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FIG. 6. Dissimilarities Dk in the FHM at U/t = 8 from spin-resolved snapshots for (a) δ = 0 and (b) δ = 0.18. Closed markers correspond
to simulated snapshots in 10 × 10 lattices and open markers to experimental data. Solid lines are exponential fits to the data. In both cases, Dk

exhibits an exponential decay with temperature (solid lines) and a rapid suppression with increasing k.

density snapshots of the FHM could not be obtained; only
local moments could be detected separately. Nowadays, with
spin-resolved imaging, local moments as well as total density
images can be created [27,28,57]. In this section we study
their structural complexities and dissimilarities.

In Fig. 8(a) we show the structural complexities of the
local moments (open markers and dashed lines) and the total
density (closed markers and solid lines) of the half-filled FHM
as a function of temperature. In contrast to what we observed
for the spin-resolved snapshots, C0 is not constant but exhibits
a nonmonotonic behavior as a function of T/t . This is be-
cause unlike for single-species snapshots, as the temperature
changes, the number of doublons, and therefore the balance

FIG. 7. Plot of C1 vs δ for the FHM at U/t = 8 from
spin-resolved snapshots. Closed markers correspond to simulated
snapshots and open black markers to experimental data. Temperature
estimates from the experiment are indicated next to each marker. The
inset shows the entropy per site as a function of doping from the
numerical linked-cluster expansion (NLCE) [54].

between filled and empty pixels in the snapshots, changes
too. Such nonmonotonic behavior persists for C1, albeit with
smaller magnitude changes.

We find that for T/t � 2, C0 for the density snapshots is
larger than for the local moment snapshots, but the opposite
is true for C1. We can understand this through the following
argument: Below the characteristic AFM temperature, where
the upturn in double occupancy starts as we lower T , for
density snapshots, the doublon-hole fluctuations take place
on nearest-neighbor sites and so the first coarse-graining step
already renders mostly uniform images. On the contrary, for
local moment snapshots, because both holes and doublons
show up as empty pixels, one still has significant structure for
later coarse-graining steps.

To complement these results, in Fig. 8(b) we show the
dissimilarities of the half-filled FHM as a function of coarse-
graining steps at different temperatures. The Dk for both the
local moments and total density exhibit an exponential decay
with k at fixed T/t .

In Fig. 9, we show the temperature dependence of the
dissimilarities for the density snapshots at δ = 0.18. Here
we observe that (i) Dk decays rapidly with increasing k, (ii)
D0 exhibits a nonmonotonic behavior with T/t , akin to the
double occupancy, D = 〈ni↑ni↓〉, and (iii) it closely follows
the function D′ = (3/4)[D + 0.5δ(1 − δ)]. This expression
can be derived analytically under the assumption that the
uncorrelated parts of the correlation functions dominate (see
Appendix B), and it holds for other dopings too. The agree-
ment at high T , where the assumption is valid, illustrates
that D0 for the density snapshots is in fact closely related to
the double occupancy fraction in the model. More important
are the discrepancies at T/t � 1, which signal the presence
of nontrivial two-point nearest- and next-nearest-neighbor
spin-resolved density-density correlations in the model. A
similar approximation for D0 based on local moment snap-
shots proves challenging as three-point and four-point density
correlators enter the analysis (see Appendix B).
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FIG. 8. Structural complexity of the half-filled FHM at U/t = 8
from simulated density and local moment snapshots. (a) Plot of
C0 (blue circles) and C1 (red squares) as a function of tempera-
ture for the local moments (open markers) and the total density
(solid markers). Lines are guides to the eye. (b) Dissimilarities as
a function of coarse-graining steps at different temperatures for local
moments (open markers) and total density (solid markers). The inset
presents the same data in logarithmic scale.

Figure 10(a) shows C0 as a function of δ for the density
snapshots along with a shifted D from the numerical linked-
cluster expansion [54,58,59] for each value of the doping.
Here C0 exhibits an interesting behavior: (i) It is nonmono-
tonic with temperature for all values of δ, (ii) it is largest at
δ = 0.5, except at very high temperatures, and remarkably
(iii) it fully matches the shifted double occupancies at all
temperatures and all dopings considered. Previously, we dis-
cussed that D0 is closely correlated to the double occupancy
fraction in the model. When higher-order Dk’s are added, they
capture the remaining features of the double occupancy and
therefore C0 captures its temperature dependence extremely
well.

In contrast, the structural complexities of the local mo-
ment snapshots [Fig. 10(b)] are more complicated to interpret.
Although the behaviors of the curves for all dopings except
δ = 0.5 look fairly similar to their counterparts based on
density, we are unable to derive a simple analytic expression

FIG. 9. Plot of Dk vs T/t for the FHM with U/t = 8 from
simulated density snapshots at 18% doping for δ = 0.18. Red open
markers come from the NLCE for D′ = (3/4)[D + 0.5δ(1 − δ)].

based on thermodynamic properties in this case due to the
presence of higher-order correlations even at the first coarse-
graining step. The most interesting region for this complexity
occurs at δ = 0.5, where, for T/t � 1, C0 = 0.125, the same
constant value of the structural complexity as for the single-
species snapshots at half filling. This region corresponds to
the charge-density wave phase observed at quarter filling in
the FHM [25,36], where one sublattice is occupied and other
sublattice is empty, and therefore C0 is merely capturing the
classical complexity associated with having the largest en-
tropy in the images with an equal number of empty and
filled pixels.

Contrary to what occurred with the single-species snap-
shots, here we do not find excellent agreement between
experiment and theory. Figure 10(b) displays experimental
data at different dopings as open markers. For δ = 0.35 the
open diamond indeed matches with the simulations at the
same doping. However, C0 at δ = 0.6 has the same value. On
the other hand, for data at δ = 0.18, the open left triangles
match fairly well with the simulations at a slightly larger
doping of δ = 0.23, which might suggest the experimental
data were taken at such higher doping. Finally, C0 based on ex-
perimental data at half filling does not show good agreement
with that calculated for the simulated images and therefore
could signal issues with the imaging procedure. Hence, the
structural complexity of local moments can be used to further
diagnose imaging issues.

Figure 11 presents 2〈k〉 vs doping at different tempera-
tures for the three different types of snapshots analyzed.
At the highest temperature considered, T/t = 4, 2〈k〉 in-
creases slowly with δ for the nσ and n snapshots, but
decreases for the mz snapshots. This trend persists down to
all temperatures considered for the mz snapshots, becoming
sharper as the temperature is lowered, but surprisingly ex-
hibiting a crossing at δ ∼ 18%, which points to a possible
temperature-independent length scale in mz at this doping.
This coincides with the region where structural complex-
ity is maximal and corresponds to the strange metal region.
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FIG. 10. Plot of C0 vs T/t for the FHM at U/t = 8 from density and local moment snapshots. (a) Total density n. Markers correspond
to the structural complexity and lines to D∗ = D + 0.5δ(1 − δ) obtained with NLCE. (b) Local moments mz. Closed markers are based on
simulated snapshots, open markers are based on experimental ones, and lines are guides to the eye.

Since this occurs at easily experimentally-accessible regimes,
it is a phenomenon that can be explored immediately in
the experiment.

The plot of 2〈k〉 vs temperature for nσ and n snapshots also
displays interesting behaviors at the same doping. As seen
in Fig. 11(a) for nσ , the curves develop a plateau that starts
around δ ∼ 18% and extends up to δ ∼ 40%, while for n in
Fig. 11(b) the curves develop a broad peak around δ ∼ 18%.

IV. CONCLUSION

In this paper we showed how the structural complexity, de-
rived from overlaps of consecutive coarse grainings of images,
can be used to analyze real-space snapshots of strongly cor-
related electronic systems to reveal their underlying physics.
We benchmarked our results for classical models of mag-
netism and showed that the complexity measure can predict
the magnetic moment and the critical temperature very well.
We then turned to the FHM and computed the structural com-
plexity for various types of snapshots generated via DQMC
simulations or obtained through quantum gas microscopy in

optical lattice experiments. Among other things, we found that
when calculated for the total density snapshots, it matches the
double occupancy as a function of temperature shifted by a
density-dependent term. We identified specific contributions
that correlate with the entropy of the system as a function
of doping when dealing with snapshots of individual species
of fermions. Dissimilarities of patterns at different coarse-
graining steps also revealed relevant length scales in different
regions and pointed to interesting behaviors near 18%, where
the strange metal phase was observed. Hence, the technique
promises a theory-free method to extract phase changes or
even physical properties not otherwise accessible based on
experimental images alone. To that end, we have developed
an open-source PYTHON package [60].

An immediate application of this technique can be for
the study of Fermi-Hubbard models with larger spins and
enhanced SU(N > 2) symmetries, which are expected to
exhibit exotic behaviors with a complicated N dependence
[61–65]. In recent years, experiments with alkaline-earth-
like atoms in optical lattices have studied the SU(N) FHM
[66–71], and future implementations of quantum gas mi-

FIG. 11. Average linear length scale obtained from dissimilarities vs doping from (a) single-species nσ , (b) total density n, and (c) local
moment mz snapshots.
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croscopes for two-dimensional optical lattices will provide
spin-resolved projective measurements of the SU(N) FHM,
which can be analyzed using the multiscale structural com-
plexity to extract valuable physics. Furthermore, we expect
the technique to also be useful to analyze other types of
ultracold-atom experiments images, such as absorption imag-
ing of interferometric patterns [72,73] and self-similarities of
atomic wave packets [74].

In addition, future work will explore the possibility of
extending the structural complexity measure to other lattice
geometries. This is motivated by the field’s interest in studying
frustration in triangular [14–17] and kagome [75] lattices with
ultracold atoms, as well as the exotic physics that arises due to
the nonperiodicity in quasicrystals [76], and the flexibility of
engineering arbitrary lattice geometries using optical tweezer
arrays [77,78].

A particularly intriguing application would be to employ
the structural complexity to study time-independent and time-
dependent Green’s functions, since the dynamical properties
of models used to describe strongly interacting matter such as
the Hubbard, Holstein, and Su-Schrieffer-Heeger Hamiltoni-
ans are much more challenging to explore using conventional
numerical approaches.
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APPENDIX A: EXPRESSION FOR C0 IN THE
INFINITE-TEMPERATURE LIMIT

In this Appendix we derive the structural complexity for
the Ising models in the fully disordered phase, i.e., where each
spin orientation is equally probable, given by Eq. (5).

Let us calculate D0 first. For the 2 × 2 coarse-graining
window, we have 24 = 16 equally probable combinations
of 1’s and −1’s. After the first coarse-graining step, the
coarse-grained values obey a binomial distribution. These are

TABLE I. Possible values for the first coarse-graining step and
associated probabilities, as well as the values and probabilities of the
overlaps for the fully disordered spin snapshots.

Coarse-grained step Overlaps

Value Probability Value Probability

±1 1/16 0 1/8
±1/2 1/4 3/8 1/2
0 1/8 1/2 3/8

TABLE II. Possible values for the second coarse-graining step
and associated probabilities, as well as the values and probabilities
of the overlaps for the fully disordered spin snapshots.

Coarse-grained step Overlaps

Value Probability Value Probability

±1 1/65536 0 905/32768
±7/8 1/4096 3/128 329/2048
±3/4 15/8192 1/32 111/1024
±5/8 35/4096 1/16 9/64
±1/2 455/16384 11/128 207/1024
±3/8 273/4096 3/32 239/4096
±1/4 1001/8192 1/8 123/4096
±1/8 715/4096 19/128 39/512
0 6435/32768 5/32 9/128

3/16 21/512
27/128 83/2048

1/4 27/4096
35/128 9/512
9/32 9/1024
5/16 3/512

43/128 3/2048
11/32 9/4096
3/8 1/8192

51/128 3/2048
1/2 3/32768

presented in Table I, as well as the values and probabilities of
the overlaps |O1,0 − 1

2 (O1,1 + O0,0)|.
With these results we can calculate the average D0 =∑
n pndn, where dn corresponds to the value of the overlap

and pn its probability. In this case,

D0 = (
0 × 1

8

) + (
1
2 × 3

8

) + (
3
8 × 1

2

) = 3
8 . (A1)

In order to calculate D1, we now have to consider 54 = 625
possible combinations for each window. After the second
coarse-graining step, the values and overlaps obey the prob-
abilities presented in Table II.

With these results we calculate the average D1 as

D1 = 3
32 = D0 × (

1
4

)
. (A2)

It is then easy to prove that the next dissimilarities involved in
computing the structural complexity are given by

Dk = D0 ×
(

1

4k

)
, (A3)

and therefore we arrive at Eq. (5).

APPENDIX B: EXPRESSIONS FOR D0 FOR THE DENSITY
AND LOCAL MOMENT SNAPSHOTS

To simplify reading the following equations, in this Ap-
pendix we use two indices i j to label a site in an image.

Now let us consider a two-dimensional image with linear
dimension L and N = L × L sites. On each site, given by the
coordinate pair i j, the value of the image is ui j . The first term

053304-10



STRUCTURAL COMPLEXITY OF SNAPSHOTS OF … PHYSICAL REVIEW A 109, 053304 (2024)

D0 is given by

D0 = 1

4N

∣∣∣∣∣
L/2∑

i, j=1

[u2i−1,2 j−1(u2i−1,2 j + u2i,2 j−1)

+ u2i,2 j−1(u2i−1,2 j + u2i,2 j )

+ u2i,2 j (u2i−1,2 j−1 + u2i−1,2 j )] − 3

2

L∑
i, j=1

u2
i j

∣∣∣∣∣ (B1)

and it captures all correlations within a unit window, i.e., on-
site nearest and next-nearest neighbors.

In the case of density snapshots the images correspond to
ui j = ni j,↑ + ni j,↓. So D0 is given by

D0 = 1

4N

∣∣∣∣2(〈n↑n↑〉nn + 〈n↑n↓〉nn)

+ (〈n↑n↑〉nnn + 〈n↑n↓〉nnn) − 3

2
ρ − 3D

∣∣∣∣, (B2)

where we exploited the translational and rotational symmetry
and 〈nσ nτ 〉nn is shorthand for nearest-neighbor density-
density correlations for spin σ and τ . The subindex nnn
indicates the next-nearest-neighbor correlator. When the un-

correlated part of these correlation functions dominates
(for example, at high T ), 〈n↑n↑〉nn = 〈n↑n↓〉nn = 〈n↑n↑〉nnn =
〈n↑n↓〉nnn = ρ2/4 and so

D0 ≈ 1

4

∣∣∣∣3

2
ρ2 − 3

2
ρ − 3D

∣∣∣∣ = 3

4

∣∣∣∣1

2
δ(1 − δ) − D

∣∣∣∣. (B3)

This final expression indicates that the double occupancy,
shifted by an amount 0.5δ(1 − δ) and rescaled, should agree
with D0.

In the case of the local moments, the images correspond to
ui j = (ni j,↑ − ni j,↓)2. Working out the expressions and under
the same assumptions of translational, rotational, spin permu-
tation symmetry, and that the correlated part of the functions
dominate, we find

D0 ≈ 1

4

∣∣∣∣3

2

1

4
ρ2(2 − ρ2) − 3

2
mz

∣∣∣∣ = 3

8

∣∣∣∣1

4
(1 − δ2)2 − mz

∣∣∣∣.
(B4)

We expect that the disagreement between this D0 and any
simple function of mz is related to the fact that three-point
and four-point density correlators enter the analysis, i.e., the
assumption that the uncorrelated parts dominate is no longer
valid.
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